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Abstract

In this paper, the exponential stability problems are addressed for a class of delayed Cohen-Grossberg
neural networks which are also perturbed by some stochastic noises. By employing the Lyapunov method,
stochastic analysis and some inequality techniques, sufficient conditions are acquired for checking the
pth(p > 1) and the 1st moment exponential stability of the network. Finally, One example is given to
show the effectiveness of the proposed results.
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1. Introduction

The Cohen-Grossberg neural network (CGNN)
model was introduced by Cohen and Grossberg in
1983 1 and has been extensively studied by many
scholars for its important applications such as pat-
tern recognition, associative memory, etc. Much
work has been done to investigate the stability,
boundedness and other dynamical behaviors of the
networks 2,3,4, which are helpful for the design of
the neural networks. In the literature, most research
focuses on the deterministic model. However, it
should be pointed out that neural networks often
work in some kinds of noise circumstance which
may bring stochastic disturbance to the inputs of the
networks. Results in 5,6 suggested that the neural
networks can be stabilized or destabilized by certain
stochastic inputs, which implies that it is important
to consider the noise effects in the stability analy-
sis for the neural networks. Recently, the study of
stochastic neural networks has drawn much atten-

tions from researchers all over the world and some
results can be found in 7,8,9,10,11,12,13,22 and the refer-
ences cited therein 15,16,17,19,21. But for the study of
stochastic CGNN, up till now, there are only a few
results 10,11,14,20. For example, Zhao 10 discussed
the almost sure exponential stability by using the
semimartingale convergence theorem, and Wang et
al 11 obtained several asymptotic stability criteria by
applying the well-known Lyapunov functional ap-
proach 18.

In this paper, the stochastic CGNN will be stud-
ied in a different way comparing to Zhao 10 or Wang
11. Firstly, the stochastic version of Razumikhin-
type theorem constructed by Mao 12 is utilized to
give some sufficient conditions ensuring the pth(p >
1) moment exponential stability of the networks.
Then, by employing a suitable Lyapunov function
and some analysis techniques, a sufficient condition
is derived for the 1st moment exponential stability
of the CGNN. In the end of this paper, an example is
demonstrated to illustrate the proposed criteria and a
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comparison with the criteria introduced in 11 is also
provided.

Notations: Throughout this paper, R+ and R+
represent, respectively, the set of all positive real
numbers and the set of all nonnegative real num-
bers. Rn is the n-dimensional Euclidean space.
Let τ > 0 and C([−τ,0];Rn) denotes the family
of continuous functions ϕ(·) from [−τ,0] to Rn

with the norm defined by ||ϕ|| = supτ6θ60 |ϕ(θ)|,
where | · | is the Euclidean norm in Rn. |x(t)|1 =

n
∑

i=1
|xi(t)| represents the 1-norm of vector x(t) ∈ Rn

and w(t) = (w1(t),w2(t), . . . ,wn(t))T means an n-
dimensional Brownian motion defined on a com-
plete probability space (Ω,F ,P) with a natural fil-
tration {Ft}t>0. Cb

F0
([−τ,0];Rn) means the fam-

ily of all bounded, F0-measurable, C([−τ,0];Rn)-
valued random variables. For p > 1 and t >
0, denote by Lp

Ft
([−τ,0];Rn) the family of all

bounded, Ft-measurable C([−τ,0];Rn)-valued ran-
dom variables ϕ = {ϕ(θ) : −τ 6 θ 6 0} such that
sup−τ6θ60 E|ϕ(θ)|p < ∞.

2. Model Formulation and Preliminaries

Consider the following delayed stochastic CGNN:




dxi(t) =−di(xi(t))[ci(xi(t))−
n
∑
j=1

ai j f j(x j(t))

−
n
∑
j=1

bi j f j(x j(t− τ))]dt

+
n
∑
j=1

σi j(x j(t),x j(t− τ))dw j(t),

xi(t) = ξi(t), −τ 6 t 6 0.

(1)

Throughout this paper, the following assump-
tions are made:
(H1) There exist positive constants mi and Mi such
that

0 < mi 6 di(·) 6 Mi, i = 1,2, . . . ,n.

(H2) ci(·) is differentiable and

αi = inf
x∈R

c
′
i(x) > 0, ci(0) = 0, i = 1,2, . . . ,n.

(H3) The nonlinear functions fi(·) (i = 1,2, . . . ,n)
are globally Lipschitz continuous and fi(0) = 0, i.e.

there exist positive scalars βi such that

| fi(x)− fi(y)|< βi|x− y|, ∀x,y ∈ R.

(H4) The nonlinear functions σi j(·) (i, j =
1,2, . . . ,n) is globally Lipschitz continuous and
σi, j(0,0) = 0, i.e. there exist positive constants li j
and ki j such that

|σi j(x2,y2)−σi j(x1,y1)|6 li j|x2− x1|+ ki j|y2− y1|
holds for all x1, x2, y1, y2 ∈ R.

To prove our main results, we need the following
lemmas and notations:

Lemma 1. [Young Inequality] For any x, y, p, q ∈
R+ with 1/p+1/q = 1, one has

xy 6 1
p

xp +
1
q

yq.

Consider a stochastic functional differential
equation

{
dx(t) = f (xτ , t)dt +g(xτ , t)dw(t),

x(t) = ξ (t) ∈ Rn, −τ 6 t 6 0.
(2)

Let C1,2(Rn × [−τ,∞);R+) be the family of all
nonnegative functions which are continuously once
differentiable in t and twice differentiable in x; for
V ∈C1,2(Rn× [−τ,∞);R+), define the operator LV
for system (2) by

LV (φ , t) = Vt(φ(0), t)+Vx(φ(0), t) f (φ , t)

+
1
2

trace[gT (φ , t)Vxx(φ(0), t)g(φ , t)], (3)

where

Vt(x, t) =
∂V (x, t)

∂ t
,

Vxx(x, t) = (
∂ 2V (x, t)
(∂xi∂x j)

)n×n,

Vx(x, t) = (
∂V (x, t)

∂x1
,
∂V (x, t)

∂x2
, . . . ,

∂V (x, t)
∂xn

).

Lemma 2. (Razumikhin-type Theorem 5) For system
(2), assume that f , g satisfy the Lipschitz condition
and the linear growth condition. Let λ , p, c1, c2 be
all positive numbers and q > 1. Assume that there
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exists a function V (x, t) ∈ C1,2(Rn × [−τ,∞);R+)
such that

c1|x|p 6 V (x, t) 6 c2|x|p, ∀ (x, t) ∈ Rn× [−τ,∞);

and also for all t > 0,

ELV (φ , t) 6−λEV (φ(0), t)

provided φ = {φ(θ) : −τ 6 θ 6 0} ∈
Lp

Ft
([−τ,0];Rn) satisfying

EV (φ(θ), t +θ) 6 qEV (φ(0), t), ∀− τ 6 θ 6 0.

Then for all ξ ∈Cb
F0

([−τ,0];Rn),

E|x(ξ , t)|p 6 c2

c1
E||ξ ||pe−γt , ∀ t > 0

where γ = min{λ , log(q)/τ}.

Definition 1. 12 The trivial solution of system (1) is
said to be pth moment exponentially stable if there
exists a pair of positive constants λ and C such that

E|x(ξ , t)|p 6 CE||ξ ||pe−λ t , t > 0

holds for any ξ ∈ Lp
Ft

([−τ,0];Rn). Especially, when
p = 2, it is usually called to be exponentially stable
in mean square. When p = 1, it is called to be 1st
moment exponentially stable.

3. Main Results

In this section, some stability criteria are obtained
for the delayed stochastic CGNN (1).

Theorem 3. Let Assumptions (H1)− (H4) hold.
For constant p > 2, system (1) is pth moment expo-
nentially stable if λ1 > λ2, where

λ1 = min
16i6n

{
pαimi− (p−1)Mi(

n

∑
j=1

(|ai j|+ |bi j|)β j)

−(p−1)(p−2)
n

∑
j=1

(l2
i j + k2

i j)

−βi(
n

∑
j=1
|a ji|M j)−2(p−1)

n

∑
j=1

l2
ji

}
, (4)

λ2 = max
16i6n

{
βi(

n

∑
j=1
|b ji|M j)+2(p−1)

n

∑
j=1

k2
ji

}
. (5)

Proof. Define a Lyapunov function V (x, t) as fol-
lows:

V (x, t) =
n

∑
i=1
|xi(t)|p. (6)

Denote Σ = diag{|x1(t)|p−2, |x2(t)|p−2, . . . , |xn(t)|p−2}
and σ(x(t),x(t − τ)) = (σi j(x j(t),x j(t − τ)))n×n,
from formula (3) and Lemma 1 one can obtain

LV (x, t)

=
n

∑
i=1

p|xi(t)|p−1sign(xi(t))
{
−di(xi(t))

[
ci(xi(t))

−
n

∑
j=1

ai j f j(x j(t))−
n

∑
j=1

bi j× f j(x j(t− τ))
]}

+
p(p−1)

2
trace

[
σT (x(t),xτ(t))Σσ(x(t),xτ(t))

]

6 −p
n

∑
i=1

αimi|xi(t)|p + p
n

∑
i=1

Mi|xi(t)|p−1

×[ n

∑
j=1
|ai j|β j|x j(t)|+

n

∑
j=1
|bi j|β j×|x j(t− τ)|]

+p(p−1)
n

∑
i=1

n

∑
j=1
|xi(t)|p−2[l2

i j|x j(t)|2

+k2
i j|x j(t− τ)|2]

6 −p
n

∑
i=1

αimi|xi(t)|p

+(p−1)
n

∑
i=1

Mi(
n

∑
j=1
|ai j|β j)|xi(t)|p

+
n

∑
i=1

βi(
n

∑
j=1
|a ji|M j)|xi(t)|p

+(p−1)
n

∑
i=1

Mi(
n

∑
j=1
|bi j|β j)|xi(t)|p

+
n

∑
i=1

βi(
n

∑
j=1
|b ji|M j)|xi(t− τ)|p

+(p−1)(p−2)
n

∑
i=1

n

∑
j=1

l2
i j|xi(t)|p

+2(p−1)
n

∑
i=1

n

∑
j=1

l2
ji|xi(t)|p
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+(p−1)(p−2)
n

∑
i=1

n

∑
j=1

k2
i j|xi(t)|p

+2(p−1)
n

∑
i=1

n

∑
j=1

k2
ji|xi(t− τ)|p.

Taking the mathematical expectation on both sides
of the above inequality and employing the expres-
sions of λ1 and λ2, one has

ELV (x, t) 6−λ1EV (x(t), t)+λ2EV (x(t− τ), t− τ).

Let q ∈ (1,λ1/λ2), λ = λ1−qλ2, then

EV (s,x(s)) < qEV (t,x(t)), t− τ 6 s 6 t

which implies that

ELV (t,x(t)) 6−λEV (t,x(t)).

From the Lemma 2, we can conclude that

E|x(t;ξ )|p 6 c2

c1
E||ξ ||pe−γt , ∀ t > 0 (7)

where γ = min{λ , log(q)/τ}, which means that the
trivial solution of system (1) is pth moment expo-
nentially stable.

Corollary 4. Under Assumptions (H1)− (H4),
system (1) is exponentially stable in mean square if
λ1 > λ2, where

λ1 = min
16i6n

{
2αimi−Mi(

n

∑
j=1

(|ai j|

+|bi j|)β j)−βi

n

∑
j=1
|a ji|M j−2

n

∑
j=1

l2
ji

}
,

λ2 = max
16i6n

{
βi

n

∑
j=1
|b ji|M j +2

n

∑
j=1

k2
ji

}
.

Proof. By taking p = 2 in Theorem 3, one can ob-
tain the above result directly.

Theorem 5. Let Assumptions (H1)− (H4) hold,
the trivial solution of system (1) is 1st moment expo-
nentially stable, if

−miαi +βi

n

∑
j=1

M j(|a ji|+ |b ji|) < 0,

i = 1,2, . . . ,n. (8)

Proof. Consider the following Lyapunov function

V (x(t)) =
n

∑
i=1
|xi(t)|. (9)

By Itô’s formula, the upper right Dini derivative
D+V of V along system (1) is

D+(V (x(t)))

=
n

∑
i=1

sign(xi(t))dxi(t)

6
n

∑
i=1

[−miαi|xi(t)|+Mi

n

∑
j=1
|ai j|β j|x j(t)|

+Mi

n

∑
j=1
|bi j|β j×|x j(t− τ)|]dt

+
n

∑
i=1

n

∑
j=1

sign(xi(t))σi j(x j(t),x j(t− τ))dw j(t).

Furthermore,

D+(eγtV (x(t)))
= eγt(γV (x(t))dt +D+(V (x(t))))

6 eγt
{ n

∑
i=1

[
(γ−miαi)|xi(t)|+Mi

n

∑
j=1
|ai j|β j|x j(t)|

+Mi

n

∑
j=1
|bi j|β j|x j(t− τ)|]dt

+
n

∑
i=1

n

∑
j=1

sign(xi(t))σi j(x j(t),x j(t− τ))

×dw j(t)
}

.

Using the Itô’s formula again, one can derive that

eγtV (x(t))

6 V (x(0))+
∫ t

0
eγs

[ n

∑
i=1

(γ−miαi)|xi(s)|

+
n

∑
i=1

n

∑
j=1

Mi|ai j|β j|x j(s)|
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+
n

∑
i=1

n

∑
j=1

Mi|bi j|β j|x j(s− τ)|
]
ds

+
∫ t

0

n

∑
i=1

n

∑
j=1

eγssign(xi(s))σi j(x j(s),x j(s− τ))

×dw j(s)

6 c+
∫ t

0
eγs

[ n

∑
i=1

[(γ−miαi)

+
n

∑
j=1

M j|a ji|βi + eγτ
n

∑
j=1

M j|b ji|βi

]
×|xi(s)|ds

+
∫ t

0

n

∑
i=1

n

∑
j=1

eγssign(xi(s))σi j(x j(s),x j(s− τ))

×dw j(s),

here

c =
n

∑
i=1
|ϕi(0)|+ eγτ

n

∑
i=1

n

∑
j=1

Mi|bi j|β j

∫ 0

−τ
|ϕ j(s)|ds.

From condition (8), one knows that for any i (1 6
i 6 n), there exists a unique γi such that

(γi−miαi)+
n

∑
j=1

M j|a ji|βi + eγiτ
n

∑
j=1

M j|b ji|βi = 0.

Let γ = min
16i6n

{γi}, then

(γ−miαi)+
n

∑
j=1

M j|a ji|βi + eγτ
n

∑
j=1

M j|b ji|βi

6 0, i = 1,2, . . . ,n.

Therefore, we can derive that

eγtV (x(t)) 6 c+
∫ t

0

n

∑
i=1

n

∑
j=1

eγssign(xi(s))

×σi j(x j(s),x j(s− τ))dw j(s).

Taking the mathematical expectation on both sides
of the above inequality, one has

eγtEV (x(t)) = eγtE|x(t)|1 6 c.

Hence, we can conclude that

E|x(t)|1 6 ce−γt , (10)

which means that the trivial solution of system (1) is
1st moment exponentially stable.

4. Illustrative Example

Consider the following delayed stochastic CGNN:





dx1(t) = −d1(x1)[c1(x1)−
2
∑
j=1

a1 j f j(x j(t))

−
2
∑
j=1

b1 j f j(x j(t− τ))]dt

+
2
∑
j=1

σ1 j(x j(t),x j(t− τ))dw j(t),

dx2(t) = −d2(x1)[c2(x1)−
2
∑
j=1

a2 j f j(x j(t))

−
2
∑
j=1

b2 j f j(x j(t− τ))]dt

+
2
∑
j=1

σ2 j(x j(t),x j(t− τ))dw j(t);

(11)

Let the functions d1(x1) = 5+sinx, d2(x2) = 4+
cosx, c1(x1) = 5x1, c2(x2) = 7x2, f j(x j) = 1

2(|x j +
1| − |x j − 1|), σi j(x j,y j) = x j + y j, then one get
m1 = 4, M1 = 6, m2 = 3, M2 = 5, α1 = 8, α2 = 10,
β1 = β2 = 1, li j = ki j = 1. Taking a11 = a12 = a21 =
a22 = 1, b11 = b12 = b21 = b22 = 1, we can see that
the conditions of Corollary 1 hold. So the trivial so-
lution of system (11) is exponentially stable in mean
square.

In Wang et al’s work 11, the global asymptotic
stability conditions for the neural network (1) can
be written in the following form:

diag{α1, ...,αn}+M2[ε−1
1 λmax(AAT )

+ε−1
2 λmax(BBT )]I +ρ[diag{

n

∑
j=1

l2
j1,

...,
n

∑
j=1

l2
jn}+diag{

n

∑
j=1

k2
j1, ...,

n

∑
j=1

k2
jn}]

+ε1diag{β 2
1 , ...,β 2

n }+ ε2diag{β 2
1 , ...,β 2

n }
< 0, (12)

where m = min
16i6n

{mi},M = max
16i6n

{Mi} and ρ > 1 is

a constant.
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Taking the same parameters as above and calcu-
lating the left side of (12), we have

−4×
(

32 0
0 31

)
+42×4× (ε−1

1 + ε−1
2 )I

+ρ
(

4 0
0 4

)
+(ε1 + ε2)×

(
16 0
0 25

)

>
(

4 0
0 40

)
.

One can see that the asymptotic stability condition
of Wang et al 11 is not satisfied, and the stability
problem of system (11) can not be solved by Wang et
al’s criterion 11. On the other hand, through a simple
calculation one can see that the stability conditions
of Theorem 3 is satisfied, and then system (11) is
exponentially stable in the mean square by Theorem
3. Hence, the stability criteria provided here is more
effective than the previous one.

Letting d1(x1) = 5 + sinx, d2(x2) = 4 + cosx,
c1(x1) = 6x1, c2(x2) = 8x2, f j(x j) = 1

2(|x j + 1| −
|x j−1|), σi j(x j,y j) = x j +y j. one has m1 = 4, M1 =
6, m2 = 3, M2 = 5, α1 = 8, α2 = 10, β1 = β2 = 1,
li j = ki j = 1. Further taking a11 = a12 = a21 = a22 =
1, b11 = b12 = b21 = b22 = 1, it can be checked that
the conditions of Theorem 5 is satisfied. So we can
draw the conclusion that the trivial solution of sys-
tem (11) is 1st moment exponentially stable.

5. Conclusions

In this paper, we have discussed the pth(p > 2)
moment exponential stability and 1st moment ex-
ponential stability problem for the delayed stochas-
tic CGNN. Instead of constructing Lyapunov func-
tionals, we constructed some Lyapunov functions to
derive the pth moment exponential stability crite-
ria by using the stochastic version of Razumikhin-
type theorem which is more simple and can be easily
checked. The 1st moment exponential stability cri-
teria is derived in a straightforward way and is also
easy to be verified. A simple example has been used
to demonstrate the usefulness of the obtained results.
A comparison with the result given by Wang et al 11

shows that our stability criterion is more effective
than the existing one.
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