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Abstract

Explaining adaptive behavior is a central problem in
artificial intelligence research. Here we formalize adap-
tive agents as mixture distributions over sequences of
inputs and outputs (I/O). Each distribution of the mix-
ture constitutes a ‘possible world’, but the agent does
not know which of the possible worlds it is actually fac-
ing. The problem is to adapt the I/O stream in a way
that is compatible with the true world. A natural mea-
sure of adaptation can be obtained by the Kullback-
Leibler (KL) divergence between the I/O distribution
of the true world and the I/O distribution expected by
the agent that is uncertain about possible worlds. In
the case of pure input streams, the Bayesian mixture
provides a well-known solution for this problem. We
show, however, that in the case of I/O streams this so-
lution breaks down, because outputs are issued by the
agent itself and require a different probabilistic syntax
as provided by intervention calculus. Based on this
calculus, we obtain a Bayesian control rule that allows
modeling adaptive behavior with mixture distributions
over I/O streams. This rule might allow for a novel
approach to adaptive control based on a minimum KL-
principle.

Keywords: Adaptive behavior, Intervention calculus,
Bayesian control, Kullback-Leibler-divergence

Introduction
The ability to adapt to unknown environments is of-
ten considered a hallmark of intelligence [Beer, 1990,
Hutter, 2004]. Agent and environment can be concep-
tualized as two systems that exchange symbols in ev-
ery time step [Hutter, 2004]: the symbol issued by the
agent is an action, whereas the symbol issued by the
environment is an observation. Thus, both agent and
environment can be conceptualized as probability dis-
tributions over sequences of actions and observations
(I/O streams).

If the environment is perfectly known then the I/O
probability distribution of the agent can be tailored to
suit this particular environment. However, if the envi-
ronment is unknown, but known to belong to a set of
possible environments, then the agent faces an adap-
tation problem. Consider, for example, a robot that
has been endowed with a set of behavioral primitives

and now faces the problem of how to act while being
ignorant as to which is the correct primitive. Since we
want to model both agent and environment as proba-
bility distributions over I/O sequences, a natural way
to measure the degree of adaptation would be to mea-
sure the ‘distance’ in probability space between the I/O
distribution represented by the agent and the I/O dis-
tribution conditioned on the true environment. A suit-
able measure (in terms of its information-theoretic in-
terpretation) is readily provided by the KL-divergence
[MacKay, 2003]. In the case of passive prediction, the
adaptation problem has a well-known solution. The
distribution that minimizes the KL-divergence is a
Bayesian mixture distribution over all possible environ-
ments [Haussler and Opper, 1997, Opper, 1998]. The
aim of this paper is to extend this result for distribu-
tions over both inputs and outputs. The main result
of this paper is that this extension is only possible if
we consider the special syntax of actions in probability
theory as it has been suggested by proponents of causal
calculus [Pearl, 2000].

Preliminaries

We restrict the exposition to the case of discrete time
with discrete stochastic observations and control sig-
nals. Let O and A be two finite sets, the first being
the set of observations and the second being the set of
actions. We use a≤t ≡ a1a2 . . . at, ao≤t ≡ a1o1 . . . atot

etc. to simplify the notation of strings. Using A and
O, a set of interaction sequences is constructed. Define
the set of interactions as Z ≡ A×O. A pair (a, o) ∈ Z
is called an interaction. The set of interaction strings
of length t ≥ 0 is denoted by Zt. Similarly, the set of
(finite) interaction strings is Z∗ ≡

⋃

t≥0
Zt and the set

of (infinite) interaction sequences is Z∞ ≡ {w : w =
a1o1a2o2 . . .}, where each (at, ot) ∈ Z. The interaction
string of length 0 is denoted by ǫ.

Agents and environments are formalized as I/O sys-
tems. An I/O system is a probability distribution Pr
over interaction sequences Z∞. Pr is uniquely deter-
mined by the conditional probabilities

Pr(at|ao<t), Pr(ot|ao<tat) (1)

for each ao≤t ∈ Z∗. However, the semantics of the
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probability distribution Pr are only fully defined once
it is coupled to another system.

Let P, Q be two I/O systems. An interaction system
(P,Q) is a coupling of the two systems giving rise to the
generative distribution G that describes the probabili-
ties that actually govern the I/O stream once the two
systems are coupled. G is specified by the equations

G(at|ao<t) = P(at|ao<t)

G(ot|ao<tat) = Q(ot|ao<tat)

valid for all aot ∈ Z∗. Here, G models the true proba-
bility distribution over interaction sequences that arises
by coupling two systems through their I/O streams.
More specifically, for the system P, P(at|ao<t) is the
probability of producing action at ∈ A given history
ao<t and P(ot|ao<tat) is the predicted probability of
the observation ot ∈ O given history ao<tat. Hence,
for P, the sequence o1o2 . . . is its input stream and the
sequence a1a2 . . . is its output stream. In contrast, the
roles of actions and observations are reversed in the
case of the system Q. Thus, the sequence o1o2 . . . is
its output stream and the sequence a1a2 . . . is its in-
put stream. This model of interaction is very general
in that it can accommodate many specific regimes of
interaction. Note that an agent P can perfectly predict
its environment Q iff for all ao≤t ∈ Z∗,

P(ot|ao<tat) = Q(ot|ao<tat).

In this case we say that P is tailored to Q.

Adaptive Systems: Näıve Construction

Throughout this paper, we use the convention that P is
an agent to be constructed by a designer, which is then
going to be interfaced with a preexisting but unknown
environment Q. The designer assumes that Q is going
to be drawn with probability P (m) from a set Q ≡
{Qm}m∈M of possible systems before the interaction
starts, where M is a countable set.

Consider the case when the designer knows before-
hand which environment Q ∈ Q is going to be drawn.
Then, not only can P be tailored to Q, but also a
custom-made policy for Q can be designed. That is, the
output stream P(at|ao<t) is such that the true proba-
bility G of the resulting interaction system (P,Q) gives
rise to interaction sequences that the designer considers
desirable.

Consider now the case when the designer does not
know which environment Qm ∈ Q is going to be drawn,
and assume he has a set P ≡ {Pm}m∈M of systems such
that for each m ∈ M, Pm is tailored to Qm and the
interaction system (Pm,Qm) has a generative distribu-
tion Gm that produces desirable interaction sequences.
How can the designer construct a system P such that
its behavior is as close as possible to the custom-made
system Pm under any realization of Qm ∈ Q?

A convenient measure of how much P deviates from
Pm is given by the KL-divergence. A first approach
would be to construct an agent P̃ so as to minimize

the total expected KL-divergence to Pm. This is con-
structed as follows. Define the history-dependent KL-
divergences over the action at and observation ot as

Dat

m (ao<t) ≡
∑

at

Pm(at|ao<t) log
2

Pm(at|ao<t)

Pr(at|ao<t)

Dot

m(ao<tat) ≡
∑

ot

Pm(ot|ao<tat) log
2

Pm(ot|ao<tat)

Pr(ot|ao<tat)
,

where Pr is a given arbitrary agent. Then, define the
average KL-divergences over at and ot as

Dat

m =
∑

ao
<t

Pm(ao<t)D
at

m (ao<t)

Dot

m =
∑

ao
<t

at

Pm(ao<tat)D
ot

m(ao<tat).

Finally, we define the total expected KL-divergence of
Pr to Pm as

D ≡ lim sup
t→∞

∑

m

P (m)
t

∑

τ=1

(

Daτ

m + Doτ

m

)

.

We construct the agent P̃ as the system that minimizes
D = D(Pr):

P̃ ≡ arg min
Pr

D(Pr). (2)

The solution to Equation 2 is the system P̃ defined by
the set of equations

P̃(at|ao<t) =
∑

m

Pm(at|ao<t)wm(ao<t)

P̃(ot|ao<tat) =
∑

m

Pm(ot|ao<tat)wm(ao<tat)
(3)

valid for all ao≤t ∈ Z∗, where the mixture weights are

wm(ao<t) ≡
P (m)Pm(ao<t)

∑

m′ P (m′)Pm′(ao<t)

wm(ao<tat) ≡
P (m)Pm(ao<tat)

∑

m′ P (m′)Pm′(ao<tat)
.

(4)

For reference, see Haussler and Opper [1997], Opper

[1998]. It is clear that P̃ is just the Bayesian mixture
over the agents Pm. If we define the conditional prob-
abilities

P (at|m, ao<t) ≡ Pm(at|ao<t)

P (ot|m, ao<tat) ≡ Pm(at|ao<tat)
(5)

for all ao≤t ∈ Z∗, then Equation 3 can be rewritten as

P̃(at|ao<t) =
∑

m

P (at|m, ao<t)P (m|ao<t)

P̃(ot|ao<tat) =
∑

m

P (ot|m, ao<tat)P (m|ao<tat)
(6)

where the P (m|ao<t) = wm(ao<t) and P (m|ao<tat) =
wm(ao<tat) are just the posterior probabilities over the
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elements in M given the past interactions. Hence, the
conditional probabilities in Equation 5, together with
the prior probabilities P (m), define a Bayesian model
over interaction sequences with hypotheses m ∈ M.

The behavior of P̃ can be described as follows. At
any given time t, P̃ maintains a mixture over systems
Pm. The weighting over them is given by the mixture
coefficients wm. Whenever a new action at or a new ob-
servation is produced (by the agent or the environment
respectively), the weights wm are updated according to

Bayes’ rule. In addition, P̃ issues an action at sug-
gested by a system Pm drawn randomly according to
the weights wt.

However, there is an important problem with P̃ that
arises due to the fact that it is not only a system that
is passively observing symbols, but also actively gen-
erating them. Therefore, an action that is generated
by the agent should not provide the same information
than an observation that is issued by its environment.
Intuitively, it does not make any sense to use one’s own
actions to do inference. In the following section we il-
lustrate this problem with a simple statistical example.

The Problem of Causal Intervention

Suppose a statistician is asked to design a model for
a given data set D and she decides to use a Bayesian
method. She computes the posterior probability density
function (pdf) over the parameters θ of the model given
the data using Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)

∫

p(D|θ′)p(θ′) dθ′
,

where p(D|θ) is the likelihood of D given θ and p(θ)
is the prior pdf of θ. She can simulate the source by
drawing a sample data set S from the predictive pdf

p(S|D) =

∫

p(S|D, θ)p(θ|D) dθ,

where p(S|D, θ) is the likelihood of S given D and θ.
She decides to do so, obtaining a sample set S′. She
understands that the nature of S′ is very different from
D: while D is informative and does change the belief
state of the Bayesian model, S′ is non-informative and
thus is a reflection of the model’s belief state. Hence,
she would never use S′ to further condition the Bayesian
model. Mathematically, she seems to imply that

p(θ|D,S′) = p(θ|D)

if S′ has been generated from p(S|D) itself. But this
simple independence assumption is not correct as the
following elaboration of the example will show.

The statistician is now told that the source is waiting
for the simulation results S′ in order to produce a next
data set D′ which does depend on S′. She hands in S′

and obtains a new data set D′. Using Bayes’ rule, the
posterior pdf over the parameters is now

p(D′|D,S′, θ)p(D|θ)p(θ)
∫

p(D′|D,S′, θ′)p(D|θ′)p(θ′) dθ′
(7)

where p(D′|D,S′, θ) is the likelihood of the new data
D′ given the old data D, the parameters θ and the sim-
ulated data S′. Notice that this looks almost like the
posterior pdf p(θ|D,S′,D′) given by

p(D′|D,S′, θ)p(S′|D, θ)p(D|θ)p(θ)
∫

p(D′|D,S′, θ′)p(S′|D, θ′)p(D|θ′)p(θ′) dθ′

with the exception that now the Bayesian update con-
tains the likelihoods of the simulated data p(S′|D, θ).
This suggests that Equation 7 is a variant of the poste-
rior pdf p(θ|D,S′,D′) but where the simulated data S′

is treated in a different way than the data D and D′.
Define the pdf p′ such that the pdfs p′(θ), p′(D|θ),

p′(D′|D,S′, θ) are identical to p(θ), p(D|θ) and
p(D′|D,S′, θ) respectively, but differ in p′(S|D, θ):

p′(S|D, θ) =

{

1 if S′ = S,

0 else.

That is, p′ is identical to p but it assumes that the value
of S is fixed to S′ given D and θ. For p′, the simulated
data S′ is non-informative:

− log
2
p(S′|D, θ) = 0.

If one computes the posterior pdf p′(θ|D,S′,D′), one
obtains the result of Equation 7:

p′(D′|D,S′, θ)p′(S′|D, θ)p′(D|θ)p′(θ)
∫

p′(D′|D,S′, θ′)p′(S′|D, θ′)p′(D|θ′)p′(θ′) dθ′

=
p(D′|D,S′, θ)p(D|θ)p(θ)

∫

p(D′|D,S′, θ′)p(D|θ′)p(θ′) dθ′
.

Thus, in order to explain Equation 7 as a posterior pdf
given the data sets D, D′ and the simulated data S′,
one has to intervene p in order to account for the fact
that S′ is non-informative given D and θ.

In statistics, there is a rich literature on causal in-
tervention. In particular, we will use the formalism
developed by Pearl [2000], because it suits the needs to
formalize interactions in systems and has a convenient
notation—compare Figures 1a & b. Given a causal
model1 variables that are intervened are denoted by a
hat as in Ŝ. In the previous example, the causal model
of the joint pdf p(θ,D,S,D′) is given by the set of con-
ditional pdfs

Cp =
{

p(θ), p(D|θ), p(S|D, θ), p(D′|D,S, θ)
}

.

If D and D′ are observed from the source and S is in-
tervened to take on the value S′, then the posterior pdf
over the parameters θ is given by p(θ|D, Ŝ′,D′) which
is just

p(D′|D, Ŝ′, θ)p(Ŝ′|D, θ)p(D|θ)p(θ)
∫

p(D′|D, Ŝ′, θ′)p(Ŝ′|D, θ′)p(D|θ′)p(θ′) dθ′

=
p(D′|D,S′, θ)p(D|θ)p(θ)

∫

p(D′|D,S′, θ′)p(D|θ′)p(θ′) dθ′
.

1For our needs, it is enough to think about a causal model
as a complete factorization of a probability distribution into
conditional probability distributions representing the causal
structure.
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Figure 1: (a-b) Two causal networks, and the result of conditioning on D = D′ and intervening on S = S′. Unlike
the condition, the intervention is set endogenously, thus removing the link to the parent θ. (c-d) A causal network
representation of an I/O system with four variables a1o1a2o2 and latent variable m. (c) The initial, un-intervened
network. (d) The intervened network after experiencing â1o1â2o2.

because p(D′|D, Ŝ′, θ) = p(D′|D,S′, θ), which corre-
sponds to applying rule 2 in Pearl’s intervention cal-
culus, and because p(Ŝ′|D, θ′) = p′(S′|D, θ′) = 1.

Adaptive Systems: Causal Construction

Following the discussion in the previous section, we
want to construct an adaptive agent P by minimizing
the KL-divergence to the Pm, but this time treating
actions as interventions. Based on the definition of the
conditional probabilities in Equation 5, we construct
now the KL-divergence criterion to characterize P us-
ing intervention calculus. Importantly, interventions in-
dex a set of intervened probability distribution derived
from an initial probability distribution. Hence, the
set of fixed intervention sequences of the form â1â2 . . .
indexes probability distributions over observation se-
quences o1o2 . . .. Because of this, we are going to con-
struct a set of criteria indexed by the intervention se-
quences, but we will see that they all have the same
solution. Define the history-dependent intervened KL-
divergences over the action at and observation ot as

Cat

m (âo<t) ≡
∑

at

P (at|m, âo<t) log
2

P (at|m, âo<t)

Pr(at|ao<t)

Cot

m (âo<tât) ≡
∑

ot

P (ot|m, âo<tât) log
2

P (ot|m, âo<tât)

Pr(ot|ao<tat)
,

where Pr is a given arbitrary agent. Note that past
actions are treated as interventions. Then, define the
average KL-divergences over at and ot as

Cat

m =
∑

ao
<t

P (âo<t|m)Cat

m (âo<t)

Cot

m =
∑

ao
<t

at

P (âo<tat|m)Cot

m (âo<tât).

Finally, we define the total expected KL-divergence of
P to Pm as

C ≡ lim sup
t→∞

∑

m

P (m)

t
∑

τ=1

(

Caτ

m + Coτ

m

)

. (8)

We construct the agent P as the system that minimizes
C = C(Pr):

P ≡ arg min
Pr

C(Pr). (9)

The solution to Equation 9 is the system P defined by
the set of equations

P(at|ao<t) = P (at|âo<t)

=
∑

m

P (at|m, âo<t)vm(âo<t)

P(ot|ao<tat) = P (ot|âo<tât)

=
∑

m

P (ot|m, âo<tât)vm(âo<tât)

(10)

valid for all ao≤t ∈ Z∗, where the mixture weights are

vm(ao<tat) = vm(ao<t) ≡
P (m)P (âo<t|m)

∑

m′ P (m′)P (âo<t|m)

=
P (m)

∏t−1

τ=1
P (oτ |m, âo<τ âτ )

∑

m′ P (m′)
∏t−1

τ=1
P (oτ |m′, âo<τ âτ )

.

(11)
The proof follows the same line of argument as the

solution to Equation 2 with the crucial difference that
actions are treated as interventions. Consider without
loss of generality the summand

∑

m P (m)Cat

m in Equa-
tion 8. Note that the KL-divergence can be written as
a difference of two logarithms, where only one term de-
pends on Pr that we want to vary. Therefore, we can
integrate out the other term and write it as a constant
c. Then we get

c −
∑

m

P (m)
∑

âo
<t

P (âo<t|m)

·
∑

at

P (at|m, âo<t) lnPr(at|âo<t).

Substituting P (âo<t|m) by P (m|âo<t)P (âo<t)/P (m)
and identifying P characterized by Equations 10 and 11
we obtain

c −
∑

âo
<t

P (âo<t)
∑

at

P(at|âo<t) lnPr(at|âo<t).
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The inner sum has the form −
∑

x p(x) ln q(x), i.e. the
cross-entropy between q(x) and p(x), which is mini-
mized when q(x) = p(x) for all x. By choosing this
optimum one obtains Pr(at|âo<t) = P(at|âo<t) for all
at. Note that the solution to this variational problem is
independent of the weighting P (âo<t). Since the same
argument applies to any summand

∑

m P (m)Caτ

m and
∑

m P (m)Coτ

m in Equation 8, their variational problems
are mutually independent.

The behavior of P differs in an important aspect from
P̃. At any given time t, P maintains a mixture over sys-
tems Pm. The weighting over these systems is given by
the mixture coefficients vm. In contrast to P̃, P updates
the weights vm only whenever a new observation ot is
produced by the environment respectively. The update
follows Bayes’ rule but treating past actions as inter-
ventions, i.e. dropping the evidence they provide. In
addition, P issues an action at suggested by an system
m drawn randomly according to the weights vm—see
Figures 1c & d.

If we use the following equalities connecting the
weights and the intervened posterior distributions

vm(ao<t) = P (m|âo<t) = P (m|âo<tât) = vm(ao<tat)

and substitute interventions by observations in the con-
ditionals

P (at|m, âo<t) = P (at|m, ao<t)

P (ot|m, âo<tât) = P (ot|m, ao<tat)

which corresponds to rule 2 of Pearl’s intervention cal-
culus, we can rewrite Equations 10 and 11 as

P(at|ao<t) = P (at|âo<t)

=
∑

m

P (at|m, ao<t)P (m|âo<t) (12)

P(ot|ao<tat) = P (ot|âo<tât)

=
∑

m

P (ot|m, ao<tat)P (m|âo<t) (13)

where the intervened posterior probabilities are

P (m|âo<t) =
P (m)

∏t−1

τ=1
P (oτ |m, ao<τaτ )

∑

m′ P (m′)
∏t−1

τ=1
P (oτ |m′, ao<τaτ )

.

(14)
Equations 12, 13 and 14 are important because they de-
scribe the behavior of P only in terms of known proba-
bilities, i.e. probabilities that are computable from the
causal model associated to P given by

CP =
{

P (m), P (at|m, ao<t), P (ot|m, ao<tat) : t ≥ 1
}

.

Importantly, Equation 12 describes a stochastic method
to produce desirable actions that differs fundamentally
from an agent that is constructed by choosing an opti-
mal policy with respect to a given utility criterion. We
call this action selection rule the Bayesian control rule.

Experimental Results

Here we design a very simple toy experiment to illus-
trate the behavior of an agent P̃ based on a Bayesian
mixture compared to an agent P based on the Bayesian
control rule.

Let Q0, Q1, P0 and P1 be four agents with binary
I/O sets A = O = {0, 1} defined as follows. P1 is such
that P1(at|ao<t) = P1(at) and P1(ot|ao<tat) = P1(ot)
for all ao≤t ∈ Z∗, where

P1(at) =

{

0.1 if at = 0

0.9 if at = 1
, P1(ot) =

{

0.4 if at = 0

0.6 if at = 1
.

Let P0 be such that

P0(at|ao<t) = 1 − P1(at|ao<t)

P0(ot|ao<tat) = 1 − P0(ot|ao<tat)

for all ao≤t ∈ Z∗. Thus, P0 and P1 are agents that
are biased towards observing and acting 0’s and 1’s re-
spectively. Furthermore, Q0 = P0 and Q1 = P1. As-
sume a uniform distribution over Q = {Q0,Q1}, i.e.
P (m = 0) = P (m = 1) = 1

2
.

Assume Q0 ∈ Q is drawn. In this case, one wants
the agents P̃ and P to minimize the deviation from P0.
Consider the following instantaneous measure

d(t) ≡
∑

a′

t

P0(a
′
t) log

2

P0(a
′
t)

Pr(a′
t|ao<t)

+
∑

o′

t

P0(o
′
t) log

2

P0(o
′
t)

Pr(o′t|ao<tat)

where a1o1a2o2 . . . is a realization of the interaction sys-
tem (Pr,Q0). d(t) measures how much Pr’s action and
observation probabilities deviate from P0 at time t.

Recall that both P̃ and P maintain a mixture over
P0 and P1. The instantaneous I/O probabilities of such
a system can always be written as

wP0(at) + (1 − w)P1(at)

wP0(ot) + (1 − w)P1(ot).

where w ∈ [0, 1]. Thus, it is easy to see that the in-
stantaneous I/O deviation takes on the minimum value
when w = 1 and the maximum value when w = 0:
In the case w = 1, d(t) = 0 bits; In the case w = 0,
d(t) ≈ 2.653.

We have simulated realizations of the instantaneous
I/O deviation using the agents P̃ and P. The results

are summarized in Figure 2. For P̃, d(t) happens to
be non-ergodic: it either converges to d(t) → 0 or to

d(t) →≈ 2.654, implying that either P̃ → P0 or P̃ →
P1 respectively. In contrast, d(t) → 0 always for P,
implying that P → P0.

Analogous results are obtained when Q1 ∈ Q is
drawn instead: For P̃, d(t) converges either to 0 or to
≈ 2.654, whereas for P, d(t) →≈ 2.654 always imply-
ing that P → P1. Hence, P shows the correct adaptive
behavior while P̃ does not.
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Figure 2: 10 realizations of the instantaneous deviation d(t) for the agents P̃ (left panel) and P (right panel). The
shaded region represents the standard deviation barriers computed over 1000 realizations. Since d(t) is non-ergodic

for P̃, we have separated the realizations converging to 0 from the realizations converging to ≈ 2.654 to compute the
barriers. Note that the time scales differ in one order of magnitude.

Conclusions

We propose a Bayesian rule for adaptive control. The
key feature of this rule is the special treatment of ac-
tions based on causal calculus and the decomposition of
agents into Bayesian mixture of I/O distributions. The
question of how to integrate information generated by
an agent’s probabilistic model into the agent’s informa-
tion state lies at the very heart of adaptive agent design.
We show that the näıve application of Bayes’ rule to I/O
distributions leads to inconsistencies, because outputs
don’t provide the same type of information as genuine
observations. Crucially, these inconsistencies vanish if
intervention calculus is applied [Pearl, 2000].

Some of the presented key ideas are not unique to the
Bayesian control rule. The idea of representing agents
and environments as I/O streams has been proposed
by a number of other approaches, such as predictive
state representation (PSR) [Littman et al., 2002] and
the universal AI approach by Hutter [2004]. The idea of
breaking down a control problem into a superposition
of controllers has been previously evoked in the con-
text of “mixture of experts”-models like the MOSAIC-
architecture Haruno et al. [2001]. Other stochastic
action selection approaches are found in exploration
strategies for (PO)MDPs [Wyatt, 1997], learning au-
tomata [Narendra and Thathachar, 1974] and in proba-
bility matching [R.O. Duda, 2001] amongst others. The
usage of compression principles to select actions has
been proposed by AI researchers, for example Schmid-
huber [2009]. The main contribution of this paper is
the derivation of a stochastic action selection and infer-
ence rule by minimizing KL-divergences of intervened
I/O distributions.

An important potential application of the Bayesian
control rule would naturally be the realm of adaptive
control problems. Since it takes on a similar form to
Bayes’ rule, the adaptive control problem could then
be translated into an on-line inference problem where
actions are sampled stochastically from a posterior dis-
tribution. It is important to note, however, that the
problem statement as formulated here and the usual

Bayes-optimal approach in adaptive control are not the
same. In the future the relationship between these two
problem statements deserves further investigation.
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