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Abstract—Objective: By combining fractional calculus and 
duality theory, a novel fractional-order primal-dual model 
which is equivalent with the fractional ROF model is 
proposed. We theoretically analyze its structural similarity 
with the saddle-point optimization model. So the algorithms 
for solving the saddle-point problem can be used for solving 
the model. Methods: The primal-dual algorithm based on 
resolvent for solving the saddle-point problem is used for 
solving the proposed model. The adaptive variable step size 
iterative optimization strategy is used, which can improve 
the optimizing efficiency, and remedy the step size limitation 
of the traditional numerical algorithms. In order to 
guarantee the convergence of the algorithm, the range of the 
parameter is given. Results: The experiment results show 
that the proposed fractional-order primal-dual model is 
effective in avoiding the staircase effect and preserving 
texture and detail information, and the adoptive numerical 
algorithm has faster convergence speed. Conclusion: This 
paper proposes a fractional-order primal-dual denoising 
model, which can be solved by a primal-dual algorithm 
based on resolvent. The experiment results show that the 
proposed model can improve the image visual effect 
effectively, and the adoptive numerical algorithm has faster 
convergence speed. 

Keywords- image denoising; fractional-order; primal-
dual; saddle-point problem; variation method 

I. INTRODUCTION  
Image denoising is a significant preliminary step in 

many machine vision tasks. The goal is to estimate an 
original image u from an observed image g, modeled as 

g = u + n                                    (1) 
where n is a vector of zero-mean Gaussian white noise 
with variance 2σ . A number of methods have been taken 
to estimate u, including wavelet transform [1], partial 
differential equation [2], Fourier transform [3], and total 
variation [4], etc. where the total variation method is quite 
efficient for removing noise while preserving edges. One 
of the most well known total variation models was 
introduced by Rudin, Osher and Fatemi (ROF), which 

mathematically formulated the denoising problem as the 
following minimization [5]: 

2

1 2min 2u X
u u gλ

∈
∇ + −                          (2) 

where X is the finite dimensional vector space, 
v

• is the 
v  norm, ∇  is the gradient operator, λ is the 
regularization parameter. However, the ROF model favors 
a piecewise constant solution which often leads to the 
staircase effect, and small details are often filtered out in 
the process of denoising. To solve this problem, the 
fractional-order derivative has been introduced to the total 
variation denoising models to replace the traditional first-
order regularization. Since the fractional-order derivative 
can consider more neighboring pixels information, which 
helps describe more image details.  

In this paper, a primal-dual formulation of the 
fractional-order ROF model is given based on duality 
principle, which is found having the remarkable similar 
structure with the saddle-point problem. So it can be 
solved by a flexible primal-dual algorithm [6], which has 
been used for solving the saddle-point problem 
successfully. In [6], this primal-dual algorithm has been 
shown having rapid convergence compared with gradient 
descend algorithm [7], fixed-point iteration algorithm [8], 
shrinkage thresholding algorithm [9], etc. 

II. FRACTIONAL-ORDER DENOISING MODEL 

A. Fractional-Order ROF Model 
Fractional-order derivative has been applied in various 

scientific fields. But its definition is not unified until now. 
In this paper, the GL definition[10] is used. Assume the 
size of image u is M×N, then the discrete form of uα∇ can 
be represented as 

, 1 , 2 ,( ) (( ) , ( ) ) 1 ,1i j i j i ju u u i M j Nα α α∇ = ∆ ∆ ≤ ≤ ≤ ≤   (3) 
with 
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where 3K ≥ is an integer constant , ( 1)
( 1) ( 1)kC
k k

α α
α

Γ +
=

Γ + Γ − +
, Γ  is 

the gamma function. 
By generalizing the variation order from integer to 

fraction, the fractional-order ROF model can be obtained 
as 

2

21
min 2u X

u u gα λ
∈

∇ + −                        (5) 

where 

,1
,

( )i j
i j

u uα α∇ = ∇∑                         (6) 

with  
 2 2

, 1 , 2 ,( ) (( ) ) (( ) )i j i j i ju u uα α α∇ = ∆ + ∆            (7) 
From the variation definition, an important property 

can be observed. The integer derivative just involves finite 
terms; However, the fractional derivative involves infinite 
number of terms. The fractional operator can consider 
more neighboring pixels information, preserving more 
image details. 

B. Fractional-Order Primal-Dual Model 
A fractional-order primal-dual model, i.e. the primal-

dual formulation of the fractional-order ROF model will 
be presented.  

For p Y∈ , let 1 2
, , ,( , )i j i j i jp p p= , and 

1 2 2 2
, , ,( ) ( ) 1i j i j i jp p p= + ≤ , then 

1
sup ,
p Y

u u pα α

∈
∇ = < ∇ >                      (8) 

Let
1

( )F u uα= ∇ , then its conjugate function * ( )F p  
satisfies the following property 

* 0
( )P

p P
F p

p P
∈

= +∞ ∉
                        (9) 

where ,,
{ : max 1}i ji j

P p Y p p
∞

= ∈ = ≤  is the conjugate 

set. 
The primal-dual formulation of the fractional-order 

ROF model can be given by 
2 *
2

max , ( )min 2 Pp Yu X
u p u g F pα λ

∈∈
< ∇ > + − −         (10) 

C. Saddle-Point Problem 
Using the Fenchel duality, the generic saddle-point 

problem can be formulated as 
*min max , ( ) ( )

x X y Y
Ax y G x F y

∈ ∈
< > + −                 (11) 

where X and Y are the finite dimensional real vector space, 
,< ⋅ ⋅ > denotes the standard Euclidean inner product, A is a 

random linear operator, G and F are lower-
semicontinuous functions, *F is the conjugate of function 
F. 

This saddle-point problem is the primal-dual 
formulation of the following primal problem 

min ( ) ( )
x X

F Ax G x
∈

+                            (12) 
and the corresponding dual problem 

* * *max ( ( ) ( ))
y Y

G A y F y
∈

− − +                    (13) 

It is not hard to find that this saddle-point optimization 
model has the remarkable similar structure with the 
proposed denoising model (9), if A α= ∇ , 

2

2
( )

2
G u u gλ

= − , * *( ) ( )PF p F p= . 

III. NUMERICAL COMPUTATION 
To solve the saddle-point problem (10), a primal-dual 

algorithm [6] based on resolvent has been proposed, and 
has been tested having rapid convergence compared with 
gradient descend algorithm, fixed-point iteration 
algorithm, shrinkage thresholding algorithm, etc. Fixing 
the primal variable x , taking the derivative of the dual 
variable y , the resolvent operator of variable y  can be 
obtained 

* 1( ) ( )y I F y Ax−= + ∂ +                      (14) 
Similarly, fixing the dual variable y , taking the 

derivative of the primal variable x , the resolvent operator 
of variable x  can be obtained 

1( ) ( )x I G x Ay−= + ∂ −                         (15) 
where *F∂  and G∂ are the subgradients of the functions 

*F  and G .Define the parameter L , which satisfies the 
following property 

max{ : , 1}L A Ax x X x= = ∈ ≤            (16) 
then when G  or *F  is uniformly convex, the primal-dual 
algorithm [6] can be summarized as follows: 
l Initialization: Choose 0 0, 0τ σ >  with 2

0 0 1Lτ σ ≤ , 
0 0( , )x y X Y∈ × ,and 

0 0x x= . 
l Iterations( 0n ≥ ): Update as follows 

1 * 1

1 1 * 1

1 1

1 1 1

( ) ( )
( ) ( )

1/ 1 2 , , /

( )

nn n
n n

n n n
n n

n n n n n n n n

n n n n
n

y I F y Ax
x I G x A y

x x x x

σ σ

τ τ

θ γτ τ θ τ σ σ θ

θ

+ −

+ − +

+ +

+ + +

 = + ∂ +

 = + ∂ −


= + = =


= + −

     (17) 

l Stopping test: stop if 

'
2

'
1

' * '

' * '

( , ) max , ( ) ( )

min , ( ) ( )
y B

x B

x y y Ax F y G x

y Ax F y G x

ς
∈

∈

= < > − + −

< > − +
    (18) 

where ( , )x yς  is the difference between the dual problem 
and the primal problem, it vanishes only if ( , )u p is the 
saddle-point[9]. 

Considering the similar structure between the propsed 
fractional-order primal-dual denoising model and the 
saddle-point problem, and the algorithm precondition is 
met, i.e. A α= ∇ is a linear operator, and the fidelity 

term 2

2
( )

2
G u u gλ

= − is a convex function, the denoising 

optimization procedure can be realized by the former 
primal-dual algorithm. 

458



In the numerical computation, it remains to detail the 
resolvent operators * 1( )I F −+ ∂ and 1( )I G −+ ∂ . Since 

* *( ) ( )PF p F p= and 2

2
( )

2
G u u gλ

= − , one has 
~

~
,* 1

, ~

,

( ) ( )
max(1, )

i j
i j

i j

p
p I F p p

p
σ −= + ∂ ⇔ =         (19) 

~
~ , ,1

,( ) ( )
1

i j i j
i j

u g
u I G u u

τλ
τ

τλ
− +

= + ∂ ⇔ =
+

           (20) 

where
~
p p Auσ= + ,

~
*u u A pτ= − . 

Next, we will consider the convergence problem. [6] 
has proven the algorithm can convergent to the saddle-
point. Here, we only need to confirm the convergence 
condition, i.e. the value range of the parameter L . For 
every dual variable 1 2( , )p p p Y= ∈ , the discrete 
fractional-order divergence can be defined as 

,( )i jdiv p div pα α=   1, 2,...,i M= ， 1,2,...,j N=      (21) 
with 

1 11 2
, , ,

0 0
( ) ( 1) ( 1) ( 1) ( 1)

K Kk k
i j k i k j k i j k

k k
div p C p C pα α α α α− −

+ +
= =

= − − + − −∑ ∑

     (22) 
since  

2
1 1 1

0 , 1 1, 1 1,
,

2 2 2 2
0 , 1 , 1 1 , 1

1 2 2 2 1 2
0 , 0 , 1 1,

,

2 2 1 2
1 , 1 1 1,

22 2 2 2 2
1 , 1 0 1 1

( 1) (

)

2 ( ) ( ) ( )

( ) ( )

( ) 2 ( )

i j i j K i K j
i j

i j i j K i j K

i j i j i j
i j

i j K i K j

K i j K K

div p w p w p w p

w p w p w p

K w p w p w p

w p w p

w p K w w w p

α α
+ − + −

+ − + −

+

+ − + −

− + − −

− = + + + +∑

+ + + ≤

× + + +∑

+ + +

≤ × + + +

L

L

L

L
2 2 2
0 1 12 ( )KK w w w −

≤

× + + +L

 

(23) 
Hence 

2 2 2
0 1 1( 1) 2 ( )KL div K w w wα α α

−= ∇ = − ≤ × + + +L         

          (24) 
where ( 1)i

i iw Cα= − , K is the number of terms in the 
fractional-order derivative definition. 

IV. NUMERICAL RESULTS 
In this section, we provide numerical results to show 

the behavior of the proposed fractional-order primal-dual 
model with respect to its denoising capabilities. In the 
following, all test images are treated as column vector 
with M × N elements via row-wise scanning way. Using 
row-wise scanning method, we can map a pixel value at 
position ( ),i j  of an image into the [( 1) ]i N j− × +  
element of the vector. 

Considering the frequency characteristic of fractional 
differential, we generalize the traditional first-order ROF 
model to the fractional-order one. Fig. 1 shows the 
amplitude-frequency response of differential, when 

[1.0,3.0]α ∈ . 
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Figure1.  Amplitude-frequency response 

 
It is observed that in the medium frequency and the 

high frequency sections, corresponding to images' texture 
and edge area, the enhancement degree of images with 
fractional differential operator is much better than the 
ones produced by the first-order operator. This implies 
that the fractional ROF model should be  used to enhance 
the medium frequency texture and the high frequency 
edge. Considering the performance of both denoising and 
details-perserving, 1.0 2.0α = : is the best choice. 

To show the role of fractional differential in the 
proposed fractional-order primal-dual model, we fix the 
parameter λ , and select a cardiac ultrasound image with 
size 156×156 as test image. Let n=200, 10λ = , α be 
selected from 0 to 3. Experiment results show that the 
larger α  is, the better image details are preserved, but 
meanwhile the more noise is residual too. Considering the 
performance of both denoising and details-perserving, 

1.0 2.0α = : is the best choice. Fig. 2 lists the denoised 
images under different fractional order. 

 

    
(a)                                               (b) 

 
(c)                                            (d) 
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(e)                                                   (f) 

  
(g) 

 
Figure 2. Comparison of denoising results under different fractional 
order on a cardiac ultrasound image. (a) Original image, (b) 1.0α = , (c) 

1.2α = , (d) 1.4α = , (e) 1.6α = , (f) 1.8α = , (g) 2.0α = . 
 

It is clearly seen that the fractional order differential 
can eliminate the staircase effect and preserve some small 
details compared with the first order differential. But 
along with the increasing ofα , the more noise is residual 
too. 

V. CONCLUSIONS 
We develop a fractional-order primal-dual model and 

the accompanying numerical algorithm for image 
denoising problem. The numerical results show that the 
proposed model yields better results with respect to the 
protection of image details. 
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