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Abstract 

Complex phenomena are perceived from different perspectives, diversified conceptual points of view and at various 
levels of granularity. Symbolic and sub-symbolic processing becomes an inherently visible computing practice. 
Distributed nature of perception becomes reflected in topologies of multi-agent systems. All of these facets 
challenge the well-established paradigms of system modeling including fuzzy models and neural networks. In spite 
of the diversity of existing architectures and underlying algorithms, a vast majority of fuzzy models adheres to the 
surprisingly homogeneous principles of Granular Computing, that are associated with the processing of granular 
information. In this study, being cognizant of this underpinning, we concentrate on the architectures and 
fundamentals supporting the reconciliation and characterization of a family of fuzzy models aimed at the 
representation of the same system (phenomenon) from different cognitive perspectives. The variety of points of 
view is reflected in different levels of granularity (specificity) of fuzzy sets present in individual models as well as 
different feature (attribute) spaces being used in the individual models. We discuss a way in which type-2 fuzzy sets 
come to the play as a result of the overall characterization. An effective way of determining of such fuzzy sets is 
presented. Further studies on the interpretability of fuzzy sets at the level of linguistic valuation are presented and 
with this regard where it is shown how these can be carried out in the setting of type-2 fuzzy sets. The question of 
logic operators constructed in presence of a large number of fuzzy sets is raised along with a proposal of 
statistically grounded logic operators, which capture some characteristics of membership degrees to be processed. 

. 

Keywords: fuzzy model, granular processing, type-2 fuzzy set, linguistic membership, interpretability, statistically 
grounded logic operations. 

1. Introduction 

Complex systems and phenomena are perceived from a 
variety of viewpoints. These perspectives depend on the 
domain knowledge of the observer, availability of data, 
interest in detail, time framework, just to name a few. In 
more technical terms, there are two important aspects 
supporting the diversity to be investigated, namely (a) 
characterization and modification of feature (attribute) 
spaces and (b) adjustment of granularity of information 
used in a particular model of the underlying 
phenomenon. Attribute space is directly implied by a 
suite of variables (attributes) being available to us and 
afterwards used in the construction of the corresponding 
model. 
 
An interesting problem arises when it comes to the 
formation of a global view (model) when having a 
collection of fuzzy models associated with individual 

viewpoints and constructed on a basis of the individual 
data, their granularity and the corresponding feature 
space. As a commonly encountered design practices 
utilized in fuzzy modeling are concerned with the 
formation of information granules regarded as a 
blueprint (skeleton) of the model, in our investigation 
on the reconciliation and building a unified and 
comprehensive view at the system we will concentrate 
on the manipulation of information granules. Based on 
the experimental evidence of information granules 
articulated through individual models, we discuss an 
optimization problem of forming a combined feature 
space of the highest descriptive (representation) power 
(which is quantified through some performance 
indexes).  
 
We also concentrate on the associated issues of 
enhanced interpretability of fuzzy sets by elaborating on 
the role of type-2 fuzzy sets (which offers an effective 
vehicle of linguistic quantification of numeric 
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membership degrees) and shadowed sets (with their 
ability to express uncertainty). Along the line of further 
enhancements of logic operators used in fuzzy modeling 
(which tend to reveal some weaknesses in case of 
dealing with large number of arguments), we discuss the 
use of statistically grounded logic operators which take 
into consideration some underlying knowledge of 
statistically character. 
 
The overall structure of the paper is reflective of main 
objectives outlined above. We start with some notes on 
the unified principle of fuzzy modeling, which could be 
easily highlighted in spite of the inherent diversity of 
algorithmic developments (Section 2).  In Section 3, we 
move on to the hierarchy of perspectives and their 
reconciliation. The detailed algorithmic aspects are 
presented in Sections 4 and 5.  Type-2 fuzzy sets and 
shadowed sets along with their interpretability aspects 
are discussed in Section 6. Section 7 is devoted to the 
class of statistically grounded logic operators. 
 

2. The Unified Principle of Fuzzy Modeling and 
the Diversity of Fuzzy Models  

Fuzzy models and fuzzy modeling create a surprisingly 
diversified algorithmic and development landscape. 
Since the very inception of the concept of fuzzy models 
(which could be traced back to the early papers of 
Zadeh coming in the 70s, linguistic models of 
Wenstop1, fuzzy models of van Kickert2, relational 
models of Tong3  and Pedrycz4, fuzzy identification and 
control5  and fuzzy processes of Kandel6 , just to recall a 
handful of early developments in the realm of fuzzy 
modeling), we witness how the fuzzy models become 
more advanced and how more design activities become 
engaged. The highly visible trend witnessed today is 
concerned with the formation of neurofuzzy models (in 
which we rely heavily on the learning abilities provided 
by neurocomputing)7. The user friendliness aspect is 
also highly advocated8. The contributions to of 
Computational Intelligence and the usage of this 
technology to fuzzy modeling becomes more profound 
and is commonly encountered as we vividly start 
realizing the advantages of structural optimization – an 
important faculty supplied by evolutionary optimization 
(through genetic algorithms, evolutionary strategies, ant 
colonies, particle swarm optimization and other 
population-based optimization approaches). The 
optimization of the structure of the fuzzy models opens 

a new, highly promising design avenue which has to be 
explored to the fullest extent. 
 
While the diversity of architectures of fuzzy models and 
numerous ways in which they are constructed could be 
overwhelming and even somewhat confusing to some 
extent, there is a clearly identified denominator where 
are common to all these models: in one way or other 
fuzzy models are formed on a basis of information 
granules – fuzzy sets 9,10,11,12. Those information 
granules constitute a backbone, skeleton or a blueprint 
of the model. Once they have been formed (usually 
through searching for a structure in numeric data and 
the use of fuzzy clustering), the other more detailed 
components of the models are determined (viz. the 
values of their parameters are estimated). The 
granularity of fuzzy models is a fundamental feature, 
the architecture of specific local models, their 
aggregation and refinements are of secondary nature. 
 
In what follows, we recall the two fundamental 
categories of fuzzy models, which serve as an excellent 
illustration of the generalized observation made above. 
While we can appreciate the evident variety of the 
models, by contrast the underlying commonality 
becomes even more pronounced.  
 
Fuzzy rule-based models These models assume a well-
known structure of rules of the form “if  condition x is 
Ai then output is Φi(x,ai), i =1, 2, …, c. Here Ai is an 
information granule while Φi(x,ai) is a conclusion of the 
i-th rule with ai being a vector of adjustable 
(optimizable) parameters.  From the modeling 
perspective the expression Φi(x,ai) could be literally 
anything, say 
fuzzy set,  
linear or nonlinear regression function,  
difference or differential equation,  
finite state machine,  
neural network 
           … 
An interesting alternative could emerge if we allow for 
a heterogeneous nature of the local models, which 
naturally calls for the structural optimization and the use 
of evolutionary techniques.  
 
Fuzzy associations Associations are formed for 
information granules and capture how they interact 
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between themselves. Activation of the granules – Ais in 
successive discrete time moments can be governed by 
the expression  
 Ai (k+1)= Π (A1(k), A2(k),… Ac(k), ai)      (1) 
 
i =1, 2, …, c. Here Π stands for the mapping between 
information granules and ai is a vector of the parameters 
of this mapping. More specifically, Ai(k) should be 
viewed as a shorthand used to describe a level of 
activation of Ai caused by some input x so being more 
formal, the expression should be read as Ai[x](k+1) 
which means that the input present at the k-th time 
moment gives rise to the membership degree of the i-th 
fuzzy set. The form of (1) could be quite diversified; in 
the simplest form (which is encountered in cognitive 
maps or fuzzy cognitive maps), we rewrite P as follows 

 Ai[x](k+1) = 

€ 

f( wijA j[x](k)+τ i)
j = 1

c
∑  (2) 

 
The structure of the model of this nature is illustrated in 
Figure 1. We note that this model exhibits a fairly loose 
structure which is captured in the form of the 
dependencies between the activation levels of the nodes 
(fuzzy sets). The strength of linkages between the nodes 
is expressed as wij while τi is the bias associated with 
the mapping at node “i”. Interestingly, we can treat (2) 
as a recurrent neuron governing the dynamics of the i-th 
node of the structure. 

 

Figure 1. A web of connections between the conceptual nodes formed 
by the information granules and their activation levels  

 
Information granules are the result of clustering numeric 
data forming the experimental evidence about the 
system or process. Fuzzy clustering can be realized in 
many different ways. Fuzzy C-Means (FCM) is in 
common usage. One pertinent observation is that 
information granules – fuzzy sets A1, A2,…, Ac are fully 

described by their prototypes (note that given the family 
of the prototypes v1, v2, …, vc, the membership 
functions of the fuzzy sets are expressed with their help 
in a unique manner). 

 

€ 

Ai (x) =
1

|| x − v i ||
||| x − v j ||

 

 
  

 

 
  

2/(m−1)

j=1

c

∑
. (3) 

with x being a certain point in the input space. Here 
“m”, m > 1 is an adjustable parameter using which we 
can modify the shape of the corresponding membership 
functions. The distance function is denoted by ||.||. 
Graphically, as illustrated in Figure 2, we observe that 
data are granulated, and detailed and local models are 
being formed whose relevance (usage) is restricted to 
the realm of the corresponding information granules. In 
case of fuzzy sets we are concerned with the degrees of 
relevance of the corresponding local models. 

 

Figure 2. The framework of fuzzy modeling:  data are cast in a certain 
perspective of information granules Ai and with associated are local 

models Φi 

 

There is also another striking similarity between fuzzy 
models: all of them pertain to a single data set and a 
single perspective from which we perceive the 
phenomenon (system). Given the maturity of the field 
(as it has been established for several decades), we can 
envision a paradigm shift as we are facing with growing 
spectrum of ways in which data and information are 
gathered. 
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3. A Multitude of Perceptions, Development of a 
Hierarchy and a Construction of the Family 
of Granular Representatives 

 
 
Let us now revisit the generic problem discussed in the 
previous section and place it in a far more general 
setting. Quite commonly the same complex 
phenomenon (system) can be perceived (observed) from 
a variety of perspectives. Different data D[1], D[2], …, 
D[p] are associated with these perspectives. The 
diversity of the points of view (perceptions) being 
formed in this manner manifests in two different ways. 
First, there could be different feature spaces (attributes) 
using which we describe the system when observing it. 
While we admit that feature spaces F1, F2, …, etc could 
be different.. Second, the granularity associated with 
each perspective could be different and this directly 
quantifies a level of abstraction or a level of detail we 
establish when looking at the problem/data.  This 
overall structure results in collections of information 
granules associated with each data. Denote the families 
of the corresponding information granules by S1, S2,…, 
Sp. The information granules (clusters) associated with 
each view may come with their local models (these 
models, however, are not considered here). Refer to 
Figure 3 for the details and the pertinent notation being 
used here.  
 
Our objective is to determine a subset S of information 
granules which optimize S1, S2, …, and Sp where the 
optimization is sought in the sense of a certain 
performance index. Q, MinSQ.  The number of 
information granules forming S is equal to “c” and is 
substantially lower than the sum of information 
granules, that is  card(S1) + card(S2)+ … +card(Sp).  

 

Figure 3. Hierarchical and multifaceted knowledge aggregation 

through selection of information granules 
 
Let us refer to the notation present in Figure 3 using 
which we explain how the information granules are 
expressed by the representatives formed at the higher 
level of abstraction and how the performance index is 
being constructed. From now on, from the algorithmic 
perspective we assume that information granules are 
uniquely represented through their prototypes (in other 
words, given a collection of the prototypes, one can 
compute the membership functions of the corresponding 
fuzzy sets. In this sense the prototypes associated with a 
certain ii-th view v1[ii], v2[ii], …, vc[ii][ii]  produce the 
corresponding membership functions A1[ii], A2[ii],…, 
Ac[ii][ii].  They are governed by the following 
expressions that are specific to the ii-th feature space Fii 

 

€ 

Ai (x)[ii]=
1

|| x − v i[ii] ||
|| x − v j[ii] ||

 

 
  

 

 
  

2/(m ii −1)

j=1

c[ii]

∑
. (4) 

 
x  Fii. The fuzzification mii coefficient is related with 
the feature space as well and depends on D[ii]. The 
prototypes that form the set S are denoted by z1, z2, …, 
zc. They uniquely define fuzzy sets B1, B2, …, Bc. Here 
the number of information granules (c) can be adjusted 
on a basis of the resulting values of the performance 
index.  
 

4. Representation of Fuzzy Sets by Aggregates  
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Any prototype vk[ii] present in the set of information 
granules Sl (l=1,2, …, p) is expressed in terms of the 
prototypes z1, z2,…, zc. We use the well-known formula  

 

€ 

ui (vk[ii]) =
1

|| vk[ii]− zi ||Fii∩Fi 0
|| vk[ii]− z j ||Fii∩Fj0

 

 
 
 

 

 
 
 

2/(m−1)

j=1

c

∑
. (5) 

 
where vk[ii]  Fii and  ui(vk[ii]) is the degree of 
membership (association) of vi [ii] computed with 
respect to zk , i=1, 2, …, c[ii], ii=1, 2, …, p. ; see  Figure 
4. In essence this representation scheme resemblance 
the one of encoding data for a given codebook. 

 
Figure 4. Representation of prototypes vi[ii] from D[ii] with the use of 

z1, z2, …, zc. 
 
Note that the distance in (5) is computed considering the 
intersection of the corresponding feature spaces as those 
spaces could be different and may vary from one 
collection of information granules to another. In 
general, we have  zi  Fi0 and zj  Fj0 Recall also that 
the space of the subsets of information granules S could 
be heterogeneous in the sense the elements of S are 
reflective of different perspectives assumed when 
dealing with the system under discussion.  
 
The optimized performance index Q can be formed in a 
way so that we emphasize the relevance of S vis-à-vis 
S1, S2, …, and Sp. Two general approaches can be 
distinguished: 
 
minimum entropy (uncertainty) representation. We use 
the activation levels (membership grades) ui(vk[ii]) and 
formulate the performance index in additive form by 
summing up the values of entropy H(.) computed for the 
individual membership grades, H(ui(vk[ii])). The 
summation is carried out for all Si and all elements 
(information granules) in S,  

 

€ 

Q =
ii=1

p

∑
i=1

c

∑ H(ui
k=1

c[ii]

∑ (vk[ii])) . (6) 

The rationale behind the use of the entropy measure is 
that we would like to see such elements of S so that all 
other elements we are intend to represent with their use 
are either close to them or quite remote (in both cases 
the associated value of entropy is low) but their 
distribution is such that none of elements in Si is 
assigned with similar membership grades (a fact which 
translates into higher values of entropy). 
The performance index can be formed on a basis of 
reconstruction error, which expresses how well 
elements in all Sis are represented (mapped) in terms of 
the elements of S. Formally, we express this 
requirement as follows 

 

€ 

Q =
ii=1

p

∑ || ˆ v (vk[ii])− vk[ii] ||Fii

2

k=1

c[ii]

∑ . (7) 

 
where (vk[ii]) is a reconstruction of vk[ii] which 
has been completed when making use of the family 
{zi}. The reconstruction formula reads as follows  

 

€ 

ˆ v (vk[ii]) = ui
m

i=1

c

∑ (vk[ii])zi . (8) 

where ui(vk[ii]) are computed in the way already 
introduced by means of (5), k=1, 2, …, c[ii], ii=1, 2, 
…,p.  The alternative expression for the reconstruction 
of vk[ii] is expressed in the form 

 

€ 

ˆ v (vk[ii]) = ui
m

i=1

c

∑ (vk[ii])zi / ui
m

i=1

c

∑ (vk[ii]) . (9) 

 
With regard to the reconstruction criterion, we request 
that it is possible to reconstruct prototypes (or data) 
from any feature space. This requirement states that the 
selected feature spaces  should satisfy the “coverage” 
condition which means that  

 
  

€ 

Fik
k=1

c

 = Fi
i=1

p

 . (10) 

 
From the optimization perspective, the formation of the 
subset of the prototypes (which in fact results in the 
concatenation of the existing feature spaces) is a 
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combinatorial problem. The use of techniques of 
Evolutionary Computing is a sound optimization 
alternative. More formally, for given value of “c”, we 
are interested in forming a collection of prototypes Z = 
{z1, z2, …, zc} coming from the prototypes formed in 
F1, F2, …, Fp so that the performance index (6) or (7) 
becomes minimized. Furthermore with regard to (7) we 
require that the constraint (10) be satisfied. In this sense, 
the original optimization task is changed to the one with 
constraints. It reads as follows 
Min Z Q 
or  
Min Z Q subject to (10) 
 
where Q is represented either through (6) or (7). 
The fuzzification coefficient (m) is another parameter 
whose value could be adjusted.  If we allow for this 
additional flexibility, we have  
 
 

Min Z, m Q  subject to m>1 
or  

Min Z, m Q subject to (10)  and m>1 
 
5. Information Granules as Descriptors of the 
Families of Numeric Prototypes 
  
The crucial phase is to associate each of these selected 
(optimized) prototypes z1, z2, …zc with the prototypes 
we started with at the lower processing level (viz. those 
coming as a result of setting up some individual 
perspective). Recall that the total number of prototypes 
in D[1], D[2],…, D[p] is equal to c[1]+ c[2] +…+c[p]. 
The assignment mechanism relies on the determination 
of the maximal association between given zj as in this 
way we can identify (link) the corresponding prototypes 
in each D[1], D[2], …, D[p]. These prototypes are those 
which are linked with zi to highest extent, see Figure 5. 
 

 

 
 

 

Figure 5. The determination of correspondence between zi and the 
prototypes in D[1], D[2], …, D[p] identified as having the highest 
level of matching  

 
More specifically, for each ii we compute the 
membership degrees ui(vk[ii])) and find the prototype 
k0(ii) for which the following relationship becomes 
satisfied 

 k0(ii)= arg max k=1,2, …, c[ii] ui(vk[ii])      (11) 
 
By completing this process for all D[ii]’s we end up 
having a collection of indexes  k0(1), k0(2),…, and k0(p). 
In terms of the individual coordinates of zi we associate 
with them the corresponding coordinates of the 
prototypes selected in this way. For the fixed 
coordinate, denote these values by a0 (the corresponding 
coordinate of zi) and a1, a2, …, am, where m p. The 
associated membership degrees are µ1, µ2, …, µm. On 
this basis we can construct a granular representation of 
the prototype. The development of this information 
granule is guided by the principle of justifiable 
granularity.  Given the set of pairs (a0,1), (a1, µ1),…, 
(am, µm), Figure 6, we are interested in representing 
these membership values by spanning an interval [a1, a2] 
around a0 such that it realizes an intuitively appealing 
procedure: increase high membership values to1 and 
reduce to 0 low membership values. In this sense we 
form an interval, see Figure 6. The formal rule of 
constructing the interval can be expressed in the 
following way 
 

€ 

if  ai ∈ [a− ,a+ ]  then elevate to membership grades to 1        
 

€ 

if  ai ∉ [a− ,a+ ]  then reduce  membership grades to 0
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Figure 6. Computing the interval representation of numeric values 
through the principle of justifiable granularity by elevating and 
suppressing respective membership grades 
 
6. Higher Order Information Granules 
 
Essentially, there are two fundamental reasons behind 
the emergence of information granules of higher order: 
(a) enhancements of interpretability aspects of granular 
constructs of fuzzy sets, and (b) simplified (and more 
readable) quantification of diversity of numeric 
membership degrees. As two examples in the first 
category, we highlight the concept of shadowed sets and 
type-2 fuzzy sets 13,14 15, 16 induced by type-1 fuzzy set. 
When dealing with the second group of underlying 
supportive structures, we consider aggregation 
mechanisms, which bring a collection of type-1 fuzzy 
sets together by forming membership functions or 
intervals in the unit interval.  
 
6.1. Interpretability of fuzzy sets: a framework of type-
2 fuzzy sets 
 
Membership functions are numeric constructs. Detailed 
numeric values of membership functions are too precise 
and in this way difficult to interpret [30]. It is 
advantageous to come up with quantification, say low, 
medium, high membership levels. In this sense, rather 
than talking about ‘a membership degree of 0.75”, we 
might have a far more descriptive quantification  such 
as “high membership”. Figure 7 illustrates the essence 
of this construct. Crucial to this development are fuzzy 
sets of linguistic values defined in the [0,1] interval of 
membership grades. 

 

Figure 7.  Fuzzy set of type-1 and its linguistic interpretation through 

fuzzy sets of linguistic quantification 
 
The construction of these fuzzy sets defined in [0,1] and 
used in the interpretation of the original membership 
function is required. More formally, let us consider a 
fuzzy set of interest defined in some space X, A: X  
[0,1]. Consider “r” fuzzy sets – linguistic descriptors of 
membership grades B ={B1, B2, …, Br}, where Bi:  
[0,1] [0,1]. To benefit from the descriptive power 
supplied by the B, its fuzzy sets have to be optimized 
where the optimization could be guided by different 
design criteria. Here we consider a representation 
criterion where we request that A is well-defined in 
terms of the elements of B. More specifically, the 
entropy of A expressed in terms of Bi for a certain 
element x of X, H(Bi(A))). The overall entropy criterion 
comes in the form 

 

€ 

V = H(Bi (A(x)))dx
i=1

r

∑
X
∫ . (12) 

 
The entropy function H(z) defined in [0,1], H: [0,1]  
[0,1],  satisfies well-known requirements: (a) monotonic 
increase in [0, 1/2] and monotonic decrease in [1/2, 1] 
and (b) boundary conditions of the form H(0) = H(1) = 
0, H(1/2) = 1.0. The minimization of (12) is expressed 
as Min a H(B) where a is a vector of parameters of the 
fuzzy sets in B. In particular, when Bis are taken as 
triangular fuzzy numbers with ½ overlap between 
successive fuzzy sets, then the minimum of (12) is 
achieved by adjusting the modal values of the fuzzy sets 
(viz. the modal values are the corresponding coordinates 
of the vector a). Here mechanisms of evolutionary 
optimization are worth pursuing. Note that the 
distribution of the modal values need not be uniform but 
it rather reflects the characteristics of the data. In case of 
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finite space X, the integral in (12) is replaced by the 
corresponding sum.  

 

€ 

V =
j=1

n

∑ H(Bi (x j))
i=1

r

∑ . (13) 

where n =card(X). Once the fuzzy sets of linguistic 
quantification of the fuzzy set defined in the finite space 
have been defined, the original membership function is 
translated into a string of labels, say  LLMMMMHML, 
etc. with L, M, and H standing for the linguistic labels 
(say, being associated with B1 (L), B2(M), and B3(H)). 
Note that in this interpretation, any x X and 
subsequently A(x) invokes (matches) several Bi’s to a 
nonzero degree. In the formation of the string of the 
labels, we pick up this Bi to which x belongs to the 
highest extent. The essence of the linguistic 
interpretation is illustrated in Figure 8. 

 

Figure 8. From numeric membership grades to a string of linguistic 

labels 
 
6.2. Shadowed sets as a three-valued logic 
representation of fuzzy sets 
 
Membership functions are numeric constructs as far as 
quantification of membership degrees is concerned. 
Linguistic quantification enhances interpretability. The 
concept supported by shadowed sets is developed with 
the similar goal in mind: rather than dealing with 
numeric membership degrees, we are concerned with a 
very limited three- valued quantification 
characterization scheme of membership functions. 
 
Formally speaking, a shadowed set A17,18,19 defined in 
some space X is a set-valued mapping coming in the 
following form  

 A : X  → { 0, [0,1], 1}                               (14) 
 

The co-domain of A consists of three components that is 
0, 1, and the unit interval [0,1]. They can be treated as 
degrees of membership of elements to A. These three 
quantification levels come with an apparent 
interpretation. All elements for which A(x) assume 1 are 
called a core of the shadowed set - they embrace all 
elements that are fully compatible with the concept 
conveyed by A. The elements of X for which A(x) 
attains zero are excluded from A. The elements of X for 
which we have assigned the unit interval are completely 
uncertain – we are not at position to allocate any 
numeric membership grade. In this region we are faced 
with a complete uncertainty (don’t know 
quantification). Therefore we allow the usage of the unit 
interval, which reflects uncertainty meaning that any 
numeric value could be permitted here. In essence, such 
element could be excluded (we pick up the lowest 
possible value from the unit interval), exhibit partial 
membership (any number within the range from 0 and 
1) or could be fully allocated to A. Given this extreme 
level of uncertainty (nothing is known and all values are 
allowed), we call these elements shadows and hence the 
name of the shadowed set. An illustration of the 
underlying concept of a shadowed set is included in 
Figure 9.  

 

Figure 9. An example of a shadowed set A; note shadows formed 
around the cores of the construct. 
 
One can view this mapping (shadowed set) as an 
example of a three-valued logic as encountered in the 
classic model introduced by Lukasiewicz.  Having this 
in mind, we can think of shadowed sets as a symbolic 
representation of numeric fuzzy sets. Obviously, the 
elements of co-domain of A could be labeled using 
symbols (say, certain, shadow, excluded; or a, b, c and 
alike) endowed with some well-defined semantics. This 
a conversion of a fuzzy set into a shadowed set is 
instrumental from the interpretation perspective. For 
instance, the multimodal membership function 
illustrated in Figure 10, once the induced shadowed set 
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has been constructed, comes with a three-valued logic 
interpretation as succinctly underlined by a string of 
quantifying values included in the same figure. 

 

Figure 10. From fuzzy set A to its shadowed set representation and the 
resulting interpretation. 
 
Construction of shadowed sets 
 
Accepting the point of view that shadowed sets are 
interpretation vehicles, which are algorithmically 
implied (induced) by some fuzzy sets, we are interested 
in the transformation mechanisms translating fuzzy sets 
into the corresponding shadowed sets. The underlying 
concept is the one of uncertainty condensation or 
“localization”. While in fuzzy sets we encounter 
intermediate membership grades located in-between 0 
and 1 and distributed practically across the entire space, 
in shadowed sets we “localize” the uncertainty effect by 
building constrained and fairly compact shadows. By 
doing so we could remove (or better to say, re-
distribute) uncertainty from the rest of the universe of 
discourse by bringing the corresponding low and high 
membership grades to zero and one and then 
compensating these changes by allowing for the 
emergence of uncertainty regions. This transformation 
could lead to a certain optimization process in which we 
complete a total balance of uncertainty. 
 
To illustrate this optimization, let us start with a 
continuous, symmetric, unimodal, and normal 
membership function A. In this case we can split the 
problem into two tasks by considering separately the 
increasing and decreasing portion of the membership 
function, Figure 11. 

 

Figure 11. The concept of a shadowed set induced by some fuzzy set; 
note the range of membership grades (located between α and 1- α) 

generating a shadow. 
 
For the increasing portion of the membership function, 
we reduce low membership grades to zero, elevate high 
membership grades to one and compensate these 
changes (which in essence lead to an elimination of 
partial membership grades) by allowing for a region of 
the shadow where there are no specific membership 
values assigned but we admit the entire unit interval as 
feasible membership grades. Computationally, we form 
the following balance of uncertainty preservation that 
could be symbolically expressed as 
 
Reduction of membership + Elevation of membership = 
shadow                                                                       (15) 
Again referring to Figure 14, once given the 
membership grades below α  and above 1- α ,  α  (0, 
½), we express the components of the above 
relationship in the form (we assume that all integrals do 
exist) 
 
Reduction of membership (low membership grades are 
reduced to zero) 

 

€ 

A(x)dx
x:A(x)≤?
∫ . (16) 

Elevation of membership (high membership grades 
elevated to 1) 

 

€ 

(1- A(x))dx
x:A(x)≥1-α
∫ . (17) 

Shadow 

 

€ 

dx
α<A(x)<1-α
∫ . (18) 

 
The minimization of the absolute difference 
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 V(α) = |

€ 

A(x)dx
x:A(x)≤α
∫ +

€ 

(1- A(x))dx
x:A(x)≥1-α
∫ -

€ 

dx
α<A(x)<1-α
∫ |                           (19) 

 
completed with respect to a  is given in the form of the 
following optimization problem 

 α opt = arg min α  V(α)                 (20) 
 
where α  (0, ½).  For instance, when dealing with 
triangular membership function (and it appears that the 
result does not require the symmetry requirement), the 
optimal value of α  is equal to 

€ 

2 −1 ≈ 0.4142 . For the 
parabolic membership functions, the optimization leads 
to the value of α being equal to 0.405. 
 
For the Gaussian membership function described in the 
form A(x) = exp(-x2/σ2), we get the optimal value of a  
resulting from the relationship (the calculations here 
concerns the decreasing part of the membership 
function defined over [0,   )) 

 

€ 

V (α) =| (1−A(x))dx +
0

σ −ln(1−α )

∫ A(x)dx
σ −ln(α )

∞

∫ − dx |
σ −ln(1−α )

σ −ln(α )

∫ . 

  (21) 

Let us move on to the most general case in which we do 
not impose any assumptions as to the form of the 
membership function. We consider discrete membership 
values u1, u2, … uN. Denote the minimal and maximal 
value in this set by umin and umax, respectively. The 
overall reduction of lower membership grades is 
expressed in the form of the following sum 

€ 

uk
k∈Ω
∑  

where Ω = {k| uk  α }. The elevation of higher 
membership grades to one leads to the expression 

€ 

(1− uk )
k∈Φ
∑ with Ω = {k| uk  umax - α }. For the 

shadows we consider the cardinality of the set Ω = {k| 
uk ( α, umax- α)}. Then the above conditions translate 
into the following optimization problem 

 V(α) =| +  - card(Ω)|  

Minimize V(α) with respect to α 

.  (22) 

 
where the range of feasible values of α  is given as 
[umin, (umin+umax)/2]. 
 

Once optimized, the resulting shadowed set can be 
treated as a concise descriptor of the corresponding 
fuzzy set. For the original fuzzy set A, we denote by 
core (A), shadow(A), respectively the core and shadow 
of the shadowed set induced by A. 
 
The above design process could be generalized in such a 
way that we introduce a continuous and increasing 
functional g(u): [0,1] [0,1] that helps quantify the 
original values of the membership grades when taken 
into consideration in the balance captured by (19). 
When reducing membership grades we use the 
expression 

 

€ 

γ (A(x))dx
x:A(x)≤α
∫ . (23) 

 
while the elevation of membership is guided by the 
form 

 

€ 

(1- γ (A(x)))dx
x:A(x)≥1-α
∫ . (24) 

 
The typical form of the functional would be a 
polynomial γ(u) = up, p >0.  
 
7. Statistically Grounded Logic Operators 
 
In fuzzy modeling, logic operators 20, 21,22 play a pivotal 
role in particular when we are concerned with a large 
number of arguments (which might be the case when 
dealing with highly dimensional systems). The min and 
max operators are extreme to a significant extent as 
their result is an extreme membership degree. In this 
way the statistical properties of the population of the 
membership grades involved in the aggregation are not 
considered at all. T-norms and t-conorms 26  lead to the 
results, which with the increase of the number of 
arguments quickly converge to 0 or 1. To alleviate these 
problems, we contemplate incorporating some 
underlying statistics of the membership degrees which 
in turn brings us to the idea of statistically driven 
aggregation – that is statistically grounded logic OR and 
AND operators23 (SOR and SAND, for brief)    
 
SOR logic connectives 
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The (SOR) connective is defined as follows. Denote by 
w(u) a monotonically non-decreasing weight function 
from [0,1] to [0,1] with the boundary condition w(1) = 
1. The result of the aggregation of the membership 
grades z = [z1, z2, …, zN], denoted by SOR(z; w), is 
obtained as a result of the minimization of the following 
expression (performance index) Q 

 

€ 

Q = w(zi
i=1

N

∑ ) | zi − y |. (25) 

 
 
where the value of “y” minimizing the above expression 
is taken as the result of the operation SOR(z, w) = y. Put 
it differently SOR(z, w) = 

 The weight 
function “w” is used to model a contribution of different 
membership grades to the result of the aggregation. 
Several models of the relationships “w” are of particular 
interest; all of them are reflective of the or type of 
aggregation 
(a) w(z) assumes a form of a certain step function  

 

€ 

w(z) =
1  if z ≥ zmax

0,  otherwise
 
 
 

. (26) 

where zmax  is the maximal value reported in  z. This 
weight function effectively eliminates all the 
membership grades but the largest one. For this form of 
the weight function, we effectively end up with the 
maximum operator, SOR(z, w) =max (z1, z2, …, zN) 
 
(b) w(z) is equal identically to 1, w(z) =1. It becomes 
obvious that the result of the minimization of the 
following expression  

 

€ 

i=1

N

∑ | zi − y |. (27) 

 
is a median of z, median(z). Subsequently SOR(z, w) = 
median(z). Interestingly, the result of the aggregation is 
a robust statistics of the membership grades involved in 
this operation.  
 
We can consider different forms of weight functions. In 
particular, one could think of an identity function w(z) = 
z. There is an interesting and logically justified 
alternative which links the weight functions with the 

logic operator standing behind the logic operations. In 
essence, the weight function can be induced by various 
t-conorms (s-norms) by defining w(z) to be in the form 
w(z) = zsz. In particular, for the maximum operator, we 
obtain the identity weight function w(z) =max(z,z) = z. 
For the probabilistic sum, we obtain w(z) = (z+z-z*z) = 
2z(1-z). For the Lukasiewicz or connective, the weight 
function comes in the form of some piecewise linear 
relationship with some saturation region, that is  
w(z) = max(1, z+z) = max (1, 2z).   
 
In general, the weight functions (which are 
monotonically non-decreasing and satisfy the condition 
w(1)=1) occupy the region of the unit square. For all 
these weight functions implied by t-conorms, the 
following inequality holds median(z)  SOR(z, w)  

max(z). 
 
SAND logic connectives 
 
The statistically grounded AND (SAND) logic 
connective is defined in an analogous way as it was 
proposed in the development of the SOR. Here w(z) 
denotes a monotonically non-increasing weight function 
from [0,1] to [0,1] with the boundary condition w(0)=1. 
The result of the aggregation of z = [z1, z2, …, zN], 
denoted by SAND(z; w), is obtained from the 
minimization of the same expression (25) as introduced 
before. Thus we produce the logic operator SAND(z, w) 
= y with “y” being the solution to the corresponding 
minimization problem.  
 
As before, we can envision several models of the weight 
function; all of them are reflective of the and type of 
aggregation 
(a) w(z) assumes a form of some step function  

 

€ 

w(z) =
1  if z ≤ zmin

0,  otherwise
 
 
 

. (28) 

where zmin is the minimal value in  z. This weight 
function eliminates all the membership grades but the 
smallest one. For this form of the weight function, we 
effectively end up with the maximum operator, 
SAND(z, w) =min (z1, z2, …, zN) 
 
(b) for w(z) being equal identically to 1, w(z) =1,  
SAND becomes a median, namely SAND(z, w) = 
med(z).  
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(c) more generally, the weight function is defined on a 
basis of some t-norm as follows, w(z) =1- ztz. 
Depending upon the specific t-norm, we arrive at 
different forms of the mapping. For the minimum 
operator, w(z) =1- min(z,z) =1-z which is a complement 
of “z”. The use of the product operation leads to the 
expression w(z) =1- z2. In the case of the Lukasiewicz 
and connective, one has w(z)=1-max(0, z+z-1) =1-
max(0, 2z-1). 
 
Investigating the fundamental properties of the logic 
connectives, we note that the commutativity and 
monotonicity properties hold. The boundary condition 
does not hold when being considered with respect to a 
single membership grade (which is completely 
understood given the fact that the operation is expressed 
by taking into consideration a collection of membership 
grades). Assuming the t-norm and t-conorm driven 
format of the weight function (where we have w(1) =1 
and w(0) =0 for or operators and w(0)=1 and w(1)=1 for 
and operators) we have SOR(1, w) =0, SAND(0, w) = 
0. The property of associativity does not hold. This is 
fully justified given that the proposed operators are 
inherently associated with the overall processing of all 
membership grades not just individual membership 
values. 
 
The possibility and necessity measures determined for 
the two information granules A and B being articulated 
in the language of SAR and SAND are expressed in the 
following manner 
 
Poss (A, B) = SOR(z, w) ;  = aitbi 
Nec (A, B) = SAND(z, w); zi =aisbi 
 
 
8. Conclusions 
 
Fuzzy modeling has emerged as a well-established 
research area with a lot of well-documented pursuits. 
While fully acknowledging this state-of-the –art 
situation, we have identified a number of challenges and 
showed that these may require a substantial revisiting of 
the current practices and their careful augmentation. 
Several of the points being highlighted in this study 
(including the issue of interpretability which goes far 
beyond the numeric character of interpretation and 

stressed its qualitative facet) indicate that more attention 
needs to be paid to fuzzy sets of higher order. The 
statistical knowledge could be of interest when dealing 
with ways of logic aggregation (logic operators) and we 
have underlined that the approach of this nature offers 
an interesting alternative to the existing models based 
predominantly on t-norms and t-conorms.  
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