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Abstract

With the expected growth in mobile robotics the de-
mand for expertise to develop robot control code will
also increase. As end-users cannot be expected to de-
velop this control code themselves, a more elegant solu-
tion would be to allow the end-users to teach the robot
by demonstrating the task.

In this paper we show how route learning tasks may be
“translated” directly into robot control code simply by
observing the task. We show how automated code gen-
eration may be facilitated through system identifica-
tion — which algorithmically and automatically trans-
fers human behaviour into control code, using trans-
parent mathematical functions. We provide two route
learning examples where a mobile robot automatically
obtains control code simply by observing human be-
haviour, identifying it using system identification, and
copying the behaviour.

Introduction
Motivation
Mobile robotics will play an ever more important role
in the future. We expect one growth area to be ser-
vice robotics, especially home care robots for the el-
derly and infirm. Other important growth areas will be
entertainment robotics and games, as well as security
applications.

All of these applications require some high-level, so-
phisticated programming, but the bulk of the program-
ming work will be “standard” components of robot con-
trol, that will consume a lot of programmer resources —
resources that could be better used.

In this paper we show that it is possible for trajec-
tory learning to obtain robot control code automati-
cally, through system identification (Akanyeti et al.,
2007): Control code was obtained by observing a hu-
man demonstrator following the desired route, and by
translating his behaviour directly into code, without pro-
gramming.

Learning by demonstration is by now a widely used
technique in robotics (see, for instance, (Demiris, 2009)
and (Demiris and Dearden, 2005)). In terms of applica-
tion (route learning), (Coates et al., 2008) are perhaps
the most interesting here to mention: an expert was

used to control a model helicopter, the desired optimal
behaviour was obtained and modelled from a number
sub-optimal demonstrations performed by the expert.
This model was then used to control the helicopter. In
contrast to our work, (Coates et al., 2008) use a spe-
cialist to provide the demonstration, and their control
model incorporates a priori knowledge such as that the
helicopter has to remain stationary for certain manoeu-
vres. In our experiments the trainer is not an expert in
the task, and only needs the ability to demonstrate the
behaviour to the robot.

The experiments in this paper develop our approach
further, their purpose is to show that even more com-
plex behaviour behaviour of an agent — route learning
in this case — can the “translated” directly into robot
control code, namely by observing it, identifying it, us-
ing system identification, and using the identified model
of the observed behaviour control the robot (Figure 1).
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Figure 1: The “behaviour copier”: a behaviour is
observed and subsequently identified using system
identification. The obtained model is then used to
control the robot directly, no human intervention
is required at any point (other than that the human
demonstrates the desired behaviour to the robot).

In essence the experiments reported here form a “be-
haviour copier”, which produces a canonical “carbon
copy” of an observed behaviour that can be used to
control an autonomous mobile robot.
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Approach
We have used a NARMAX approach (Billings and
Chen, 1998) to obtain the models we need for auto-
mated programming of a robot, because
• The Narmax model itself provides the executable

code straight away,
• The model is analysable, and gives us valuable infor-

mation regarding
– How the robot achieves the task,
– Whether the model is stable or not,
– How the model will behave under certain operating

conditions, and
– How sensitive the model is to certain inputs, i.e.

how “important” certain input are.

NARMAX system identification The NARMAX
modelling approach is a parameter estimation method-
ology for identifying both the important model terms
and the parameters of unknown non-linear dynamic sys-
tems. For multiple input, single output noiseless sys-
tems this model takes the form given in equation 1:

y(n) = f [~u(n−Nu)l, y(n−Ny)],
∀ Nu = 0 . . . Nmax

u ,

l = 1 . . . lmax, Ny = 1 . . . Nmax
y . (1)

were y(n) and ~u(n) are the sampled output and in-
put signals at time n respectively, Ny and Nu are the
regression orders of the output and input respectively.
The input vector ~u is d-dimensional, the output y is a
scalar. f() is a non-linear function and it is typically
taken to be a polynomial or wavelet multi-resolution
expansion of the arguments. The degree lmax of the
polynomial is the highest sum of powers in any of its
terms.

The NARMAX methodology breaks the modelling
problem into the following steps: i) Structure detec-
tion (i.e. determining the form of the non-linear poly-
nomial), ii) parameter estimation (i.e. obtaining the
model coefficients), iii) model validation, iv) prediction,
and v) analysis. A detailed description of how these
steps are done is presented in (Billings and Chen, 1998;
Korenberg et al., 1988; Billings and Voon, 1986).

The calculation of the NARMAX model parameters
is an iterative process. Each iteration involves three
steps: i) estimation of model parameters, ii) model val-
idation and iii) removal of non-contributing terms.

Using System Identification to Obtain Robot-
Executable Narmax models It is difficult for a
programmer to teach a particular task to a robot as
humans and robots perceive and act in the world dif-
ferently; humans and robots have different sensor and
actuator modalities (Alissandrakis et al., 2005). We
have adopted a similar approach to (Nehmzow et al.,
2007) where the mobile robot’s trajectory of the desired
behaviour is used as a suitable communication channel
between the human and the robot.

In this paper we present an approach to show how
route learning can be translated directly into control
code using system identification. The trajectory of the
human is used as reference and this is translated algo-
rithmically and automatically into robot control code.
An outline this method is illustrated in Figure 2.

P(t)= f( ϕx(t), y(t), sin    (t), cos    (t))ϕ

position and orientation

Robot explores environment and logs

laser perception and ground truth from
logging system

perception as a function of robot’s
Obtain model of robot’s laser

Human walks desired trajectory

P(t))f(ω (t)=

Obtain model of rotational velocity as
a function of modelled perception

Let model of rotational velocity drive
robot

His poses along the trajectory are logged

Figure 2: System Identification Process used to ob-
tain Robot-Executable Narmax models

1. Obtaining the sensorgraph: The robot explores
the environment and obtains a detailed log of sensor
perceptions throughout the working environment. This
detailed log, the sensorgraph, contains information such
as laser readings and the robot’s pose < x, y, ϕ >, i.e.
its position < x, y > and heading ϕ within the environ-
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ment.
2. Obtain environment models: The system identi-

fication method is used to obtain a number of polyno-
mial models that model the robots laser perception as
a function of the robot’s pose within the environment.

These models allow us to estimate the robot’s laser
perceptions along new novel trajectories that have been
demonstrated by a human in the next stage.

3. Obtaining a human-demonstrated trajectory : The
human user demonstrates the desired trajectory by per-
forming the task in the target environment. During this
demonstration period the demonstrator’s pose is contin-
uously observed and logged by a tracking system. These
poses are then used to compute the translational and
rotational velocities of the human by using consecutive
poses along the trajectory.

4. Obtain the final, environment-model-based, hu-
man demonstrated controller : The final controller is ob-
tained by using the system identification technique to
obtain a sensor-based controller. The human demon-
strator’s location is used with the environment models
(from stage 2) to obtain the robot’s laser perception
at that position. The modelled laser perceptions are
then used as inputs to the system identification process
with the computed velocities of the human demonstra-
tor (from stage 3) as outputs.

5. Robot copies behaviour : The controller (from
stage 4) can then be used to drive the robot along the
human-demonstrated trajectory within the target envi-
ronment, copying the behaviour of the human.

Experiments

The experiments in this paper where carried out in
the robotics arena of the Intelligent Systems Research
Centre in the University of Ulster. The robotics arena
measures 100 m2 and is equipped with a Vicon motion
tracking system that delivers highly accurate position
data (x, y, z) for targets using reflective markers and
high speed high resolution cameras. In the experiments
presented here we use the Metralabs SCITOS G5 au-
tonomous robot Swilly, shown in Figure 3.

Figure 3: Swilly, the Metralabs SCITOS G5 mobile
robot used in the experiments

The robot is equipped with 24 sonar sensors dis-
tributed around the its circumference, and a SICK
laser range finder, which scans the front of the robot
([0◦, 270◦]) with a radial resolution of 0.5◦. In our
experiments the laser range finder was configured to
scan the front semi-circle of the robot in the range
([0◦, 180◦]).

Experimental Setup The robotics arena is config-
ured with artificial walls to consist of a working envi-
ronment measuring 4m×3m, as illustrated in Figure 4.

Figure 4: Overhead image of the Robot Arena Setup
with the robot visible in the lower left of the test
area

The robot explores the test area using a random walk
obstacle avoidance behaviour whilst simultaneously log-
ging its laser perceptions and the robot’s actual x, y, x
positions, obtained from the Vicon motion tracking sys-
tem.

We ensure that adequate data to model the environ-
ment has been logged by computing histograms for the
robot’s actual position using the Vicon tracking system
along the x -axis and y-axis. It is equally important to
consider the robot’s heading whilst exploring the envi-
ronment as the modelling process needs to consider all
possible orientations of the robot. Thus, we also con-
struct a histogram of the robot’s headings where the
robot has logged sensor data. By obtaining an almost
uniform distribution with the histograms we can ensure
that adequate data has been logged.

The laser data is then median-filtered over 30◦ seg-
ments. So rather than 360 laser readings we have six
median filtered segments that are used as input to the
first modelling process.

Using the Narmax system identification method we
obtain a number of polynomial models that model the
robots laser perception as a function of the robot’s <
x, y > position and heading ϕ (here we use sin(ϕ) and
cos(ϕ)) to form the function

~P (t) = f(x(t), y(t), sin ϕ(t), cos ϕ(t)) (2)

.
The Narmax method used in this work has multiple

inputs and a single output. Thus, we require at least
one model per laser segment (6 in this case). When
computing this model we need to consider all the pos-
sible (x, y) positional locations the robot may visit,

Published by Atlantis Press, © the authors 
                              3



as well as the robots orientation ϕ at these positions.
The dimensionality of this space is very high, and in
order to manage the task of constructing a model we
have restricted the number of laser models to only 4
models, modelling 90◦ heading segments, thus cover-
ing the entire 360◦ range of possible robot headings
with 4 models. Put differently, we constructed four
models, one for each 30◦ laser segment, of the form
Pk = f < x, y > ∀ϕ = k, where Pk is a model of
the predicted laser reading when the robot assumes a
heading ϕ of k degrees.

The accuracy of the obtained environment models
have been assessed by driving the robot along a novel
trajectory within the test environment (see Figure 5)
and logging the real laser perceptions along with the
robot’s position.
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Figure 5: Novel trajectory driven by the robot
in the test area during which real laser data was
logged and compared with model predicted laser
data

The robot’s position was used as input into the ob-
tained environment models and the logged laser reading
and modelled laser reading compared. In Figure 6 we
have plotted the real and modelled laser values for laser
segment 1, and plotted the absolute error between the
values. The standard error for all the lasers is shown in
Table 1.

Table 1: Absolute Mean error and Standard error
in centimetres for all lasers over validation tra-
jectory (Figure 5)

Laser Mean and Standard error [cm]
L̃1 14.7 ± 1.2
L̃2 16.9 ± 1.0
L̃3 16.9 ± 1.1
L̃4 19.9 ± 1.6
L̃5 16.9 ± 1.5
L̃6 14.7 ± 1.1
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Figure 6: Logged trace from laser 1 compared with
modelled trace from laser 1 whilst being driven
along the trajectory in Figure 5 and absolute er-
ror between logged and modelled lasers.

Having obtained environment models with satisfac-
tory accuracy we conduct experiments where a hu-
man follows two different trajectories, S -shaped and
U -shaped.

Experiment 1 - S-shaped trajectory
The human demonstrated to the robot how to move
within the test area in a S -shaped trajectory. The
demonstrator started in the lower left side of the en-
vironment and walked in a S -shape finishing in the up-
per right side. The demonstrator’s x and y position was
again obtained from the Vicon system and logged ev-
ery 250ms as the human demonstrator moved along the
desired path 5-times in total. The logged trajectories
are shown in Figure 7.
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Figure 7: Five trajectories of the desired S -shape
behaviour demonstrated by the human in the test
environment

The human demonstrator’s < x, y > positions are
then used to compute the translational and rotational
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velocities of the human along the trajectory by using
consecutive < x, y > samples. Next, we obtain a series
of expected robot perceptions along this trajectory of
logged < x, y > positions using the environment mod-
els.

The final controller is obtained by using the Nar-
max system identification technique to obtain an
environment-model sensor-based controller. The com-
puted human demonstrator’s rotational velocity is used
with the series of expected robot perceptions forming
the function

ω(t) = f(~P (t)). (3)
The modelled laser perceptions are used as inputs to

the Narmax system with the computed rotational veloc-
ities of the human demonstrator as outputs. We used
parameters with an input regression of 10 and poly-
nomial degree 2 to obtain the following final Narmax
model that had 20 terms, shown in equation 4.

ω(t) = −0.311

+0.001267 ∗ u(n, 1)

−0.007369 ∗ u(n, 2)

−0.001245 ∗ u(n, 3)

+0.00374 ∗ u(n, 4)

+0.00787 ∗ u(n, 5)

+0.00384 ∗ u(n, 6)

−0.0000078 ∗ u(n, 1)2

−0.000014 ∗ u(n, 2)2

−0.000011 ∗ u(n, 3)2

−0.0000053 ∗ u(n, 4)2

−0.0000034 ∗ u(n, 6)2

+0.000038 ∗ u(n, 1) ∗ u(n, 2)

−0.000034 ∗ u(n, 1) ∗ u(n, 5)

−0.0000059 ∗ u(n, 1) ∗ u(n, 6)

−0.00000399 ∗ u(n, 2) ∗ u(n, 5)

+0.0000163 ∗ u(n, 3) ∗ u(n, 4)

+0.0000129 ∗ u(n, 3) ∗ u(n, 6)

−0.00000166 ∗ u(n, 4) ∗ u(n, 5)

−0.0000178 ∗ u(n, 5) ∗ u(n, 6)

(4)

Results In the final stage of the experiment the ob-
tained final controller is used to drive the robot whilst
the robot’s actual positions during this stage of the ex-
periment are logged as illustrated in Figure 8.

A visual inspection of Figure 8 shows that, although
not perfect, the obtained controller produces a be-
haviour that resembles the humans demonstrator’s ini-
tial trajectory.

Experiment 2 - U -shaped trajectory
The human demonstrated to the robot how to move
within the test area in a U -shaped trajectory. The
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Figure 8: Six trajectories of the robot under con-
trol of the S -shape sensor based controller in the
test environment (compare with figure 7).

demonstrator started in the lower left side of the en-
vironment and walked in a U -shape finishing in the up-
per left side. The demonstrator’s x and y position was
again obtained from the Vicon system and logged ev-
ery 250ms as the human demonstrator moved along the
desired path 5-times in total. The logged trajectories
are shown in Figure 9.
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Figure 9: Five trajectories of the desired U -shape
behaviour demonstrated by the human in the test
environment.

The human demonstrator’s < x, y > positions are
then used to compute the translational and rotational
velocities of the human along the trajectory by using
consecutive < x, y > samples. Next, we obtain a series
of expected robot perceptions along this trajectory of
logged < x, y > positions using the environment mod-
els.

The final controller is obtained by using the Nar-
max system identification technique to obtain an
environment-model sensor-based controller. The com-
puted human demonstrator’s rotational velocity is used
with the series of expected robot perceptions. The mod-
elled laser perceptions are used as inputs to the Narmax
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system with the computed rotational velocities of the
human demonstrator as outputs. We used parameters
with an input regression Nu of 10 and polynomial de-
gree l of 2 to obtain the final Narmax model that had
96 terms.

Results In the final stage of the experiment the ob-
tained final controller is used to drive the robot whilst
the robot’s actual positions during this stage of the ex-
periment are logged as illustrated in Figure 10.
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Figure 10: Six trajectories of the robot under con-
trol of the U -shape sensor based controller in the
test environment.

A visual inspection of Figure 10 shows that, although
not perfect, the obtained controller produces a be-
haviour that resembles the human demonstrator’s ini-
tial trajectory.

Summary and Conclusion

Summary

In this paper we present experiments that show that an
agent’s behaviour — in this case a human demonstra-
tor — can be translated into directly-executable robot
control code, meaning that no programming is at all
necessary. The method of “translating” behaviour into
code is shown in Figure 2.

Conclusions

There are a number of decisive advantages to the
presented method of automatically generating robot-
controlling code in this way:

1. Code generation is very quick,

2. The generated code is canonical, which allows the de-
velopment of analysis tools such as sensitivity analy-
sis methods,

3. The generated code is parsimonious, which is relevant
when the code is to be used on robots with little on-
board computing resources.

Future Work Our next experiments at the Intelli-
gent Systems Research Centre here in Londonderry will
address the following weaknesses of our current imple-
mentation:

1. The external-camera-based tracking system we used
here is very precise, but also very expensive. In future
we plan to use a camera-based tracking system, where
the camera used is the one mounted on Swilly.

2. Developing models of higher accuracy, and
3. Developing smaller models.
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