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Abstract

While it has been correctly noted that the expression “soft computing” is employed in a variety of senses
and characterizations to designate a wide array of technologies, we argue that the original motivation for
the introduction of soft-computing methods was the need to cope with the complexity of existing mathe-
matical and computational models of real-world systems. We review this essential motivation contending
that other apparent distinguishing characteristics—such as the implicit character of some models—are
either artifacts of specific treatments or temporary stages in their evolution towards more sophisticated
technologies.
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1. Introduction

The expression ”soft computing” is primarily em-
ployed nowadays to designate a family of compu-
tational approaches to the modeling and analysis
of real-world systems. As evidenced by the vari-
ous contributions to this issue, their common char-
acterization in terms of shared traits and properties
is not easy. Efforts to trace the origin of quali-
fier by examining the bibliographical record are a
bit disappointing. The term ”soft” appears firstly to
describe inconvenient characteristics of experimen-
tal data rather than to describe a particular class of
mathematical and computational approaches. Even
then, as Zadeh noted in 198132, the meaning of the
qualifier was not clear

The term soft data does not have a uni-
versally agreed upon meaning. Some
researchers use it to characterize data

that are imprecise or uncertain, while
others attach the label ”soft” to data
whose credibility is open to question.

The introduction of artificial intelligence systems
employing rule-based approaches8—inspired pri-
marily by applications of conventional two-valued
logic—coupled with the development of the deduc-
tive machinery of fuzzy logic31 permitted the ex-
tension of rule-based ideas to schemes based on
fuzzy-set theory and its successful application to
many important applications, particularly in con-
trol systems.17,13,28 Concurrently with these ad-
vances, the need to represent and manipulate prob-
abilistic uncertainty, handled by heuristics in early
expert systems,12,27 resulted in a number of ap-
proaches based on conventional probability theory19

and its generalizations.26 These approaches were
firstly thought as being unsound counterparts—
devised to deal with certain inconvenient features of
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data and knowledge—of the deductive procedures
of classical logic; thus their description as being
approximate-reasoning methods. The sound nature
of these approaches, however, was made clear by
their explanation in terms of formal logical models
21,23,25 or by direct introduction of related methods
using similar formalisms6 in the early 90s.

At about that time, other approaches such as
neural-network methods, evolutionary computation
techniques, and genetic algorithms were increas-
ingly applied to a variety of problems that had been
previously intractable using existing formalisms. A
more important development—at least from our task
of characterizing the notion of soft computing—
was the combined, or hybrid, application of these
techniques together with fuzzy-set based methods.
While the original motivation of these approaches
had been the emulation of certain biological pro-
cesses for computational purposes, their successful
joint application to a variety of problems led to the
need of differentiating them, as a whole, from more
conventional treatments. This need brought a sub-
tle change in the usage of the qualifier soft, whose
scope changed from a description of the characteris-
tics of the data being analyzed (i.e., soft-data analy-
sis) to the analytical techniques themselves (i.e., soft
data analysis). As has been noted in the lead article
of this issue16 it was Zadeh34 who first employed
the expression “soft computing” to designate this
methodological ensemble. The alternative expres-
sion “computational intelligence” was also coined at
about the same time to designate these methods a.

In this paper we argue that its original and con-
tinuing motivation of soft-computing methods is the
need to cope with the complexity of models devel-
oped to understand real-world systems. Our dis-
cussion reviews this essential motivation contending
that other apparent distinguishing characteristics—
such as the implicit character of some models—
are not distinguishing traits of soft-computing treat-
ments.

2. Systems and models

To a very large extent, the misunderstandings re-
garding the nature of soft-computing methods can
be traced to a confusion between the systems be-
ing analyzed and the models employed to perform
that analysis, which ascribes to the former some of
the distinguishing characteristics of the latter. This
confusion is not unlike that equating the “inherent”
complexity of problems—that is, the difficulty of
solving a problem regardless of the treatment be-
ing employed— with that of the computational com-
plexity of algorithms—that is, a quantification of the
resources required by the algorithm as a function of
the size of its input.1

In the context of systems theory, for example, it
is customary to talk about linear systems and nonlin-
ear systems although clearly the underlying notion
of linearity describes a property of the model be-
ing employed, which may or may not adequately de-
scribe the actual behavior of the systems being stud-
ied. Thus systems are described as being station-
ary or non-stationary, ergodic and non-ergodic, and,
not surprisingly, as hard or soft, while, in fact, these
qualifications reflect properties of the mathematical
and computational treatments being employed rather
than essential characteristics of the actual systems.

This lack of distinction about systems and mod-
els has been particularly misleading when systems
are treated using soft models or applying soft-
computing techniques. Perhaps the most common
mistake arising from this confusion is the notion that
certain problems are intrinsically soft and, as such,
demand treatment by soft-computing approaches.
This misconception has led to needless controversy
as to the existence of a fundamental need to employ
soft computing methods as if there were measures
of final recourse to be applied when everything else
has failed. In its extreme form, this view has led
some to argue, on a variety of grounds, that cer-
tain soft-computing methods, notably fuzzy logic,
are unnecessary.5,10

The actual objects of study, that is, real-world
a The use of the expression “Computational Intelligence” stemmed from the internal need, within The Institute of Electrical and Elec-
tronics Engineers (IEEE), to describe the technical activities of those engaged in the study and application of these technologies with a
better expression to characterize the broadening scope of activities of the IEEE Neural Networks Council
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systems. are neither soft nor hard, but may be, how-
ever, analyzed employing models based on the ap-
plication of different methodologies. It makes sense
to talk then about hard and soft models, or hard and
soft approaches, but not of hard of soft systems. Fur-
thermore, the fact that other approaches may con-
ceivably or in fact, be applied is, in our view, irrel-
evant. Soft-computing methods provide an effective
avenue, as evidenced by their success, to treat a wide
scope of problems. This success owes much to their
ability to deal with systems that had not been capa-
ble of effective prior treatment by other approaches
but their applicability is not limited by availability
of alternative treatments nor by any intrinsic char-
acteristic of the systems being studied (e.g., lack of
conventional models).

3. The advent of soft computing

In the 1960s, computing machines—employed be-
fore mainly for either accounting or numerical anal-
ysis applications—started to be applied in fields
ranging from biology and medicine to economics,
psychology, and the social sciences. The majority of
the mathematical and computational structures in-
troduce to formalize and represent the behavior of
these systems did not attain, however, the basic ob-
jective that had traditionally led to the development
of those models: the understanding of the behavior
of the real-world systems being modeled.

As larger and more complex systems were be-
ing considered, models became themselves larger,
more complex, and more difficult to analyze, turn-
ing often to be intractable. These constructs were
unmanageable for a number of reasons. Even when
the model was thoroughly specified in terms of well-
known mathematical constructs (e.g., differential
equations), the number and interrelations between
them was usually so large as to prevent either a
mathematical or a numerical solution. In other in-
stances the problems were complicated by the pres-
ence of structures not easily handled by existing an-
alytical techniques (e.g., nonlinear relations, mixed
discrete/continuous variable problems).

In many cases, the situation was complicated by
lack of precise knowledge about the system being

modeled: a state of affairs that was not helped by
introduction of approaches relying on parameters
(e.g., probability distributions) that were either not
known or that increased, rather than reduced, the
complexity of the model. Often it was also the case
that requirements imposed upon solutions (e.g., pre-
cise optimization of a functional) were (and still are)
beyond existing analytical and computational capa-
bilities.

Simplification of models by suitable approxima-
tions has always been a favorite recourse of mod-
elers. Linearization techniques or approximation of
complex physical laws by simpler counterparts (e.g.,
“the perfect-gas law”) have been, for example, stan-
dard equipment in the modeling toolbox. Complex
models of large systems, however, were now often
not amenable to such approximations. The frustra-
tion induced by this lack of tractability led, some-
times, to purported proofs of universal impossibility
of solution of some problems often on the grounds
of the inability to deal with certain inconvenient fea-
tures of the model, usually confusing the actual sys-
tem with the model (e.g., methodological difficulties
encountered with a linear approximation were de-
scribed as intrinsic, systemic, obstacles to any type
of treatment). In many cases, oversimplification led
to results of considerable formal beauty but, unfortu-
nately, of little value to those seeking to understand
the system being modeled.

It was in the context of these methodological dif-
ficulties that the notion of fuzzy set was introduced
in 1965 29 as

. . . a convenient point of departure for
the construction of a conceptual frame-
work which parallels in many respects
the framework used in the case of or-
dinary sets, but is more general than
the latter and, potentially, may prove to
have a much wider scope of applica-
bility particularly in the fields of pat-
tern recognition and information pro-
cessing.

The introduction of this key concept was motivated,
however, by larger concerns than the mere repre-
sentation of imprecision and vagueness as explicitly
stated in a subsequent work:30
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What we still lack, and lack rather
acutely, are methods for dealing with
systems that are too complex or too
ill-defined to admit of precise analy-
sis. Such systems pervade life sci-
ences, social sciences, philosophy, eco-
nomics, psychology and many other
“soft” fields. Furthermore, they are
encountered in what are normally re-
garded as “nonsoft” fields when the
complexity of the system rules out
the possibility of analyzing it by con-
ventional mathematical means, whether
with or without the aid of computers.

The reference to ”soft” sciences reveals, as is the
case with the previously mentioned allusion to soft
data, the original intent to provide a new paradigm
to cope with system complexity whether such com-
plexity arose from model size or structure, vague-
ness, partial knowledge, or imprecision. This essen-
tial and motivating concern evolve into specific pro-
posals for system analysis techniques in subsequent
papers31,32 leading to the introduction of the term
“soft computing” in 1994.33

Note also that, as we have mentioned before,
Zadeh’s concerns about the need for new approaches
to system analysis does not, at all, presume that his
proposals should be considered to be a call for the
replacement for existing methodologies; an asser-
tion strongly stated in later works.35 As other de-
velopments would prove it was not necessary either
for a problem to be tractable by other approaches to
be successfully solved by application of fuzzy mod-
els. The inverse-pendulum problem—a well known
paradigm of problems involving unstable systems—
is a noteworthy example of the applicability of soft-
computing methods3 in spite of availability of con-
ventional models (i.e., a system of nonlinear differ-
ential equations) and alternative treatments. The ap-
plication of soft-computing techniques to this prob-
lem (in this case fuzzy rules tuned by reinforce-
ment learning techniques) further shows the simplic-

ity of the approaches and the ability of the methodol-
ogy to consider important variations of the original
problem.b

As this and many other examples show it is clear
that the lack of an explicit model is not an inherent
requirement for the application of soft-computing
techniques. In many instances, as in applications
of neural network techniques, the model is explic-
itly stated or learned, although its nature is quite dif-
ferent from that of conventional mathematical and
statistical models. In other cases the model might be
expressed by means of a complex computer program
developed to facilitate the solution of a complex
optimization problem by evolutionary-computation
techniques. In the case of fuzzy models, the initial,
and still preponderant, reliance on implicit models
has led some to conclude that lack of explicit mod-
els is a characteristic trait of either fuzzy logic or soft
computing methods. The growing literature on ex-
plicit fuzzy models and their analysis clearly shows
otherwise.2

4. The nature of soft computing

Having looked at the motivations for the introduc-
tion of fuzzy logic we turn now our attention to two
rather important questions. The first of these ques-
tions is related to the basic premise underlying the
models based on the theories of fuzzy sets and fuzzy
logic. The second has to do with the nature of the
methods that, beyond fuzzy logic, are currently part
of the soft-computing toolbox.

We have already stated our belief that the ma-
jor motivation leading to the theory of fuzzy sets
was the need to deal with a class of problems that
were not capable of being treated by existing meth-
ods. We turn our attention now to the primary reason
for the success of fuzzy logic and argue that the ba-
sis for its success justifies extending the use of the
qualifier “soft computing” to methodologies such as
evolutionary and neural computation.

bIn the case of the inverted-pendulum system it is important to note that soft-computing techniques have been able to treat important
variations of the basic problem (i.e., stabilize the pendulum for small deviations around the equilibrium point) such as the consideration
of multiple stages, the attainment of multiple goals (e.g., pendulum balancing and cart positioning), and the synthesis of controls that
achieve stability from any initial system state.
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4.1. A fundamental tradeoff

While a major reason for the introduction of fuzzy
logic was the modeling of systems that are not
known in a precise manner, the basis for its success
lies on the exploitation of those models to treat prob-
lems that are not easily solved employing conven-
tional methodologies. The strength of the method-
ology lies on the modeler’s willing to accept a key
tradeoff: that of representational and analytical ac-
curacy for an increase in the understandability of the
system. Simply put, fuzzy models typically sacri-
fice precision for a intelligibility and analyzability.
Quoting again Zadeh:33

In traditional-hard-computing, the
prime desiderata are precision, cer-
tainty, and rigor. By contrast, the point
of departure in soft computing is the
thesis that precision and certainty carry
a cost and that computation, reasoning,
and decision making should exploit–
wherever possible the tolerance for im-
precision and uncertainty.

While this type of epistemological bargain might
seem reasonable to many scientists, its departure
from what others consider to be an essential trait of
serious science has led to considerable controversy
about the technology from its very inception. This
controversy has shown itself in the form of epis-
temological arguments about its necessity,10 proofs
of internal inconsistence based on gross misunder-
standings of its formal bases,7 or claims about the in-
trinsic inadequacy of approaches, other than proba-
bilistic schemes,5,15 to represent and manipulate im-
precise information. In extreme cases, fuzzy logic
has been described as “the cocaine of science” or
“pornography”.11

Leaving aside mercurial comments quoted with-
out providing any form of argumentation, cogent
or otherwise, we must simply note that these con-
tentions have been properly, and abundantly, ad-
dressed in the literature by many, including this
author.22,23,24

The unfortunate error of confusing mathematical
elegance with model applicability continues, how-
ever, to this day. Its clearest expression may be

found in many works in the literature whose authors
insist on using models that utterly fail to represent
essential aspects of the modeled system and that pro-
duce precise, but misleading, results just for the sake
of methodological elegance.

4.2. Soft computing beyond fuzzy logic

The description of biologically-inspired methodolo-
gies for the modeling and analysis of systems and
for the learning of those models among “computa-
tional intelligence” approaches was the immediate
consequence of the successful combination of these
methods with fuzzy logic to treat a wide variety of
problems.36 Although a clear definition of that ex-
pression has not been provided to date,20 the group-
ing of these approaches with fuzzy logic under a
common rubric reflects the importance of their com-
bined use in practice. Notwithstanding this histor-
ical fact it can be argued that neural networks and
evolutionary computation/genetic algorithm-based
methods are like fuzzy logic, successful modeling
and analysis techniques that tradeoff certain proper-
ties of classical approaches in exchange for gains in
problem tractability.

Neural-network9 approaches, which are charac-
terized by their plasticity and learnability, are based
on the application of models suggested by the struc-
ture of the nervous system. The acquired models,
however, are usually hard to explain in terms of re-
lated knowledge while typically failing to provide
insights into the structure of the modeled systems.
As is the case with fuzzy logic their application, at
least to date, requires exchanging certain analytical
benefits for others.

Approaches such as evolutionary and genetic
algorithms18 permit treatment of complex models by
relaxation of certain formal requirements (e.g., the
need to produce precise optimizing values of perfor-
mance functionals). The solutions provided by these
techniques cannot be guaranteed to be optimal (other
than in a “long run,” probabilistic sense) in the same
sense that the output of a conventional optimization
algorithm would be if it were feasible of application.

Probabilistic methods are often plagued them-
selves by their own complexity problems, which are
a necessary consequence of the need to specify a

Published by Atlantis Press 
    Copyright: the authors 
                  194



Enrique H. Ruspini

weaker form of structural relation (i.e., probabil-
ity distributions) in lieu of unknown set-theoretic
relations. These approaches are sometimes, how-
ever, described as soft-computing methods be-
cause, in combination with neural networks,14 per-
mit the acquisition of a powerful family of descrip-
tive probabilistiic models.c Generalized probabilis-
tic formulations26 exhibit also considerable toler-
ance to less than perfect knowledge.
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