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Abstract

Spatiotemporal reasoning is an important skill that an AGI
is expected to have, innately or not. Much work has al-
ready been done in defining reasoning systems for space,
time and spacetime, such as the Region Connection Calcu-
lus for space, Allen’s Interval Algebra for time, or the Qual-
itative Trajectory Calculus for motion. However, these rea-
soning systems rarely take adequate account of uncertainty,
which poses an obstacle to using them in an AGI system con-
fronted with an uncertain reality. In this paper we show how
to use PLN (Probabilistic Logic Networks) to represent spa-
tiotemporal knowledge and reasoning, via incorporating ex-
isting spatiotemporal calculi, and considering a novel exten-
sion of standard PLN truth values inspired by P(Z)-logic.
This ”PLN-ization” of existing spatiotemporal calculi, we
suggest, constitutes an approach to spatiotemporal inference
suitable for use in AGI systems that incorporate logic-based
components.

Introduction
Most of the problems and situations humans confront every
day involve space and time explicitly and centrally. Thus,
any AGI system aspiring to even vaguely reach humanlike
intelligence must have some reasonably efficient and gen-
eral means to solve spatiotemporal problems. Multiple al-
ternate or complementary methodologies may be used to
achieve this, including spatiotemporal logical inference, in-
ternal simulation, or techniques like recurrent neural nets
whose dynamics defy simple analytic explanation. We fo-
cus here on spatiotemporal logical inference, addressing the
problem of creating a spatiotemporal logic adequate for use
within an AGI system that confronts the same sort of real-
world problems that humans typically do.

Should Spatiotemporal Intuition Be Preprogrammed Or
Learned? In principle, one might argue, an AGI should
be able to learn to reason about space and time just like
anything else, obviating the need for spatiotemporal logic
or other pre-programmed mechanisms. This would clearly
be true of a highly powerful AGI system like (the purely the-
oretical) AIXItl. However this kind of foundational learning
about space and time may be objectionably costly in prac-
tice. Also, it seems clear that some fundamental intuition for
space and time is hard-coded into the human infant’s brain

(Joh05), which provides conceptual motivation for supply-
ing AGI systems with some a priori spatiotemporal knowl-
edge.

Overview A great deal of excellent work has already been
done in the areas of spatial, temporal and spatiotemporal rea-
soning, such as the Region Connection Calculus (RCC93)
for topology, the Cardinal Direction Calculus (LLR09) for
direction, Allen’s Interval Algebra for time, or the Quali-
tative Trajectory Calculus for motion. Extensions to deal
with uncertainty have been introduced too. However, we be-
lieve, they do not quite provide an adequate foundation for
a logic-incorporating AGI system to do spatiotemporal rea-
soning. For instance, according to a fuzzy extension of RCC
as developed in (SDCCK08), asking how much Z is a part
of X knowing how much Y is a part of X and Z is a part of
Y (see Figure 1) would result in the answer [0, 1] (a state of
total ignorance), as Z can be either totally part of X or not
at all. For that reason we consider probability distributions
of fuzzy values (Yan09) rather than fuzzy values or intervals
of fuzzy values.

So we will show how to represent spatiotemporal knowl-
edge via incorporating existing spatiotemporal calculi into
the PLN (GIGH08) uncertain reasoning framework, and
then show how to carry out spatiotemporal logical inference
using PLN inference rules.

Uncertainty with Distributional Fuzzy Values

The uncertainty extension we use is inspired by P(Z)
(Yan09), an extension of fuzzy logic that considers distri-
butions of fuzzy values rather than mere fuzzy values. For
instance the connector ¬ (often defined as ¬x = 1 − x)
is extended into a connector such that the resulting density
function is µ¬(x) = µ(1 − x) where µ is the probability
density function of the argument.

We define a wider class of connectors that can modulate
the output of the distribution. Let F : [0, 1]n 7→ ([0, 1] 7→
R+) be a n-ary connector that takes n fuzzy values and re-
turns a probability density function. In that case the proba-
bility density function µF : [0, 1] 7→ R+ resulting from the
extension of F over density functions is:
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Figure 1: dXZ , in dashline, for 3 different angles

µF =∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
n

F (x1, . . . , xn)µ1(x1) . . . µn(xn)dx1 . . . dxn

(1)
where µ1, . . ., µn are the n input arguments. Let us give
an example of such a connector with a fuzzy version of the
RCC relationship PartOf (P for short). A typical inference
rule in the crisp case would be:

P(X,Y ) P(Y,Z)
P(X,Z)

(2)

expressing the transitivity of P. But using a distribution of
fuzzy values we would have the following rule

P(X,Y ) 〈µ1〉 P(Y,Z) 〈µ2〉
P(X,Z) 〈µPOT 〉

(3)

POT stands for PartOf Transitivity. The definition of µPOT

for that particular inference rule may depend on many as-
sumptions like the shapes and sizes of regions X , Y and
Z. We have worked out the exact definition of µPOT based
on simplified assumptions (regions are unitary circles) in the
extended version of this paper.

It should not be too hard to derive a more realistic formula
based on other more complex assumptions. Though another
possibility would be to let the system learn POT (as well as
other connectors) based on its experience. Because it is not
obvious what are the right assumptions in the first place. So
the agent would initially perform spatial reasoning not too
accurately, but would improve over time.

Of course the rule could also be extended to involve more
premises containing information about sizes and shapes of
the regions.

Simplifying Numerical Calculation Using probability
density as described above is computationally expensive. To
decrease computational cost, several cruder approaches are
possible, such as discretizing the probability density func-
tions with a coarse resolution, or restricting attention to beta
distributions and treating only their means and variances (as
in (Yan09)).

Example of Spatio-temporal Inference in PLN
We now give an example of spatiotemporal inference rules
coded in PLN. This paper is too short to contain examples

of real-world commonsense inferences, but we invite the au-
thor to visit the OpenCog project Wiki web page which con-
tains a few examples 1.

Although the current implementation of PLN incorpo-
rates both fuzziness and probability it does not have a
built-in truth value to represent distributional fuzzy values.
However, we intend to add that extension to the PLN imple-
mentation in the near future, and for our present theoretical
purposes we will just assume that such a distributional
fuzzy value exists, let us call it DF Truth Value.

Here is an example of the inference rule expressing the
transitivity for the relationship PartOf

ForAllLink $X $Y $Z
ImplicationLink

ANDLink
PartOf($X, $Y) 〈tv1〉
PartOf($Y, $Z) 〈tv2〉

ANDLink
tv3 = µPOT (tv1, tv2)
PartOf($X, $Z) 〈tv3〉

(4)

Conclusion
Every AGI system that aspires to humanlike intelligence
must carry out spatiotemporal inference in some way. Logic
is not the only way to carry out spatiotemporal inference
broadly construed. But if one is going to use logic, we
believe the most effective approach is to incorporate spe-
cific spatiotemporal calculi, extended to encompass distri-
butional fuzzy truth values. The next step is to implement
it in the OpenCog implementation of PLN, and carry out a
large number of practical examples. Alongside their direct
practical value, these examples will teach us a great deal
about uncertain spatiotemporal logic, including issues such
as the proper settings of the various parameters and the cus-
tomization of inference control mechanisms.
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