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Abstract—Objective: In the traditional edge detection 
differential operators, the first-order derivative masks are 
easy to loss image details information, and the second-order 
derivative masks are more sensitive to noise. As for these 
problems, this paper proposes a fractional-order mask for 
medical image segmentation. Methods: Combining the 
frequency characteristic and the memorability of fractional 
differential, the classical first-order Sobel operator is 
generalized to fractional-order mode; A fractional-order 
differential mask is constructed for extracting the edge 
feature of medical images. Results: The experiment results 
show that compared with the integer order differential mask, 
the fractional-order differential mask can detect more edge 
details feature of the medical images, and is more robust to 
noise. Conclusion: Based on the global characteristic of the 
fractional differential, the proposed fractional-order Sobel 
mask can extract more image edge feature details.  
Experiment results show that the proposed fractional-order 
mask yields good visual effects for brain MRI image 
segmentation. 

Keywords- medical image; image segmentation; 
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I. INTRODUCTION 

Medical image segmentation has important 
applications in medical image visualization, localization of 
pathology, and computer-aided diagnosis. Edge 
detection[1-3] is one of the most frequently used 
techniques in image segmentation. It primarily can be 
classified into two categories: first-order derivative and 
second-order derivative methods. However, the first-order 
derivative methods generally produce thicker edges, which 
results in the loss of image details. The second-order 
derivative methods have a stronger response to fine detail, 
but they are more sensitive to noise. To solve these 
problems, the fractional-order derivative has been 
introduced to the edge detection methods. Since the 
frequency characteristic determines it can preserve more 
low-frequency contour feature, keep high-frequency 
marginal feature and also enhance medium-frequency 

texture details. Considering this superiority, Pu et al. [4] 
proposed a class of fractional differential masks for image 
texture enhancement. Bai and Feng [5] proposed a class of 
fractional-order anisotropic diffusion models for noise 
removal. In this paper, we generalize the classical Sobel 
operator[6] to constitute a fractional-order Sobel operator 
for edge detection. The proposed operator is tested in brain 
MRI image segmentation. The results are promising 
compared to those of the first-order Sobel operator. 

II. DIFFERENTIAL MASK 

A. Sobel mask 

Edges occur where there is a discontinuity in the 
intensity function or a very steep intensity gradient in the 
image. The gradient of an image f(x,y) at (x,y) can be 
defined as a vector 
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Sobel detection is a classical first-order derivative 
detection method, which brings out the horizontal and 
vertical edges individually based on a pair of 3×3 
convolution operator shown in Fig .1.     

    

 
Figure 1. Sobel mask   

 
The operator can be applied separately to a 3×3  

neighbourhood of the center point pixel. The gradient 
components along the x- and y- directions can be found 
using the following approximation 
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In discrete images, we can consider x  and y  in 
terms of numbers of pixel between two pixel points. 
Let 2x y    , then the differential form of the gradient 
components can be given by  
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B. Fractional-order Sobel mask 

Fractional-order derivative has been applied in various 
scientific fields including image processing [7-9].But the 
definition of the fractional-order derivative is not unified 
until now. In this paper, the Grünwald-Letnikov 
definition[10] is used. Assume the size of image f is M×N, 
then the discrete form of f can be represented as 
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where 3K  is an integer constant , ( 1)

( 1) ( 1)kC
k k

 


 

    

,  is 

the gamma function. 
By generalizing the order from integer to fraction, a 

fractional-order differential form of the gradient 
components transformed from (5) and (6) can be obtained 
as 
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(10) 
Then the fractional-order gradient components along 

the x- and y- directions can be found using the following 
approximation 
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      (12)                      
According to the former approximation, we propose a 

fractional-order Sobel mask described as follows.  
 

Figure 2.  Fractional-order Sobel mask  

From the definition, an important property can be 
observed. The integer derivative just involves finite terms; 
However, the fractional derivative involves infinite 
number of terms. Therefore, the integer derivative is a 
local operator while the fractional derivative is a global 
operator. The fractional mask can consider more 
neighboring pixels information, extracting more image 
details. 

III. SEGMENTATION THRESHOLDING 

An important quantity in edge detection is the gradient 
magnitude of the image, as for the fractional-order 
gradient, the magnitude measure can be denoted as  

2 2 1/ 2( ) [( ) ( ) ]x yF mag f G G                  (13) 

This quantity gives the maximum rate of increase of 
f(x,y) per unit distance in the direction of f . In this 
paper, the thresholding is selected based on the average 
gradient, 
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where T denotes the thresholding, 1  is a pre- 
determined parameter. Then the pixel can be marked as 
edge points if F T  . 

IV. NUMERICAL RESULTS 

In this section, we provide numerical results to show 
the behavior of the proposed fractional-order mask with 
respect to its edge extraction capability. 
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A. The selection of  fractional order 

In the following, we will analysis the probelm of order 
selection in the fractional edge detection operator based 
on its frequency characteristic. Fig.3 shows the amplitude-
frequency response of differential, when (0, 2.0]  . 
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(b) (1.0,2.0]   

Figure 3.   Amplitude-frequency response 
 

When (0,1.0]  , in the extremely low frequency 
section, corresponding to images' smooth area, the 
attenuation degree of image contour resulted by fractional 
differential is better than the first order differential. In the 
medium frequency section, corresponding to images' 
texture area,  the fractional order can protect more image 
details than the first order. In the high frequency section, 
corresponding to images' edge and noise area, the 
fractional order has obvious reduction function than the 
first order. When (1.0, 2.0]  , in the extremely low 
frequency section, the attenuation degree of image 
contour resulted by fractional differential is similar to the 
one obtained by the first order differential. In the medium 
frequency and the high frequency sections , the 
enhancement degree of image edge and noise with 
fractional differential is much better than the first order 
differential. Considering the details protection ability and 
the noise roustness, we select  differential order 

(0,1.0)   

B. The selection of  fractional differential items number 

In the following, we will analysis the influence of  the 
fractional differential items number on image 
segmentation effect.  Select a simulated brain MRI image 
as test image，the  size is 258*258,  noise is 5%, and 
intensity inhomogeneity is 20%, shown in Fig.4  Let 

0.2  ， 3  , Fig.5  shows the segmentation results of 
the fractional Sobel operator in  3×3，4×4，5×5，6×6,  
and 7×7 template.  

 

 
Figure 4. Test image 

 

   
(a) 3×3                                        (b) 4×4 

   
  (c) 5×5                                         (d) 6×6 

 
(e) 7×7 

Figure 5. Segmentation results of fractional-order Sobel operator 
 

Simulation results show that the fractional Sobel 
operator can segment image effectively, when it effect on 
the narrowband neighborhood of the image pixel. When 
the template is too large, the segmentation results can 
remain too much noise, and the segmentation processing 
need too long time. 

C. Performance analysis 

In the following, we provide numerical results to show 
the behavior of the proposed fractional- order Sobel 
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operator. Let k=3,  be selected from 0 to 1, take 0.1 as 
interval. We select Fig.4 as test image. Let 3  . Fig.6 
lists the extraction results under different fractional order. 

 

     
(a) 0.2                             (b) 0.4   

   
(c) 0.6                            (d) 0.8   

   
   (e) 1.0   

Figure 6.   Comparison of segmentation results under different orders on 
a brain MRI image. 

 
Experiment results show that the fractional-order 

Sobel operator is robust to noise and can restrain the 
influence of irrelevant detail compared with the Sobel 
operator. And the larger   is, the better image feature is 
preserved, but meanwhile the more noise is residual too. 

V. CONCLUSION 

From the definition, an important property can be 
observed that the integer derivative is a local operator 

while the fractional derivative is a global operator. The 
fractional operator can consider more neighboring 
information. Considering this characteristic, we generalize 
the traditional first-order Sobel edge detection operator to 
fractional-order for extracting image structure features. 
The novel operator has been validated on brain MR image 
with desirable performance. 
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