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Abstract  
The problem of detecting the given subsystems in 
complex circuits is now an important problem in the 
computer aided design of VLSI. The algorithm for 
solving the problem of detecting recurring subsystems 
is presented in this paper. The algorithm is structure 
independent, namely any circuit which can be 
described as a digraph can be handled by this 
algorithm.  The computational complexity is reduced 
by dividing the algorithm into four phases, such as 
preprocessing, locating, decomposing and labeling. 
The experiment results indicate that the run time of the 
algorithm is influenced by the parameters of graphs.   
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1.  Introduction 
Datapath circuits have lots of recurring subcircuits. 

Designers often exploit the recurring templates in 
circuits to achieve layout with a small area and a high 
performance. Design effort can be reduced by 
detecting recurring subcircuits, so the productivity of 
designers being improved. The other use of detecting 
recurring modules is that the subcircuits that occur 
frequently among the target applications can be 
considered for implementation in hardware to increase 
the chances of hardware reuse. 

The problem has been studied for quite some time, 
and various techniques for identifying sub-circuits 
have been proposed in the literatures [1, 2, 3, 4, 5, 6, 7, 
8, 9]. At present Sub-Gemini algorithm [3] is very 
popular. Sub-Gemini algorithm is a fast algorithm, and 
it can identify the module of gate level even higher 
level, but Sub-Gemini can not recognize of NANDs 
with short inputs correctly. The algorithm in [4] 
identifies the meaningful subcircuits using the 
equivalence problem of Boolean functions. The 
algorithms in [4, 5, 6] are semantic technique, namely 
they can identify the functional subcircuits, but they 
can only identify the high-level component from gate-
level netlists. The algorithm in [7] is fast when 
identifying the subcircuits with tree structure, and the 

computational complexity will increase when the 
circuits having circles. The method is presented in [8, 
9] for identifying the modules from combinational 
circuits using polynomials mode. The combinational 
circuit can be represented by a unique polynomial, so 
the isomorphic subcircuits can be identified by the 
comparing of polynomials. It will expend much time 
when calculating the polynomial coefficients, so the 
algorithm is invalid when the scale of the circuits is 
large.  

The rest of this paper is organized as follows 
manner. In section II, we formalize the problem of 
identifying subcircuits. In section III, the algorithm for 
identify subcircuits is presented. In section IV, we 
present experimental results. We conclude in section V.  

2. Problem formulation 
The problem of identifying sub-circuits is as 

follows: given a circuits C represented by its Control 
Data Flow Graph (CDFG) and a series of 
subcircuits

i
T , ni !!1 , Find all the sub-circuits of C 

that are isomorphic to 
i
T , ni !!1 . CDFG includes 

operands of mathematical operations, the state-space 
and control information. CDFG of a circuit is a 
directed labeled graph, so after translating the C code 
or VHDL code to CDFG, the problem of identifying 
circuits is essentially the well know subgraph 
isomorphism problem. 

The complexity will be improved if the available 
algorithms are directly used for identifying subcircuits 
while ignoring the characters of CDFG, such as 
exiting indexes with zero in-degree, maximal degree 
being small, etc. Therefore it is necessary to study the 
isomorphic algorithm aiming at circuits, although 
there are some good algorithms for solution the 
isomorphic problem. 

3. Isomorphism algorithm 
A heuristic isomorphic algorithm is put forward 

for the problem of subgraph isomorphism of directed 
labeled graph, which has a corresponding architecture 
with circuit. The algorithm can find all the subgraphs 



in
2
G , which are isomorphic to

1
G . The algorithm 

consists of four phases:  
(1) Preprocessing to eliminate obviously the non 

isomorphic subgraphs situation;  
(2) Locating all the possible isomorphic 

subgraphs; 
(3) Decomposing 

2
G  to reduce the computational 

complexity;  
(4) Detecting all the recurring subgraphs using 

labeling. 

3.1. Preprocessing 
Suppose that ),( EVG is a labeled graph. The 

vector |)|,|,||,(| 21 k

GGGG
NNNNV L= is defined as 

feature vector, where k is the number of types of 
V according the label of vertexes, || i

G
N , ( ki !!1 ) is 

the node number with the i -th label.  
Theorem 3.1: 

1
G and

2
G are two labeled graphs 

and the vertexes in 
1
G and

2
G  are divided into k kinds 

according to the label. Suppose that
1
G

NV and 
2
G

NV  
are the feature vectors of 

1
G and

2
G , and 

prescribe 0|| =
i
G j
N , if there are not vertexes with i -th 

label in jG .There is not subgraphs in
2
G  isomorphic  

to
1
G  if )(max

211

i

G

i

G
ki

NN !
""

0> . 

3.2. Locating 
It is necessary to identify the locations of all the 

possible isomorphic subgraphs in order to find all the 
isomorphic sub-graphs. The basic nodes for 
decomposing in phase 3 and the starting nodes for 
labeling in phase 4 are determined in this phase. 

Fig. 1:The Example of graphs for subgrph isomorphism 
Definition 3.1: ),( EVG is a directed graph, Vv! , 

,|{ VuuP
v

!= and exit directed path >< uv,  in 
}G .The eccentricity of vertex v  represented by 
)(vE is defined as |},{|max ><

!
uv

v
Pu

.  
 
The vertex g in 

2
G is defined as the matching 

node of s in
1
G  if vertex s  is the corresponding 

vertex of g under isomorphic meaning. If vertex v is 
the matching node of u , v  should at least satisfy the 
following conditions: 

(1) u  and v  having the same label;  
(2) the in-degree of v  in 

2
G  being not less than 

that of u ;  
(3) )()(

12
uEvE

GG
! . 

Every vertex u in 
1
G  with zero in-degree has a 

set of vertexes satisfying the above conditions, which 
are the possible matching nodes of u . In order to 
simplify the task of subgraph identification in the next 
phases, the vertex with the least number of the 
possible matching nodes is selected as the leading 
node for labeling in phase 4. The vertex is represented 
by

0
v , and the set corresponding with 

0
v  is 

represented by
0
V .  Fig.1 shows the example graph, 

and '
10
vv = , },,,,{ 131211520 vvvvvV = . 

3.3. Decomposing 
In this phase, 

2
G  is divided into a series of sub-graphs 

containing some nodes of 
0
V . Searching the isomorphic 

graphs in the subgraphs will reduce the complexity of 
labeling in phase 4.  

Fig.2: The Directed circles of 
2
G  in fig. 1 

Definition 3.2: ),( AVG is a directed graph, '
G is 

the basic graph of G , ,|{ VuuR
v

!=  }),(' rvud
G

! . 
The induced graph ][

v
RG is defined as a circle with 

the center v  and radius r , and represented by ),( rvC
G

. 
The directed graph '),( VrvC

G
! is defined as a 

directed circle with the center v  and radius r , and 
represented by ),( rvD

G
, where  
,|{'
v
RuuV !=  )},(, rvCvua

G
>!=<" . 

Fig.2 shows the directed circles of 
2
G  in fig. 1. 

The radius of the circles is 2 which equal to the 
eccentricity of

0
v . 

The matching nodes of 
0
v  should have zero in-

degree and the same eccentricity as 
0
v  in the 

isomorphic subgraphs, so the isomorphic subgraphs 
can be searched in the directed circles. By 
preprocessing, it can be find that there are not sub-



graphs isomorphic to 
1
G  in )2,( 52

vD
G , )2,( 112

vD
G  

and )2,( 122
vD

G . 

3.4. Labeling 
Upon completion of phase 3, a set of directed 

circles possibly containing isomorphic subgraphs is 
chosen, and the set is represented by ! . In phase 4, 
all the directed circles in !  are examined to find the 
isomorphic subgraphs by labeling. The breadth-first 
manner is used during labeling for maximizes the use 
of the information about the structure of

1
G .  

The relabeling function is defined as follow: 
! !

" +# #

"+=

Vu Vu

upupvpvp )()()()( '    (1) 

Where ')(vp is the label of node v  after the last 
time labeling, |{uV =

!
>=<! vua , , and being 

relabeled last time} , |{uV =
+

>=<! uva , , and being 
relabeled last time} . 

  The vertexes lying outside the isomorphic graph 
may add extra information to the matching vertexes 
during relabeling. It make that the matching nodes 
may have the different label. In order to avoid this 
situation, the vertexes in C  having none matching 
nodes will not be relabeled in next time, and the label 
of the vertexes are not used to relabel other nodes, 
whereC is a directed circle. The nodes in C  having 
none matching nodes are named rejected nodes, and 
the remainder nodes in C  are named potential nodes. 
For example, the vertexes in S  which is a subset of 
C  are all rejected nodes, if the nodes have the same 
label and there are not nodes in 

1
G  with the label. 

Suppose that S and T  are the vertex subsets of C and 
1
G  individually, and the vertexes in them having the 
same label. The nodes in S  are all potential nodes 
under the condition of |||| TS = . Especially, the g is 
the matching node of s , when }{gS = , }{sT = . The 
labels of matching nodes will not change any more 
during the process of relabeling. 

3.5. Algorithm 
Algorithm: detecting all the isomorphic subgraphs  
Input: 

1
G ,

2
G . 

Output: all the subgraphs isomorphic to
1
G . 

Step1: preprocessing. 
Step2: locating, so 

0
v  and 

0
V being gained. 

Step3: decomposing and preprocessing every directed 
circle, and then the set represented by !  is 
found. 

Step4: labeling the every element of !  to detect all 
the recurring subgraphs.  

Let !"S , and label S  as follows until the all the 
nodes in 

1
G  find its matching nodes or the remainder 

nodes except matching nodes are all rejected nodes: 

(1) Label 
0
v and the center of S with the same 

label, and mark that they are matching nodes.  
(2) Relabel the potential nodes which are adjacent 

to the nodes labeled last time using the 
relabeling formula.  

(3) Suppose that SvGv ji !! ,1 have the same 
unique label, mark that they are matching nodes. 

(4) Check the condition, if there are no new 
potential nodes and no unique nodes in both 
graph with the same label, choose an pair of 
unmatched nodes which having the same label, 
and go to (2); else go to(2) directly. 

4. Experiment 
This section will experimentally investigate the 

computational performance of the algorithm and 
demonstrate the capability of the algorithm on solving 
subcircuits detection problem.  

Fig3: The Curves of Runtime Influenced by The Parameters 
of Graph 

In the first experiment, we are interested in 
measuring the influence of the size of 

1
G . In the 

experiment, 
2
G  has fixed size with 300

2
=N , the size 

of 
1
G  represented by 

1
N was increased from 50 to 200.  

The curve of execution time varying with 
1
N  is 

recorded in fig. 3(a). Fig.3 shows that the runtime 
increases linearly with the increasing of the size of 

1
G  

when the maximal degree is bounded to 4. As 
illustrating in fig. 3(b), the rule of runtime 

1
G changes 

when the maximal degree increases. The runtime 
increases faster with the increasing of maximal degree. 
In many practical problems the CDFGs of circuits is 
sparse enough, so the algorithm is a fast in identifying 
recurring subcircuits. 

In the second experiment, we are interested in 
measuring the influence of the size of

2
G . In the 

experiment, 50
1
=N , the 

2
N  increases from 100 to 

600. The results of the experiments are given in fig. 

(c) N1=50

(a) N2=300
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3(c) and 3(d). The rule of runtime varying with the 
size of 

2
G is similar as that of

1
G . By comparing all 

the graphs of fig. 3, the conclusion can be gotten that 
the runtime increases faster with the increasing 
of

1
N than that of 

2
N . 

In the third experiment, we are interested in 
measuring the influence of the number of node types.  
Fig.4 illustrates the curves, and the runtime decreases 
with the increasing of types of nodes. Runtime 
decreases fastest when the number of types is around 
of half of

1
N , and doesn’t change  almost when the 

number of types is more than some integer. 

Fig.4: The Curves of Runtime influenced by the types of 
nodes  

5. Conclusion 
The major contribution of this paper is the 

algorithm developed for identifying all the subgraphs 
isomorphic to a serious of given graphs. The algorithm 
put forward in this paper can identify any given 
subcircuits represented by directed graphs in complex 
circuits. By dividing the process into four phases, and 
some clever techniques the execution time is saved. 
Although the algorithm is not polynomial, the run time 
of the algorithm is influenced by the numbers of 
vertexes; the numbers of node types, the maximum 
degree of graph, the run time of the algorithm has 
linear relationship with the numbers of vertexes when 
the maximum degree of the graph is not more than 4. 
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