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Abstract 

High-stakes (dangerous, catastrophic) risks take on a wider profile as progress unfolds. What are the impacts of 
technological and social change on the risk landscape? Due to the complexities and dynamics involved, we can 
only answer these questions approximately. By using the concept of fuzziness, we can formalize our imprecision 
about high-stakes risk, and therefore place their management on a stronger footing. We review here the impacts of 
fuzziness, i.e., knowledge imperfection, on high-stakes risk management, including its implementation via 
computationally intelligent decision aids. 
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1. Introduction 

High-stakes or dangerous risks are those that entail 
finality, or irreversibility, should they occur. They may 
affect the existence of the individual, the business 
enterprise, the community, our entire society, and 
perhaps even all life on earth as we know it. The last 
categories, obviously the most potent, have gained 
considerable attention over the years as it has become 
obvious that progress may entail at least some potential 
for global disaster. Among the largest-scale risks we 
face today are human-induced climate change and other 
industrial and household pollutants of land, air and 
water, the threat of global nuclear confrontation, and 
even financial and economic events that can have 
extensive physical repercussions.1  

Understanding high-stakes risk entails a considerable 
degree of knowledge imperfection. Consider first the 
distinction between “dangerous” and “not dangerous” 
events, in terms of annual probability of occurrence. 
Our knowledge of how small differences in likelihood 
will affect us are not well known, and perhaps never 
will be. How can we justify identifying an untoward 
event whose probability is 10-6 (the proverbial “one in a 
million”) as not dangerous and one that has a 
probability of 9 x 10-5 as causing concern (the difference 
being one chance in a hundred thousand)? In terms of 

the measurement of real world probabilities, could we 
realistically identify such small differences in anything 
other than a carefully controlled setting? Clearly, both 
establishing risk acceptability (i.e., distinguishing 
between “dangerous” and “not dangerous” events), and 
measuring the probability of high-stakes exposures are 
often very imperfect exercises in which precision eludes 
us. 

The uncertainties we face due to limitations in our 
knowledge are different from the variability that defines 
randomness.2 In order to identify the uncertainty due to 
knowledge imperfections we can turn to interval 
estimates. Intervals suggest a range of possible 
candidates for the “true” outcome. Intervals can also be 
generalized in terms of nested segments graded by the 
degree of confidence. These nested intervals are known 
as fuzzy sets.3 In this way, the idea of fuzziness becomes 
indispensable to understanding high-stake risks and 
their treatment. 

   A fuzzy set A in universe X is the set of ordered 
pairs, 

 
                 A = {(x, μA(x))},      x ∈ X                    (1) 

 
where μA(x) is called the grade of membership, or 
simply membership, of x in A. In this case, μA: X → M 
is a function that maps from X to space M, the 
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membership space. We define M here on the closed 
interval [0,1], with 0 representing the lowest grade of 
membership, and 1 the highest. When M contains only 
points, 0 and 1, A is non-fuzzy and reduces to the 
characteristic function of a non-fuzzy (precise) set.4 

In terms of fuzzy sets and their associated logic, we 
can define dangerous situations in terms of the overlap 
between our definition of danger, and our imperfect 
assessment of the probability of some event. The degree 
to which any situation represents danger is then defined 
by the intersection of the fuzzy concepts of probability 
of occurrence (P) for the event in question, and our 
fuzzy risk threshold (T), using the “Min” operator, 

 
(2)            μP∩T = Min (μP(x), μT(x)),   x ∈ X          
            
where universe X is annual probability of loss on the 
interval [~0,1]. An example is shown in figure 1, where 
membership in the concept “danger” (i.e., the possibility 
of disaster) is the envelope of the shaded area. 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  A Fuzzy Definition of “Danger” 

 
To identify the danger inherent in any event, we 

therefore simply assess its fuzzy probability, and match 
this to our fuzzy definition. In this figure, we show a 
reasonable degree of overlap, suggesting that the event 
in question shows the properties of an unacceptable risk. 
Actionable degree of membership for the combined 
fuzzy set “danger” is based on a suitable membership 
threshold, representing a so-called α (alpha)-cut through 
membership space. Note that if we had simply used 

some single estimate as best guess, most reasonably the 
peak of the probability membership function, we would 
have judged this event as unequivocally not dangerous. 
The fuzzy approach therefore adds a degree of 
conservatism to the decision. When facing high-stakes 
risk, this conservatism can be critical. 

Fuzziness is not measured directly by data, but is 
rather identified instrumentally, by how well our 
assessments let us deal with the real world. The tradeoff 
then is always between specificity and truth. The more 
specific we get with inherently imprecise concepts, the 
less likely our assessment will contain the true value. 
On the other hand, the more non-specific the estimate, 
the less useful (e.g., the outdoor temperature tomorrow 
will be between 0 and 120 degrees Fahrenheit – should I 
wear shorts?). The “accuracy” of our fuzzy membership 
assessment depends on how well we balance specificity 
and truth based on the information (knowledge) 
available. 
 

2. What is “Safe”? 

Recognizing the fuzziness in risk thresholds 
indicates that a strictly zero level of risk, in terms of 
likelihood, is unobtainable. The laws of physics tell us 
that there is some positive, albeit miniscule, probability 
that the molecules within the floor may arrange 
themselves randomly so as to swallow us whole. Yet 
no-one takes such likelihoods seriously when making 
their next step. Instead, we accept some (low) level of 
probability as natural, as represented by those events 
that have supported a rather long streak of evolutionary 
survival on this earth. This background level of risk 
therefore represents a reasonable, yet fuzzy, safety goal 
for human activity.6 

This does not mean that nature is benign to its 
constituents, nor does this matter. In fact, the survival of 
the whole may depend on some degree of threat to the 
existence of those elements that do not promote its 
wider goals. There is, however, no indication that nature 
is in fact a danger to itself. If it where, we would expect 
each biological epoch to exist for hundreds or perhaps 
thousands of years, rather than millions, as our most 
current one has. In fact, we may utilize the inverse of 
the time of life’s existence on earth in its most recent 
epoch as a rough guideline for acceptability. More 
accurate calculations in this regard could help us better 
identify natural risk thresholds for society as a whole. 
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The upshot of this discussion is that the management 
of high-stakes risk is very much an all-or-nothing 
endeavor. This fact is captured in the minimax principle 
of decision under uncertainty, which suggests that when 
probabilities are unknown (or irrelevant), we act so as to 
minimize the maximum loss.7 When the uncertainties in 
both the measurement and definition of acceptable risk 
are considered, we have the so-called precautionary 
principle of high-stakes risk management: When some 
action has potentially catastrophic (i.e., terminal) 
outcomes, we should avoid the action.8 The 
precautionary principle is a linguistic rule for action that 
can be formalized using fuzzy sets, as described above. 
Applying the principle to real-world actions involves a 
fuzzy pattern matching process that compares fuzzy 
probability estimates to the fuzzy definition of natural 
(“acceptable”) risk, as suggested in the formal analysis 
above. 

Practically, this analysis suggests that uncertainty 
must be considered in making decisions about the safety 
of modern technological progress. As an example, 
consider the studies performed early on in the wide-
scale development of nuclear power in the United 
States. These studies included a natural (“background”) 
risk comparison for assessing nuclear safety. Perhaps 
the most cited (and debated) of these early studies was 
the 1975 report of the U.S. Nuclear Regulatory 
Commission (USNRC), Safety of Nuclear Reactors 
(also known as the “Rasmussen Report”).9 As part of its 
findings, the report compared the likelihood of severe 
nuclear accidents, computed from extensive 
probabilistic analyses of component system failures and 
their outcomes,  with the probabilities of natural events. 
The report proved less than convincing as to the safety 
of nuclear power due to its failure to properly account 
for the great uncertainties involved. While point 
estimates suggested a risk profile on par with natural, 
background risks, reasonable (fuzzy) uncertainty bounds 
would have placed the risk considerably higher. Failure 
to properly account for the uncertainties was cited by a 
number of scientists. Perhaps more importantly, it was 
also intuited by the general public, who remained 
generally unconvinced of the safety of such 
installations.10 

The responses to the USNRC study, both by 
concerned scientists and the affected public, suggest that 
any future risk assessments of alternative energy options 
need to account for the uncertainties. We may be able to 

increase acceptability, now and in the future, to the 
extent that we can reasonably narrow the uncertainty 
bounds that encompass natural risk levels. The fuzzy 
formalism provides a method for identifying and 
communicating these uncertainties, as well as 
implementing suitably precautionary risk management 
strategies. 
 

3. The Treatment of High-Stakes Risk is 
Unique 

Fuzziness imparts some unique characteristics to the 
accumulation of risk as well. We are not able to rely 
solely on precise calculations of risk accumulation 
represented in, for example, the simple application of 
the additive law of probability. Applying the precise 
theory to risk accumulation suggests that over repeated 
trials, n, the probability that at least one potentially 
catastrophic event, with individual probability of loss p, 
will result in disaster is given by the formula, 

 
                                1-(1-p)n                                    (3) 

  
Precise estimates of p are simply not credible. Nor is  
simply “fuzzifying” the additive probability enough to 
capture all uncertainties, as riskiness is itself defined by 
a fuzzy threshold. Instead, the accumulation must be 
represented by a type 2, or ultra-fuzzy set, as shown in 
figure 2. Type 2 sets represent a second order “fuzziness 
about fuzziness” that more fully captures the extreme 
uncertainties of assessing risk accumulation in our 
complex society.11 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2.  The Ultra-Fuzzy Accumulation of Risk 
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Risk accumulation therefore represents the 
interaction of two unknowns: The growing possibility 
of risk, in terms of imperfectly known individual 
probabilities, and our imperfect definition of risk 
acceptability. The result is a distinctly modal 
representation of risk accumulation in terms of 
impossibility, possibility, and certainty. 

In treating this accumulation of risk we face the 
fundamental catastrophe problem: In the long run, there 
may be no long run. That is, we don’t get a second 
chance to get things right. Combined with the inherent 
uncertainties of complex and dynamic systems, this 
observation suggests that the management of high-
stakes risk accumulation is itself unique. We can not 
make treatment decisions using direct statistical 
techniques that optimize outcomes over time.   

This fuzzy nature directly impacts the treatment of 
these risks. First and foremost, proper treatment of 
uncertain, terminal risks requires application of the 
minimax, in terms of the aforementioned (section 2) 
precautionary principle. We can in this way reduce both 
the possibility of disaster and the uncertainty associated 
with its growth.  

The uncertainty of growth that surrounds high-stakes 
risks also means that, should we somehow find 
ourselves in a position of peril, returning to a safer 
position may not just be a simple matter of 
“backtracking” along our original path. Complex 
dynamics may be obscured by the uncertainties. These 
include the potential for hysterisis, or dynamic pathways 
in which reversal of causes does not guarantee reversal 
of effects. The potential of unknown dynamics mitigates 
against a “wait and see” attitude toward the application 
of precautionary strategies. By the time we are sure 
such strategies apply, it may be too late. 

 Last but not least, the traditional application of 
prioritization techniques, or worst-things-first, does not 
make sense when the pathways to risk growth are so 
obscure. Such rankings are only applicable when there 
is hope that we might be able to reverse dangerous 
trends before disaster occurs. Under extreme 
uncertainty, this approach can only be a matter of faith, 
or as philosopher Nicholas Rescher has referred to it, 
“grasping at straws”.12 

The implications of ultra-fuzzy accumulation of risk 
for risk management are summarized in figure 3. As we 
can see, all of these suggest a very different approach 
than we would take when facing statistical risk alone.  

 
 

 
 

 
 
 
 
 
 
 
 
 
Figure 3. High-Stakes Risk Management Under Fuzziness 

 

4. Behavioral Impacts of Uncertainty on Society 

Fuzziness has distinct rational implications that are 
associated with behavioral impacts of decisions as well. 
Studies have shown that decision-makers react 
differently to fuzziness than other forms of uncertainty, 
including probability.13 Might we not infer that these 
behavioral aspects could impact an entire society? This 
leads to the prospect that increasing uncertainty about 
risk (i.e., fuzziness) may itself act as the ultimate 
impetus for the radical (fundamental) change necessary 
to implement a fully precautionary program of risk 
management. It does so by affecting both the emotional 
and rational mind. 

In terms of a theory of revolutionary change, we 
follow Davies’ representation based on the perceived 
difference between actual and expected need 
satisfaction (as more fully developed in Hagopian’s 
Phenomenon of Revolution).14,15 This theory is 
consistent with rising levels of need satisfaction, and not 
simply levels of absolute deprivation. As shown in 
figure 4, once actual needs deviate sufficiently from 
expected needs, revolutionary change ensues. 

 The need we face with respect to high-stakes risk is 
safety (in terms of natural risk levels). The increasing 
uncertainty about our safety corresponds to the 
widening gap between expectation and actuality – or at 
least our perception of it. Just as in the case of 
individual decisions under conditions of fuzzy 
uncertainty, this aggregated, societal uncertainty will 
have effects on the choices and actions of the affected 
population, both rationally and emotionally. 

1. Fuzzy accumulation suggests the importance of
a genuinely precautionary approach. What we don’t
know, can hurt us.

2. Should we find ourselves in a position of concern
about growing risk, fuzziness suggests that reducing
risk may not be as simple as retracing our steps
(i.e., “backtracking”).

3. Under fuzziness, the idea of prioritization of risk 
(lexicographic ordering) does not make sense. How 
do we know which risk is worse? After all, all it takes
is one to end our existence. 
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Figure 4. Actual Versus Expected Need Satisfaction as the 

Trigger for Revolutionary Change (adapted from Davies13 ) 

 
The inherent fuzziness in high-stakes risk combined 

with the need satisfaction theory of fundamental change 
suggest that the impetus for action will not be that “the 
end is near”, as the doomsayers predict, but rather that 
the safety of our future is becoming so uncertain. 
Increasing uncertainty about the risks we face may 
reasonably push society beyond some “tipping point” 
for action. The hope then becomes that this recognition 
has not come too late.  

 

5. Implications for Governance 

The implications of various forms of uncertainty that 
go beyond randomness are becoming increasingly 
recognized in the field of risk governance. Fuzziness, 
which captures uncertainty due to knowledge 
imperfection as “degrees of ignorance” can help us 
extend the governance of high-stakes risk to a more 
realistic domain. The precautionary principle, as 
outlined above, recognizes both the need to incorporate 
extended uncertainty into the decision process for high-
stakes risk.16 

To be truly effective, however, precaution must be 
applied in a suitably proactive fashion. Otherwise the 
possibility of risk dilemmas, of the “doomed if we do, 
doomed if we don’t” variety, arise. Properly 
precautionary risk management, therefore, requires 
planning on a societal level. Planning becomes, in 
effect, an essential component of a new “survival 
economics that recognizes natural risk levels as 
absolutes rather than as tradeoffs inherent in simple 
market economies.17 While social planning is often 

characterized as obtrusive, the fact is that all living 
things plan: Organism implies organization.18  

Precautionary governance of risk must therefore go 
beyond market systems and intervention in such 
systems in terms of “regulation”. As Stirling et al note, 
the institutional changes necessary for a proper 
appreciation of uncertainty in high-stakes risk 
management require fundamental changes of 
framework.19 
 

6. Utilizing Computationally Intelligent Systems 
for Risk Planning 

It is likely that systematic planning against high-
stakes risks will need to be carried out with the help of 
large scale electronic computers and communication 
networks, introducing requirements for the design and 
implementation of computationally intelligent 
systems.20, 21 With respect to the aspects of planning 
high-stakes risk, the fuzzy formalism described here can 
be easily incorporated into such systems at a variety of 
levels, providing a valuable aid to the planning and 
decision-making process. 

From the standpoint of computationally intelligent 
systems, the use of fuzzy sets allows the construction of 
automated or hybrid automated-human (i.e., advisory) 
systems for the management of high stakes risks. With 
the help of neural and other parallel computing 
architectures, such systems can be made to handle very 
large and complex data sets and decision problems. This 
allows integration into robust local and national 
planning and decision structures. 

Figure 5 shows a simple neural architecture for 
assessing fuzzy probabilities from inputs. These inputs 
may be identified by experts, or through fuzzy data 
processing techniques (e.g., fuzzy clustering). For a 
large dam facility, for example, these inputs may be age 
of the dam, condition assessments, and the type of 
construction. Outputs are the associated fuzzy 
membership functions, here assessed using a simple 
Gaussian form that is completely specified by numerical 
shape, center and spread parameters. The network is 
trained using human expert associations, or fuzzy data. 
The result is various connection strengths between 
nodes, including a processing, or hidden, layer that 
matches inputs to outputs based on training data. A fully 
trained network can be used to implement very fast 
computational assessments of fuzzy probability.22 
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Figure 5. A Simple Neural Architecture for Assessing 

Fuzzy Probabilities 

 
 
Once the probability membership function is 

identified, it can easily be matched to fuzzy acceptance 
criteria, to determine the need for precautionary action. 
Input parameters can also be manipulated, as well as 
connection strengths evaluated, to assess how changes 
in inputs parameters might change the results. In this 
way, a fully automated system of safety assessment can 
be implemented. 

Proper interfaces allow direct input and observation 
of results by all interested parties, making the process 
more transparent. These interfaces can also simplify the 
process of achieving consensus of inputs and goals. 
Democratic participation in risk decisions requires that 
all assumptions be made plain.  

Combined with wider socio-economic planning 
systems, fuzzy assessments allow for an integrated 
functioning of societal decision systems that pays 
proper respect to the overall goals in a multi-criteria 
fashion. These systems maintain a true community 
sense of purpose, or shared teleology, that supplants 
atomistic decision processes that could lead to globally 
disastrous outcomes.23 The result of their 
implementation is a safer pathway to progress. 
 

7. Summary and Conclusions 

“Danger” is an inherently fuzzy concept. 
Considerable knowledge imperfections surround both 
the probability of high-stakes exposures, and the 
assessment of their acceptability. This is due to the 

complex and dynamic nature of risk in the modern 
world.  

Fuzzy thresholds for danger are most effectively 
established based on natural risk standards. This means 
that risk levels are acceptable only to the degree they 
blend with natural background levels. This concept 
reflects an evolutionary process that has supported life 
on this planet for thousands of years. By adhering to 
these levels, we can help assure ourselves of thousands 
more. While the level of such risks is yet to be 
determined, observation suggest that the degree of 
human-made risk we routinely subject ourselves to is 
several orders of magnitude higher. 

Due to the fuzzy nature of risk, we can not rely on 
statistical techniques. The fundamental problem with 
catastrophe remains, in the long run, there may be no 
long run. That is, we can not rely on results “averaging 
out” over time. With such risks, only precautionary 
avoidance (based on the minimax’ing of the largest 
possible loss) makes sense. Combined with reasonable 
natural thresholds, this view allows a very workable 
approach to achieving safe progress. 

What might be the impetus for the changes needed to 
realize a more fully precautionary approach to progress? 
It is likely that growing uncertainty about the risk we 
face may be the strongest motive for fundamental 
change. The growing disparity between the safety we 
feel we are entitled to, and the risk we may be exposed 
to, can push society beyond the “tipping point” and into 
action. Whether this action will come soon enough, is 
an open question. 

The impacts of uncertainty surrounding high-stakes 
threats to our existence suggest a more inclusive, and 
powerful, form of risk governance is needed. The 
proactive approach required to make precaution truly 
effective will require that more detailed risk planning 
replace market interaction in the form of regulation. 
This planning will require, in turn, efficient 
computational systems to both warn us of, and manage, 
potentially high-stakes risks. 

In terms of computationally intelligent systems, the 
fuzzy risk management process can be easily 
computerized. We have identified here a simple neural 
architecture for assessing fuzzy probabilities. Other 
such advancements are possible. All in all, such systems 
can become an indispensable component of an overall 
structure of social and economic planning that helps 
assure safe progress. 
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