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Abstract

I have argued that a simple but general formal theory
of creativity explains many essential aspects of intelli-
gence including science, art, music, humor. It is based
on the concept of maximizing reward for the creation or
discovery of novel patterns allowing for improved data
compression or prediction. Here I discuss what kind
of general bias towards algorithmic regularities we in-
sert into our robots by implementing the principle, why
that bias is good, and how the approach greatly gen-
eralizes the field of active learning. I emphasize the
importance of limited computational resources for on-
line prediction and compression, and provide discrete
and continuous time formulations for ongoing work on
building an Artificial General Intelligence (AGI) based
on variants of the artificial creativity framework.

Introduction

Since 1990 I have built agents that may be viewed as
simple artificial scientists or artists with an intrinsic
desire to create / discover more novel patterns, that
is, data predictable or compressible in hitherto un-
known ways (Sch91b; Sch91a; SHS95; Sch02a; Sch06a;
Sch07; Sch09c; Sch09b; Sch09a). The agents invent and
conduct experiments to actively explore the world, al-
ways trying to learn new behaviors exhibiting previ-
ously unknown regularities. The agents embody ap-
proximations of a simple, but general, formal theory
of creativity explaining essential aspects of human or
non-human intelligence, including selective attention,
science, art, music, humor (Sch06a; Sch07; Sch09c;
Sch09b; Sch09a). Crucial ingredients are: (1) A pre-
dictor or compressor of the continually growing his-
tory of actions and sensory inputs, reflecting what’s
currently known about how the world works, (2) A
learning algorithm that continually improves the pre-
dictor or compressor (detecting novel spatio-temporal
patterns that subsequently become known patterns),
(3) Intrinsic rewards measuring the predictor’s or com-
pressor’s improvements due to the learning algorithm,
(4) A reward optimizer or reinforcement learner, which
translates those rewards into action sequences or be-
haviors expected to optimize future reward - the agent
is intrinsically motivated to create additional novel

patterns predictable or compressible in previously un-
known ways. We implemented the following variants:
(A) Intrinsic reward as measured by improvement in
mean squared prediction error (1991) (Sch91a), (B) In-
trinsic reward as measured by relative entropies be-
tween the agent’s priors and posteriors (1995) (SHS95),
(C) Learning of probabilistic, hierarchical programs and
skills through zero-sum intrinsic reward games of two
players, each trying to out-predict or surprise the other,
taking into account the computational costs of learning,
and learning when to learn and what to learn (1997-
2002) (Sch02a). (A, B, C) also showed experimentally
how intrinsic rewards can substantially accelerate goal-
directed learning and external reward intake. We also
discussed (D) Mathematically optimal, intrinsically mo-
tivated systems driven by prediction progress or com-
pression progress (2006-2009) (Sch06a; Sch07; Sch09c;
Sch09b).

How does our formal theory of creativity and cu-
riosity generalize the traditional field of active learn-
ing, e.g., (Fed72)? To optimize a function may re-
quire expensive data evaluations. Active learning typ-
ically just asks which data point to evaluate next to
maximize information gain (1 step look-ahead), assum-
ing all data point evaluations are equally costly. Our
more general framework takes formally into account:
(1) Agents embedded in an environment where there
may be arbitrary delays between experimental actions
and corresponding information gains, e.g., (SHS95;
Sch91a), (2) The highly environment-dependent costs
of obtaining or creating not just individual data points
but data sequences of a priori unknown size, (3) Ar-
bitrary algorithmic or statistical dependencies in se-
quences of actions & sensory inputs, e.g., (Sch02a;
Sch06a), (4) The computational cost of learning new
skills, e.g., (Sch02a). Unlike previous approaches,
our systems measure and maximize algorithmic (Sol78;
Kol65; LV97; Sch02b) novelty (learnable but previ-
ously unknown compressibility or predictability) of self-
generated spatio-temporal patterns in the history of
data and actions (Sch06a; Sch07; Sch09c; Sch09b).

How does the prediction progress drive / compres-
sion progress drive explain, say, humor? Consider the
following statement: Biological organisms are driven by
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the “Four Big F’s”: Feeding, Fighting, Fleeing, Sexual
Activity. Some subjective observers who read this for
the first time think it is funny. Why? As the eyes
are sequentially scanning the text the brain receives a
complex visual input stream. The latter is subjectively
partially compressible as it relates to the observer’s pre-
vious knowledge about letters and words. That is, given
the reader’s current knowledge and current compressor,
the raw data can be encoded by fewer bits than required
to store random data of the same size. But the punch
line after the last comma is unexpected for those who
expected another “F”. Initially this failed expectation
results in sub-optimal data compression—storage of ex-
pected events does not cost anything, but deviations
from predictions require extra bits to encode them. The
compressor, however, does not stay the same forever:
within a short time interval its learning algorithm im-
proves its performance on the data seen so far, by dis-
covering the non-random, non-arbitrary and therefore
compressible pattern relating the punch line to previous
text and previous knowledge about the “Four Big F’s.”
This saves a few bits of storage. The number of saved
bits (or a similar measure of learning progress) becomes
the observer’s intrinsic reward, possibly strong enough
to motivate him to read on in search for more reward
through additional yet unknown patterns. The recent
joke, however, will never be novel or funny again.

How does the theory informally explain the moti-
vation to create or perceive art and music (Sch97b;
Sch97a; Sch06a; Sch07; Sch09c; Sch09b; Sch09a)? For
example, why are some melodies more interesting or
aesthetically rewarding than others? Not the one the
listener (composer) just heard (played) twenty times in
a row. It became too subjectively predictable in the
process. Nor the weird one with completely unfamiliar
rhythm and tonality. It seems too irregular and contain
too much arbitrariness and subjective noise. The ob-
server (creator) of the data is interested in melodies that
are unfamiliar enough to contain somewhat unexpected
harmonies or beats etc., but familiar enough to allow for
quickly recognizing the presence of a new learnable reg-
ularity or compressibility in the sound stream: a novel
pattern! Sure, it will get boring over time, but not yet.
All of this perfectly fits our principle: The current com-
pressor of the observer or data creator tries to compress
his history of acoustic and other inputs where possible.
The action selector tries to find history-influencing ac-
tions such that the continually growing historic data al-
lows for improving the compressor’s performance. The
interesting or aesthetically rewarding musical and other
subsequences are precisely those with previously un-
known yet learnable types of regularities, because they
lead to compressor improvements. The boring patterns
are those that are either already perfectly known or ar-
bitrary or random, or whose structure seems too hard to
understand. Similar statements not only hold for other
dynamic art including film and dance (take into ac-
count the compressibility of action sequences), but also
for “static” art such as painting and sculpture, created

through action sequences of the artist, and perceived
as dynamic spatio-temporal patterns through active at-
tention shifts of the observer. When not occupied with
optimizing external reward, artists and observers of art
are just following their compression progress drive!

How does the theory explain the nature of induc-
tive sciences such as physics? If the history of the
entire universe were computable, and there is no ev-
idence against this possibility (Sch06b), then its sim-
plest explanation would be the shortest program that
computes it. Unfortunately there is no general way
of finding the shortest program computing any given
data (LV97). Therefore physicists have traditionally
proceeded incrementally, analyzing just a small aspect
of the world at any given time, trying to find simple
laws that allow for describing their limited observa-
tions better than the best previously known law, essen-
tially trying to find a program that compresses the ob-
served data better than the best previously known pro-
gram. An unusually large compression breakthrough
deserves the name discovery. For example, Newton’s
law of gravity can be formulated as a short piece of
code which allows for substantially compressing many
observation sequences involving falling apples and other
objects. Although its predictive power is limited—for
example, it does not explain quantum fluctuations of
apple atoms—it still allows for greatly reducing the
number of bits required to encode the data stream,
by assigning short codes to events that are predictable
with high probability (Huf52) under the assumption
that the law holds. Einstein’s general relativity the-
ory yields additional compression progress as it com-
pactly explains many previously unexplained deviations
from Newton’s predictions. Most physicists believe
there is still room for further advances, and this is
what is driving them to invent new experiments un-
veiling novel, previously unpublished patterns (Sch09c;
Sch09b; Sch09a). When not occupied with optimizing
external reward, physicists are also just following their
compression progress drive!

More Formally

Let us formally consider a learning agent whose sin-
gle life consists of discrete cycles or time steps t =
1, 2, . . . , T . Its complete lifetime T may or may not
be known in advance. In what follows, the value of
any time-varying variable Q at time t (1 ≤ t ≤ T )
will be denoted by Q(t), the ordered sequence of values
Q(1), . . . , Q(t) by Q(≤ t), and the (possibly empty) se-
quence Q(1), . . . , Q(t − 1) by Q(< t). At any given t
the agent receives a real-valued input x(t) from the en-
vironment and executes a real-valued action y(t) which
may affect future inputs. At times t < T its goal is to
maximize future success or utility

u(t) = Eµ

[

T
∑

τ=t+1

r(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

, (1)
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where the reward r(t) is a special real-valued in-
put at time t, h(t) the ordered triple [x(t), y(t), r(t)]
(hence h(≤ t) is the known history up to t), and
Eµ(· | ·) denotes the conditional expectation opera-
tor with respect to some possibly unknown distribu-
tion µ from a set M of possible distributions. Here M
reflects whatever is known about the possibly proba-
bilistic reactions of the environment. For example, M
may contain all computable distributions (Sol78; LV97;
Hut04). There is just one life, no need for predefined
repeatable trials, no restriction to Markovian interfaces
between sensors and environment, and the utility func-
tion implicitly takes into account the expected remain-
ing lifespan Eµ(T | h(≤ t)) and thus the possibility to
extend the lifespan through appropriate actions (Sch05;
Sch09d).

Recent work has led to the first reinforcement learn-
ing (RL) machines that are universal and optimal in
various very general senses (Hut04; Sch02c; Sch09d).
Such machines can in theory find out by themselves
whether curiosity and creativity are useful or useless in
a given environment, and learn to behave accordingly.
In realistic settings, however, external rewards are ex-
tremely rare, and we cannot expect quick progress of
this type, not even by optimal machines. But typically
we can learn lots of useful behaviors even in absence
of external rewards: unsupervised behaviors that just
lead to predictable or compressible results and thus re-
flect the regularities in the environment, e. g., repeat-
able patterns in the world’s reactions to certain action
sequences. Here we argue again that a bias towards
exploring previously unknown environmental regulari-
ties is a priori good in the real world as we know it,
and should be inserted into practical AGIs, whose goal-
directed learning will profit from this bias, in the sense
that behaviors leading to external reward can often
be quickly composed / derived from previously learnt,
purely curiosity-driven behaviors. We shall not worry
about the undeniable possibility that curiosity and cre-
ativity can actually be harmful and “kill the cat”, that
is, we assume the environment is benign enough. Based
on our experience with the real world it may be argued
that this assumption is realistic. Our explorative bias
greatly facilitates the search for goal-directed behav-
iors in environments where the acquisition of external
reward has indeed a lot to do with easily learnable en-
vironmental regularities.

To establish this bias, in the spirit of our previ-
ous work since 1990 (Sch91b; Sch91a; SHS95; Sch02a;
Sch06a; Sch07; Sch09c; Sch09b; Sch09a) we simply split
the reward signal r(t) into two scalar real-valued com-
ponents: r(t) = g(rext(t), rint(t)), where g maps pairs
of real values to real values, e.g., g(a, b) = a + b.
Here rext(t) denotes traditional external reward pro-
vided by the environment, such as negative reward in
response to bumping against a wall, or positive re-
ward in response to reaching some teacher-given goal
state. The formal theory of creativity, however, is es-
pecially interested in rint(t), the internal or intrinsic

or curiosity or creativity or aesthetic reward, which
is provided whenever the data compressor / inter-
nal world model of the agent improves in some mea-
surable sense—for purely creative agents rext(t) = 0
for all valid t. The basic principle is essentially the
one we published before in various variants (Sch91b;
Sch91a; SHS95; Sch02a; Sch06a; Sch07; Sch09c; Sch09b;
Sch09a):

Generate intrinsic curiosity reward or creativity re-
ward for the controller in response to improvements
of the predictor or history compressor.

This is a description of the agent’s motivation - we con-
ceptually separate the goal (finding or creating data
that can be predicted / explained / compressed / un-
derstood better or faster than before) from the means of
achieving the goal. Once the goal is formally specified in
terms of an algorithm for computing curiosity rewards,
let the controller’s RL mechanism figure out how to
translate such rewards into action sequences that allow
the given compressor improvement algorithm to find
and exploit previously unknown types of compressibil-
ity.

Computing Creativity Rewards
As pointed out above, predictors and compressors are
closely related. Any type of partial predictability of
the incoming sensory data stream can be exploited to
improve the compressibility of the whole. We consider
compressors that can deal with any prefix of the grow-
ing history, computing an output starting with h(≤ t)
for any time t (1 ≤ t < T ). (A compressor that wants
to halt after t steps can easily be fixed / augmented
by the trivial method that simply stores any raw ad-
ditional data coming in after the halt.) Given some
compressor program p able to compress history h(≤ t),
let C(p, h(≤ t)) denote p’s compression performance on
h(≤ t). One appropriate performance measure is

Cl(p, h(≤ t)) = l(p), (2)

where l(p) denotes the length of p, measured in num-
ber of bits: the shorter p, the more algorithmic regu-
larity and compressibility and predictability and law-
fulness in the observations so far. The ultimate limit
for Cl(p, h(≤ t)) would be K∗(h(≤ t)), a variant of the
Kolmogorov complexity of h(≤ t), namely, the length
of the shortest program (for the given hardware) that
computes an output starting with h(≤ t) (Sol78; Kol65;
LV97; Sch02b).

Cl(p, h(≤ t)) does not take into account the time
τ(p, h(≤ t)) spent by p on computing h(≤ t). In practi-
cal applications, however, time is essential. In fact, the
predictor / compressor of the continually growing data
typically will have to calculate its output online, that is,
it will be able to use only a constant number of compu-
tational instructions per second to predict / compress
new data. The goal of the possibly much slower learn-
ing algorithm must be to improve the compressor such
that it keeps operating within those time limits, while
compressing / predicting better than before.

Published by Atlantis Press, © the authors 
                              3



A runtime-dependent performance measure inspired
by concepts of optimal universal search (Lev73; Sch02c;
Sch04; Sch06a; Sch09b) is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (3)

Here compression by one bit is worth as much as run-
time reduction by a factor of 1

2
. From an asymp-

totic optimality-oriented point of view this is one of
the best ways of trading off storage and computa-
tion time (Lev73; Sch02c; Sch04). In practice, how-
ever, we have mostly used online settings (one pre-
diction per time step, and constant computational ef-
fort per prediction), and less universal adaptive com-
pressors or predictors (Sch91b; Sch91a; SHS95; Sch02a;
Sch06a).

So far we have discussed measures of compressor per-
formance, but not of performance improvement, which
is the essential issue in our creativity-oriented context.
To repeat the point made above: The important thing
are the improvements of the compressor / predictor, not
its compression performance per se. Our creativity re-
ward in response to the compressor’s progress (due to
some application-dependent compressor improvement
algorithm) between times t and t + 1 is

rint(t+1) = f [C(p(t), h(≤ t+1)), C(p(t+1), h(≤ t+1))],
(4)

where f maps pairs of real values to real values. Various
alternative progress measures are possible; most obvi-
ous is f(a, b) = a − b. This corresponds to a discrete
time version of maximizing the first derivative of sub-
jective data compressibility. Note that both the old and
the new compressor have to be tested on the same data,
namely, the history so far. So compression progress be-
tween times t and t+1 is defined based on the complex-
ities of two programs that both compute h(<= t + 1),
where the old one is trained only on h(<= t) and the
new one also gets to see h(t <= t + 1). This is like p(t)
predicting data of time t + 1, then observing it, then
learning something, then becoming a better predictor
or compressor p(t + 1).

Asynchronous Framework for Maximizing
Creativity Reward
Compare (Sch06a; Sch07; Sch09b). Let p(t) denote the
agent’s current compressor program at time t, s(t) its
current controller, and do:

Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and
execute y(t + 1).

2. Observe x(t + 1).

3. Check if there is non-zero creativity reward rint(t+1)
provided by the asynchronously running improve-
ment algorithm of the compressor / predictor (see
below). If not, set rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) al-
gorithm use h(≤ t+1) including rint(t+1) (and pos-
sibly also the latest available compressed version of

the observed data—see below) to obtain a new con-
troller s(t + 1), in line with objective (1). Note that
some actions may actually trigger learning algorithms
that compute changes of the compressor and the con-
troller’s policy, such as in (Sch02a). That is, the com-
putational cost of learning can be taken into account
by the reward optimizer, and the decision when and
what to learn can be learnt as well (Sch02a).

Compressor / Predictor: Set pnew equal to the ini-
tial data compressor / predictor. Starting at time 1,
repeat forever until interrupted by death at time T :

1. Set pold = pnew; get current time step t and set hold =
h(≤ t).

2. Evaluate pold on hold, to obtain performance measure
C(pold, hold). This may take many time steps.

3. Let some (possibly application-dependent) compres-
sor improvement algorithm (such as a learning algo-
rithm for an adaptive neural network predictor, possi-
bly triggered by a controller action) use hold to obtain
a hopefully better compressor pnew (such as a neural
net with the same size and the same constant compu-
tational effort per prediction but improved predictive
power and therefore improved compression perfor-
mance (SH96)). Although this may take many time
steps (and could be partially performed offline during
“sleep”), pnew may not be optimal, due to limitations
of the learning algorithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew, hold). This
may take many time steps.

5. Get current time step τ and generate creativity re-
ward

rint(τ) = f [C(pold, hold), C(pnew, hold)], (5)

e.g., f(a, b) = a − b.

This asynchronuous scheme may cause long tempo-
ral delays between controller actions and correspond-
ing creativity rewards, and may impose a heavy burden
on the controller’s RL algorithm whose task is to as-
sign credit to past actions. (To inform the controller
about beginnings of compressor evaluation processes
etc., augment its input by unique representations of
such events.) Nevertheless, there are RL algorithms for
this purpose which are theoretically optimal in various
senses (Sch06a; Sch07; Sch09c; Sch09b).

Continuous Time
In continuous time formulation, let O(t) denote the
state of subjective observer O at time t. The subjec-
tive simplicity or compressibility or regularity or beauty
B(D, O(t)) of a sequence of observations and/or actions
D is the negative number of bits required to encode D,
given O(t)’s current limited prior knowledge and lim-
ited compression / prediction method. The observer-
dependent and time-dependent subjective Interesting-
ness or Novelty or Surprise or Aesthetic Reward or Aes-
thetic Value I(D, O(t)) is

I(D, O(t)) ∼
∂B(D, O(t))

∂t
, (6)
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the first derivative of subjective simplicity: as O im-
proves its compression algorithm, formerly apparently
random data parts become subjectively more regular
and beautiful, requiring fewer and fewer bits for their
encoding. Given its limited compression improver, at
time t0 the creativity goal of O(t0) is to select actions
that will maximize

E

[

∫ T

t=t0

g[rint(t), rext(t)]∂t

]

, (7)

where E is an expectation operator (compare equation
(1)); T is death; rint(t) = I(H(≤ t), O(t)) is the mo-
mentary internal joy or intrinsic reward for compres-
sion progress through discovery of a novel pattern some-
where in H(≤ t) (the history of actions and sensations
until t); rext(t) the current external reward if there is
any; g is the function weighing external vs intrinsic re-
wards (e.g., g(a, b) = a+b). Note that there are at least
two ways of getting intrinsic reward: execute a learning
algorithm that improves the compression of the already
known data (in online settings: without increasing com-
putational needs of the compressor / predictor), or ex-
ecute actions that generate more data, then learn to
compress or understand the new data better.

Ongoing and Future Work

The systems described in the first publications on arti-
ficial curiosity and creativity (Sch91b; Sch91a; SHS95;
Sch02a) already can be viewed as examples of imple-
mentations of a prediction / compression progress drive
that encourages the discovery or creation of novel pat-
terns, resulting in artificial scientists or artists with
various types of computational limitations. To im-
prove our previous implementations of the basic ingre-
dients of the creativity framework (see introduction),
and to build a continually growing, mostly unsuper-
vised AGI, we will evaluate additional combinations of
novel, advanced RL algorithms and adaptive compres-
sors, and test them on humanoid robots such as the
iCUB. That is, we will (A) study better practical adap-
tive compressors, in particular, recent, novel artificial
recurrent neural networks (RNN) (HS97; SGG+09) and
other general yet practically feasible methods for mak-
ing predictions; (B) investigate under which conditions
learning progress measures can be computed both accu-
rately and efficiently, without frequent expensive com-
pressor performance evaluations on the entire history
so far; (C) study the applicability of recent improved
RL techniques in the fields of artificial evolution, pol-
icy gradients, and others. In particular, recently there
has been substantial progress in RL algorithms that
are not quite as general as the universal ones (Hut04;
Sch02c; Sch09d), but nevertheless capable of learning
very general, program-like behavior. In particular, evo-
lutionary methods can be used for training RNN, which
are general computers. One especially effective family
of methods uses cooperative coevolution to search the
space of network components (neurons or individual

synapses) instead of complete networks. The compo-
nents are coevolved by combining them into networks,
and selecting those for reproduction that participated
in the best performing networks (GSM08). Other re-
cent promising RL techniques for RNN are based on
the concept of policy gradients (SMSM99; SOR+08;
WSPS08).

Conclusion and Outlook

In the real world external rewards are rare. But un-
supervised AGIs using additional intrinsic rewards as
described in this paper will be motivated to learn many
useful behaviors even in absence of external rewards,
behaviors that lead to predictable or compressible re-
sults and thus reflect regularities in the environment,
such as repeatable patterns in the world’s reactions
to certain action sequences. Often a bias towards
exploring previously unknown environmental regular-
ities through artificial curiosity / creativity is a pri-
ori desirable because goal-directed learning may greatly
profit from it, as behaviors leading to external reward
may often be rather easy to compose from previously
learnt curiosity-driven behaviors. It may be possible
to formally quantify this bias towards novel patterns
in form of a mixture-based prior (Sol78; LV97; Sch02c;
Hut04), a weighted sum of probability distributions on
sequences of actions and resulting inputs, and derive
precise conditions for improved expected external re-
ward intake. Intrinsic reward may be viewed as analo-
gous to a regularizer in supervised learning, where the
prior distribution on possible hypotheses greatly influ-
ences the most probable interpretation of the data in
a Bayesian framework (Bis95) (for example, the well-
known weight decay term of neural networks is a con-
sequence of a Gaussian prior with zero mean for each
weight). Following the introductory discussion, some of
the AGIs based on the creativity principle will become
scientists, artists, or comedians.
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