
An Algorithm For Identifying The Recurring
Subcircuits

Xiaobai Li1 Honglei Qin1 Rongling lang1
1School of Electronic and Information Engineering in Beijing University of Aeronautics and Astronautics，

Beijing, China, 100083

Abstract
The problem of detecting the given subsystems in
complex circuits is now an important problem in the
computer aided design of VLSI. The algorithm for
solving the problem of detecting recurring subsystems
is presented in this paper. The algorithm is structure
independent, namely any circuit which can be
described as a digraph can be handled by this
algorithm. The computational complexity is reduced
by dividing the algorithm into four phases, such as
preprocessing, locating, decomposing and labeling.
The experiment results indicate that the run time of the
algorithm is influenced by the parameters of graphs.

Keywords: CDFG; Isomorphism; Subcircuits

1. Introduction
Datapath circuits have lots of recurring subcircuits.

Designers often exploit the recurring templates in
circuits to achieve layout with a small area and a high
performance. Design effort can be reduced by
detecting recurring subcircuits, so the productivity of
designers being improved. The other use of detecting
recurring modules is that the subcircuits that occur
frequently among the target applications can be
considered for implementation in hardware to increase
the chances of hardware reuse.

The problem has been studied for quite some time,
and various techniques for identifying sub-circuits
have been proposed in the literatures [1, 2, 3, 4, 5, 6, 7,
8, 9]. At present Sub-Gemini algorithm [3] is very
popular. Sub-Gemini algorithm is a fast algorithm, and
it can identify the module of gate level even higher
level, but Sub-Gemini can not recognize of NANDs
with short inputs correctly. The algorithm in [4]
identifies the meaningful subcircuits using the
equivalence problem of Boolean functions. The
algorithms in [4, 5, 6] are semantic technique, namely
they can identify the functional subcircuits, but they
can only identify the high-level component from gate-
level netlists. The algorithm in [7] is fast when
identifying the subcircuits with tree structure, and the

computational complexity will increase when the
circuits having circles. The method is presented in [8,
9] for identifying the modules from combinational
circuits using polynomials mode. The combinational
circuit can be represented by a unique polynomial, so
the isomorphic subcircuits can be identified by the
comparing of polynomials. It will expend much time
when calculating the polynomial coefficients, so the
algorithm is invalid when the scale of the circuits is
large.

The rest of this paper is organized as follows
manner. In section II, we formalize the problem of
identifying subcircuits. In section III, the algorithm for
identify subcircuits is presented. In section IV, we
present experimental results. We conclude in section V.

2. Problem formulation
The problem of identifying sub-circuits is as

follows: given a circuits C represented by its Control
Data Flow Graph (CDFG) and a series of
subcircuits

i
T , ni !!1 , Find all the sub-circuits of C

that are isomorphic to
i
T , ni !!1 . CDFG includes

operands of mathematical operations, the state-space
and control information. CDFG of a circuit is a
directed labeled graph, so after translating the C code
or VHDL code to CDFG, the problem of identifying
circuits is essentially the well know subgraph
isomorphism problem.

The complexity will be improved if the available
algorithms are directly used for identifying subcircuits
while ignoring the characters of CDFG, such as
exiting indexes with zero in-degree, maximal degree
being small, etc. Therefore it is necessary to study the
isomorphic algorithm aiming at circuits, although
there are some good algorithms for solution the
isomorphic problem.

3. Isomorphism algorithm
A heuristic isomorphic algorithm is put forward

for the problem of subgraph isomorphism of directed
labeled graph, which has a corresponding architecture
with circuit. The algorithm can find all the subgraphs

in
2
G , which are isomorphic to

1
G . The algorithm

consists of four phases:
(1) Preprocessing to eliminate obviously the non

isomorphic subgraphs situation;
(2) Locating all the possible isomorphic

subgraphs;
(3) Decomposing

2
G to reduce the computational

complexity;
(4) Detecting all the recurring subgraphs using

labeling.

3.1. Preprocessing
Suppose that),(EVG is a labeled graph. The

vector |)|,|,||,(| 21 k

GGGG
NNNNV L= is defined as

feature vector, where k is the number of types of
V according the label of vertexes, || i

G
N , (ki !!1) is

the node number with the i -th label.
Theorem 3.1:

1
G and

2
G are two labeled graphs

and the vertexes in
1
G and

2
G are divided into k kinds

according to the label. Suppose that
1
G

NV and
2
G

NV
are the feature vectors of

1
G and

2
G , and

prescribe 0|| =
i
G j
N , if there are not vertexes with i -th

label in jG .There is not subgraphs in
2
G isomorphic

to
1
G if)(max

211

i

G

i

G
ki

NN !
""

0> .

3.2. Locating
It is necessary to identify the locations of all the

possible isomorphic subgraphs in order to find all the
isomorphic sub-graphs. The basic nodes for
decomposing in phase 3 and the starting nodes for
labeling in phase 4 are determined in this phase.

Fig. 1:The Example of graphs for subgrph isomorphism
Definition 3.1:),(EVG is a directed graph, Vv! ,

,|{ VuuP
v

!= and exit directed path >< uv, in
}G .The eccentricity of vertex v represented by
)(vE is defined as |},{|max ><

!
uv

v
Pu

.

The vertex g in

2
G is defined as the matching

node of s in
1
G if vertex s is the corresponding

vertex of g under isomorphic meaning. If vertex v is
the matching node of u , v should at least satisfy the
following conditions:

(1) u and v having the same label;
(2) the in-degree of v in

2
G being not less than

that of u ;
(3))()(

12
uEvE

GG
! .

Every vertex u in
1
G with zero in-degree has a

set of vertexes satisfying the above conditions, which
are the possible matching nodes of u . In order to
simplify the task of subgraph identification in the next
phases, the vertex with the least number of the
possible matching nodes is selected as the leading
node for labeling in phase 4. The vertex is represented
by

0
v , and the set corresponding with

0
v is

represented by
0
V . Fig.1 shows the example graph,

and '
10
vv = , },,,,{ 131211520 vvvvvV = .

3.3. Decomposing
In this phase,

2
G is divided into a series of sub-graphs

containing some nodes of
0
V . Searching the isomorphic

graphs in the subgraphs will reduce the complexity of
labeling in phase 4.

Fig.2: The Directed circles of
2
G in fig. 1

Definition 3.2:),(AVG is a directed graph, '
G is

the basic graph of G , ,|{ VuuR
v

!= }),(' rvud
G

! .
The induced graph][

v
RG is defined as a circle with

the center v and radius r , and represented by),(rvC
G

.
The directed graph '),(VrvC

G
! is defined as a

directed circle with the center v and radius r , and
represented by),(rvD

G
, where
,|{'
v
RuuV !=)},(, rvCvua

G
>!=<" .

Fig.2 shows the directed circles of
2
G in fig. 1.

The radius of the circles is 2 which equal to the
eccentricity of

0
v .

The matching nodes of
0
v should have zero in-

degree and the same eccentricity as
0
v in the

isomorphic subgraphs, so the isomorphic subgraphs
can be searched in the directed circles. By
preprocessing, it can be find that there are not sub-

graphs isomorphic to
1
G in)2,(52

vD
G ,)2,(112

vD
G

and)2,(122
vD

G .

3.4. Labeling
Upon completion of phase 3, a set of directed

circles possibly containing isomorphic subgraphs is
chosen, and the set is represented by ! . In phase 4,
all the directed circles in ! are examined to find the
isomorphic subgraphs by labeling. The breadth-first
manner is used during labeling for maximizes the use
of the information about the structure of

1
G .

The relabeling function is defined as follow:
! !

" +# #

"+=

Vu Vu

upupvpvp)()()()(' (1)

Where ')(vp is the label of node v after the last
time labeling, |{uV =

!
>=<! vua , , and being

relabeled last time} , |{uV =
+

>=<! uva , , and being
relabeled last time} .

 The vertexes lying outside the isomorphic graph
may add extra information to the matching vertexes
during relabeling. It make that the matching nodes
may have the different label. In order to avoid this
situation, the vertexes in C having none matching
nodes will not be relabeled in next time, and the label
of the vertexes are not used to relabel other nodes,
whereC is a directed circle. The nodes in C having
none matching nodes are named rejected nodes, and
the remainder nodes in C are named potential nodes.
For example, the vertexes in S which is a subset of
C are all rejected nodes, if the nodes have the same
label and there are not nodes in

1
G with the label.

Suppose that S and T are the vertex subsets of C and
1
G individually, and the vertexes in them having the
same label. The nodes in S are all potential nodes
under the condition of |||| TS = . Especially, the g is
the matching node of s , when }{gS = , }{sT = . The
labels of matching nodes will not change any more
during the process of relabeling.

3.5. Algorithm
Algorithm: detecting all the isomorphic subgraphs
Input:

1
G ,

2
G .

Output: all the subgraphs isomorphic to
1
G .

Step1: preprocessing.
Step2: locating, so

0
v and

0
V being gained.

Step3: decomposing and preprocessing every directed
circle, and then the set represented by ! is
found.

Step4: labeling the every element of ! to detect all
the recurring subgraphs.

Let !"S , and label S as follows until the all the
nodes in

1
G find its matching nodes or the remainder

nodes except matching nodes are all rejected nodes:

(1) Label
0
v and the center of S with the same

label, and mark that they are matching nodes.
(2) Relabel the potential nodes which are adjacent

to the nodes labeled last time using the
relabeling formula.

(3) Suppose that SvGv ji !! ,1 have the same
unique label, mark that they are matching nodes.

(4) Check the condition, if there are no new
potential nodes and no unique nodes in both
graph with the same label, choose an pair of
unmatched nodes which having the same label,
and go to (2); else go to(2) directly.

4. Experiment
This section will experimentally investigate the

computational performance of the algorithm and
demonstrate the capability of the algorithm on solving
subcircuits detection problem.

Fig3: The Curves of Runtime Influenced by The Parameters
of Graph

In the first experiment, we are interested in
measuring the influence of the size of

1
G . In the

experiment,
2
G has fixed size with 300

2
=N , the size

of
1
G represented by

1
N was increased from 50 to 200.

The curve of execution time varying with
1
N is

recorded in fig. 3(a). Fig.3 shows that the runtime
increases linearly with the increasing of the size of

1
G

when the maximal degree is bounded to 4. As
illustrating in fig. 3(b), the rule of runtime

1
G changes

when the maximal degree increases. The runtime
increases faster with the increasing of maximal degree.
In many practical problems the CDFGs of circuits is
sparse enough, so the algorithm is a fast in identifying
recurring subcircuits.

In the second experiment, we are interested in
measuring the influence of the size of

2
G . In the

experiment, 50
1
=N , the

2
N increases from 100 to

600. The results of the experiments are given in fig.

(c) N1=50

(a) N2=300

50 100 150 200
0

5

10

15

20

25

30

N1

R
u
n
t
i
m
e

(
s
)

100 200 300 400 500 600
0

5

10

15

20

N2

R
u
n
t
i
m
e

(
s
)

xy 036.0=

50 100 150 200
0

50

100

150

200

250

N1

R
u
n
t
i
m
e

(
s
)

D=2

D=4

D=6

D=10

100 200 300 400 500 600
0

50

100

150

200

N2

R
u
n
t
i
m
e

(
s
)

D=2

D=4

D=6

D=10

(b) N2=300

(d) N1=50

3(c) and 3(d). The rule of runtime varying with the
size of

2
G is similar as that of

1
G . By comparing all

the graphs of fig. 3, the conclusion can be gotten that
the runtime increases faster with the increasing
of

1
N than that of

2
N .

In the third experiment, we are interested in
measuring the influence of the number of node types.
Fig.4 illustrates the curves, and the runtime decreases
with the increasing of types of nodes. Runtime
decreases fastest when the number of types is around
of half of

1
N , and doesn’t change almost when the

number of types is more than some integer.

Fig.4: The Curves of Runtime influenced by the types of
nodes

5. Conclusion
The major contribution of this paper is the

algorithm developed for identifying all the subgraphs
isomorphic to a serious of given graphs. The algorithm
put forward in this paper can identify any given
subcircuits represented by directed graphs in complex
circuits. By dividing the process into four phases, and
some clever techniques the execution time is saved.
Although the algorithm is not polynomial, the run time
of the algorithm is influenced by the numbers of
vertexes; the numbers of node types, the maximum
degree of graph, the run time of the algorithm has
linear relationship with the numbers of vertexes when
the maximum degree of the graph is not more than 4.

6. References
[1] Michae Boehner. LOGEX-an automatic logic

extractor from transistor to gate level for cmos
technology [A]. In proceedings of the 30th
ACM/IEEE Design Automation Conference[C],
1988, 517-522.

[2] S. Kundu. GateMaker: A transistor to gate level
model extractor for simulation, automatic test
pattern generation and verification[A]. In
proceedings of the IEEE International Test
Conference[C], 372-381.

[3] C. E. Miles Ohlrich et al. , Subgemini: Identifying
subcircuits using a fast subgraph isomorphism
algorithm[A], ACM Press ,31-37, 1993.

[4] Travis E. Doom, Jennifer L. White, Gregory
Chisholm, and Anthony S. Wojcik, Identification
of functional components in combinational
circuits[R], Technical Report ANL/DISfrM-47,
Argonne National Laboratory, 1998.

[5] T. Doom, J. White, A. S. Wojcik, and G.
Chisholm, Identifying high-level components in
combinational Circuits [A], in Proceedings of the
IEEE conference of Great Lakes Symposium on
VLSI[C], 1998.

[6] J. White, A. S. Wojcik, M. Chung, and T. Doom,
Candidate Subcircuits For Functional Module
Identification In Logic Circuits[A], Proceedings
of the 2000 Great Lakes Symposium on VLSI[C],
2000.

[7] Miguel R. Corazao, Marwan A. Khalaf, Lisa
M.Guerra, Miodrag Potkonjak, and Jan M.
Rabaey, Performance optimization using
templates mapping for datapath intensive high-
level synthesis[A]. IEEE Transactions on
Computer-Aided Design of Intergrated Circuits
and Systems[C], 15(8):877-888., 1996.

[8] J. Smith and G. De Micheli. Polynomial Methods
for Allocating Complex Components. DATE [A],
Proceedings of the Design, Automation and Test
in Europe Conference[C], 217-222. 1999.

[9] Giovanni De Micheli, James Smith, Polynomial
Methods for Component Matching and
Verification [A], ICCAD’98[C], 678-685, 1998.

