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Abstract 

The tolerance allocation problem has been studied in the literature for decades, usually using mathematical 
programming (or) heuristic optimization approaches. Elegant tools for minimum cost tolerance allocation have 
been developed over several decades but still there is no specified tool to find the total cost with respect to 
machining cost and asymmetric quality loss functions. Objective of this paper is to find the optimized total cost by 
considering the machining cost and the asymmetric quality loss of an assembly. The non linear multi variable 
optimization of total cost problem formulated is solved using genetic algorithm. In this work, Piston and cylinder 
arrangement example was considered for concurrent allocation of design and machining tolerance, as well as to 
optimize the total cost. The result shows, optimized tolerance will enhances the quality and reduces the total cost 

Keywords: Tolerance allocation, Machining cost, quality loss, Genetic algorithm. 

                                                 
 

1. Introduction 

 
Tolerance is defined as the acceptable variation in the 
dimension of a geometric entity. The use of tolerance is 
unavoidable because in the manufacturing phase, a 
series of operations is applied to the components to 
control their geometry, size, location, variations in 
processes, materials, tool wear, fixture errors, setup 
errors, material property variations, temperature, 
worker skill, and so on, mean that parts can not be 
produced exactly. 

 

Limits defining the tolerance are called tolerance or 
specification limits. The problem of setting these limits 
based on several criteria is known as tolerance design. 
The tolerance design is a key element for improving 
quality, reducing overall cost and there by helps 
retaining market share. Both design and manufacturing 
engineers have focused attention on the effects of 
variation of cost and performance of manufactured 
products. The tight tolerance are assuring fit and 
function of the assembly as required by the designer 
lead to higher cost for manufacturing and the loose 
tolerances which make parts easier and less expensive 
to produce lead to assembly problems and rejections. 
The demand for quality has focused attention on the 
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effects on variation on performance of the 
manufactured products to achieve the robust tolerance 
design. 

 
Many researchers have focused on the mathematical 
modeling of cost-tolerance relations and the 
optimization of related tolerances for minimum 
production costs [14]. A limited number of 
publications have tried to organize manufacturing cost-
tolerance data obtained from machine shops and 
experiments and accordingly model the cost –tolerance 
functions [3]. Chase [16] used such data and obtained 
empirical functions for metal-removal process over the 
full range of nominal dimensions. The used original 
data was nevertheless old and may not be applicable to 
modern CNC machines. 

 
1.1. Tolerance allocation methods 
 
The rational allocations of component tolerance require 
the establishment of some rule upon which to base the 
allocation. The following are the types of methods for 
allocation of component tolerance [9, 27]: i. Allocation 
by proportional scaling, ii. Allocation by Constant 
precision factor, iii. Allocation by optimization 
techniques.   

 
The first two methods, the name it self implies how to 
use these methods. The third one is a promising 
method which has been applied in this paper. In 
optimization technique various algorithm and tools are 
being used. The optimization algorithm varies the 
tolerance for each component and searches 
systematically for the combination of tolerances, which 
minimizes the cost.  

 
In order to find the optimized total cost the paper is 
organized as follows. Broader literature review has 
been presented in section 2. In Section 3 various 
quality loss functions and its equations have given. A 
brief Introduction of the GA is given in section 4. 
Demonstration of the application of the GA on an 
example problem is presented in section 5. Section 6 
deals with a brief discussion on the results. The work is 
concluded in section 7. 
 

2. Literature review 

In practice, the empirical cost-tolerance data should be 
directly obtained from machine shops through 
experiments or observations, and recorded in the 
original form of discrete points. We assume the 
empirical data curves are composed of many closely-
placed data points, rather than results of interpolation 

or curve fitting. Discrete data points are picked up from 
these curves to direct model fitting and for fitting error 
analysis.  

 
Chase and Greenwood [16] introduced the Reciprocal 
model with better empirical data fitting capability, 
considering both the continuous and discrete cost 
functions. Chase presented three methods-exhaustive 
searches, univariate search, and sequential quadratic 
programming-to solves the models originally proposed 
by Huang [5].  Nagarwala et al. [17] proposed a new 
slope-based method that took into account process 
selection. 

 
Zhang and Wang [18], proposed mathematical models 
with the consideration of manufacturing process for 
continuous cost function and solved it first time by 
using non-traditional optimization technique called 
simulated annealing. Zhang [19] approached the 
problem in a totally different manner by introducing a 
new concept of interim tolerances, which help to 
determine appropriate manufacturing process and 
solved the problem using a non-linear programming 
technique (mixed penalty function approach). Al-
Ansary and Deiab [1] adopted a model similar to that 
proposed by Zhang and Wang [18] and solved the 
model by considering worst-case stack-up criteria 
using a genetic algorithm. Singh et al. [13] solved the 
same model for four different stack-up conditions using 
a genetic algorithm. 

  
The quality loss function is used to determine the 
reduction in value due to an off target product, which is 
then balanced against reductions in manufacturing cost. 
Soderberg [20] developed a quality loss function based 
on component life time which represents the 
customer’s objective. 

 
Feng and Kusiak [21] considered quality loss in 
addition to manufacturing cost in a discrete cost 
function. Jeang [6, 22] developed a few general 
mathematical models to determine product tolerances 
minimizing the combined manufacturing costs and 
quality losses without considering the manufacturing 
processes, in a continuous cost function using quadratic 
and geometrical decay functions. Ye and Salustri [23] 
developed a simultaneous tolerance synthesis (STS) 
model with quality loss considering continuous cost 
function and solved using genetic algorithm. 
Conventional methods of tolerance analysis are 
inadequate for several reasons [24 - 26]. 

 

3. Tolerance and Quality Loss Function  
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Quality loss is one of the most important issues for 
quality engineering to evaluate the quality of the 
products or processes. Quality loss function is a 
quadratic expression estimating the cost of the average 
then comparing it to the customer identified target 
values and the variability of the product characteristic 
in term, of monetary loss due to product failure. The 
loss function L(y), indicates a monetary measure for 
the product characteristic value versus the target value. 
High quality and low cost are two fundamental 
requirements for product design and manufacturing. In 
an assembly, critical tolerance must be guaranteed for 
functional requirements [4-7]. 

 
Taguchi has suggested that the tolerance should be 
determined by trading off quality loss and cost [2]. A 
quadratic function shown in figure 1 could provide 
estimation for the economic loss. Taguchi also 
proposed the use of a loss function composed of two 
segments [2]. As shown in figure 2 two segments 
associated with different constant ‘k’ connect with each 
other at the design target the quality loss equals zero. 
Excluding the effects due to the manufacturing cost, 
the tolerance design can be derived from the trade-off 
between the extra cost of the disqualified products and 
the expected quality loss of the qualified products [2, 
15]. 
 
3.1. Variations of the quadratic loss function 
 
There is very important concept of quality engineering 
inherent in the loss function. In the usual practice of 
manufacturing quality control the producer specifies a 
mean value of the performance characteristic and the 
tolerance interval around that value. 
  
Any value of the performance characteristic which falls 
within the interval is defined to be a quality product, 
even if it is barely inside the -3σ limit as shown in 
figure 3. With loss function as a definition of quality 
the emphasis is on achieving  the target value of the 
performance characteristic and deviations from the 
target value the greater the quality loss. 
Types of loss function expressed as 

i. Normal-the-best is the 2
2( ) ( )AL y y m= −

∆
(2) 

ii. Smaller-the –better is the 2
2( ) AL y y=

∆
  (3)  

iii. Larger-the-better is the                       
 

                           2
2

1( )L y A
y

⎛ ⎞
= ∆ ⎜

⎝ ⎠
⎟         (4) 

 
 

 
Figure 1 Taguchi’s loss function. 

 
 

 
 

Figure 2 Asymmetric losses function. 
 
 
In some situations, the quality loss resulting from 
deviation of quality characteristics in one direction is 
greater than the deviation in the other direction. In this 
case, various ‘k’ values will be assigned for the two 
directions of the target [6, 11] as shown in Figure 2. 
 
iv. The asymmetric quality loss function 
     

 
2

1
2

2

( ) ( )

( ) ( )

L y K y m y m

L y K y m y m

= − >

= − <
       (5) 
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Figure 3 Frequency plot of size distribution for a 

process with random error 
 
4. Genetic algorithm a brief overview 
 
Genetic algorithms are good at taking larger, 
potentially huge, search spaces and navigating them 
looking for optimal combinations of things and 
solutions which has not been find in a life time [10]. 

 
4.1. Basic concepts 
 
Genetic algorithms are very different from most of the 
traditional optimization methods. Genetic algorithms 
need design space to be converted into genetic space. 
So, genetic algorithms work with a coding of variables. 
The advantage [10] of working with a coding of 
variable space is that coding discredited the search 
space even though the function may be continuous. In 
GA uses a population of points at one time in contrast 
to the single point approach but in traditional 
optimization methods it is not so. 
 
  
Three most important aspects of using GA are: 
 

i. Definition of objective function 
ii. Definition and implementation of genetic 

representation 
iii. Definition and implementation of genetic 

operators. 
Once these three have been defined, the GA should 
work fairly well beyond doubt. 
 
4.2. Working of Genetic algorithm 
 
GA is a very simple, straight forward, yet a powerful 
approach for global Search and optimization of 
multimodal functions. The approach combines the 
characteristics of direct search methods and 
probabilistic selection and is based on the mechanics of 
natural genetics and natural selection. It makes use of 
the robustness, Efficiency and flexibility of biological 
systems in to artificial ones. Different authors have 

explained useful schemes of the application of this 
approach. The working principle of GA is very 
different from that of the most of the classical 
optimization techniques. The distinguishing 
characteristics of the GAs are as follows [8]. 
 

i. Work with a coding of the parameter set, not 
the parameters themselves. 

 
ii. Search from a population of points, not a 

single point. 
 

iii. Use payoff (objective function) information, 
not derivative or other auxiliary Knowledge. 

 
iv. Use probabilistic transition rules, not 

deterministic rules. 
 
 

The general steps to be followed for implementing [12] 
simple GA for optimization Problems are listed below. 
However, note that they can be modified appropriately 
depending on the type and complexity of the problem. 
The steps are as follows. 

 
 Step 1. Coding of variables or representation of  

Solution. 
 
Step 2.  Selection of the population size, crossover  

probability, mutation probability, Genetic 
operators, number of generations, etc. 

 
Step 3.  Mapping of objective function into  

appropriate fitness function. 
 

Step 4.  Evaluation of each string to obtain fitness. 
 
Step 5.  Application of genetic operators: 
 

(a) Reproduction on the population. 

(b) Crossover on the random pair of strings,  
      With specified probability of Crossover. 
(c) Mutation of random bit, with specified  
     Probability of mutation. Simultaneous 
     optimal selection of design and  
     manufacturing tolerances 
 

Step 6. Repeat Steps 4 and 5 for the given number of 
generations. 

 
4.3 GA in tolerance formation 
 
In GA [9], a candidate solution is represented by a 
sequence of binary numbers known as chromosomes. 
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A judiciously selected set of chromosomes is called the 
population and the population at a given time is called 
a generation. The population remains the same from 
generation and has a significant impact on the 
performance of the GA. 
 
5. Problem definition 
 
The problem taken for illustration is a Piston and 
cylinder assembly, which is given as a case study in [1, 
13]. It is a simple linear mechanical assembly as shown 
in figure 4 involving only two components. 
 
5.1. Problem description 
 
To determine the optimal design and manufacturing 
tolerances for the Piston and cylinder assembly the 
details are as follows: 

 
Dimensions 

Piston diameter ( pδ ): 50.8 mm;  

Cylinder bore diameter ( cδ ): 50.856 mm. 
Clearance (x): 0.056± 0.025 mm. 
 
Machining process plan for the piston:  
Rough turning ( 11δ ), finish turning ( 12δ ), rough 

grinding ( 13δ ), and finish grinding ( 14δ ).      
                                                         
Machining process plan for the cylinder bore: 
Drilling ( 21δ ), boring ( 22δ ), semi-finish boring ( 23δ ), 

and grinding ( 24δ ). 
Thus, there are only two design tolerance parameters, 
one for the Piston diameter, the other for the cylinder 
bore diameter. 
 
Also, there are four Machining tolerance parameters 
for machining each of the piston diameter and the 
cylinder bore diameter corresponding to the given 
process plans. 
 
The Principal machining tolerances [1] in millimeters 
for the piston are 
 

110.005 0.02δ≤ ≤ , 120.002 0.012δ≤ ≤  

130.0005 0.003δ≤ ≤ ,  140.0002 0.001δ≤ ≤     (6) 
The Principal machining tolerances [1] in 

millimeters for the cylinder bore are 
 

 
Figure 4 Piston and cylinder assembly 

 
 

210.007 0.02δ≤ ≤ , 220.003 0.012δ≤ ≤  

230.0006 0.005δ≤ ≤ , 240.0003 0.002δ≤ ≤       (7) 
 
The total machining cost is determined by sum of the, 
machining cost-tolerance model equations for the eight 
machining processes of the piston-cylinder assembly. 
In general many cost tolerance models are in use, in 
this example the modified form the exponential cost-
tolerance model was used to find the machining cost is 
as follows. 

 
The form of exponential cost-tolerance model [1] used, 
g (δ), is expressed as   

 0

1 2 3( )( ) c
c cg

e δδ − c= +                                  

(8)  
 
 
The total machining cost, cm, is expressed [1] as 
   

11 11 12 12 13 13 14 14 21 21 22 22 23 23 24 24( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )mc g g g g g g g gδ δ δ δ δ δ δ δ= + + + + + + + (9) 
          
The coefficients values for the cost-tolerance function 
of equation (9) are given in Table 1. 
 
5.2. Constraints 
 
The constraints on the principal design and machining 
tolerances are [1]. 
 

i. The sum of the design tolerances of piston and 
cylinder bore diameter should be less than (or) 
equal to the clearance tolerance  
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          11 21 0.001d dδ δ+ ≤                                  (10) 
 

ii. The design tolerance for a given feature of a part 
is equal to the finial machining tolerance. 

   11 14,dδ δ= For the piston and 21 24dδ δ=     (11) 
 

iii. The sum of the machining tolerance for a process 
and the preceding process should be less than or 
equal to the difference of the nominal and 
minimum machining allowances for the process. 
For the piston 

 
11 12 12 13 13 140.02, 0.005, 0.0018δ δ δ δ δ δ+ ≤ + ≤ + ≤ (

12) 
 

For the Cylinder 
21 22 22 23 23 240.02, 0.005, 0.0018δ δ δ δ δ δ+ ≤ + ≤ + ≤

                                                                                  (13) 
The Design tolerances are framed by four stacked up 
conditions are Worst case, RSS, Spotts and estimated 
mean shift criteria. These stack-up conditions yield a 
set of design constraints as below:  
 
Worst case criteria = 14 24 0.001δ δ+ ≤  

RSS criteria =   2 2
14 24 (0.001)δ δ+ ≤ 2

        

Spotts = 2 2
14 24 14 24

1 ( ) ( ) 0.
2

δ δ δ δ⎡ ⎤+ + + ≤
⎣ ⎦

001    

 Estimated mean shift criteria = 

( ) 2 2 2 2
1 14 2 24 1 14 2 24(1 ) (1 ) 0.001

3
zm m m mδ δ δ δ⎡ ⎤+ + − + − ≤⎣ ⎦

   

 
The total machining cost is optimized subject to the 
constraints and the ranges of the principal design and 
machining tolerance mentioned above. The genetic 
algorithms method has been used as an optimization 
engine. In the optimization process using the genetic 
algorithms method, binary representation is employed 
with an individual length of 80 bits for the eight 
variables of the design space.  
 
Populations size will be of 20 with 100 generations 
were used with the binary tournament selection 
method. These parameters were selected by tuning the 
genetic algorithms method around the values suggested 
by Al-Ansary [1]. The results are discussed in section 6. 
The total cost is obtained by adding the machining cost 

( )g δ  and asymmetric quality loss function L(y). 
 
 

 
Table 1 Coefficients Parameters for the eight    
                machining processes [1] 
 
S
. 
N
O 

Co
effi
cie
nts 

g11

11δ
 

g12

12δ
 

g13

13δ  

g14

14δ
 

g21

21δ
 

g22

22δ
 

g23

23δ
 

g24

24δ  

1 C0 5 9 13 18 4 8 10 2 

2 C1 309 790 3196 8353 299 986 320
6 9428 

3 C2
5.0×
10-3

2.04
×10-3

5.30×
10-4

2.19
×10-4

7.02
×10-3

2.97
×10-3

6.0
×10

-4

3.6×1
0-4

4 C3 1.51 4.36 7.48 11.9
9 2.35 5.29 9.6

7 13.12 

 
 
6. Discussion on the results 
 
The optimization of total cost verses tolerance of the 
Piston and cylinder assembly, for each case of the 
design constraint was carried out for 100 generations 
on a P-IV personal computer using MATLAB 7.5 
version the results are shown in tables 2-5 and also 
represented in figures 5 and 6. 
 

Table 2 Optimal tolerances allocated using genetic 
algorithm – Worst case Method. 

 
Tolerances for 

Piston 
Tolerances for 
Cylinder bore 

Least total cost 
(Manufacturing cost+ 

Asymmetric quality loss) 

11δ  0.0170 21δ
 

0.0170 

12δ  0.0040 22δ
 

0.0045 

13δ  0.0021 23δ
 

0.0024 

14δ  0.0012 24δ
 

0.0010 

$55.88 
 

 
 
The Figure 5 reflects the general behavior of Genetic 
algorithm. Problem setup and results of the algorithm 
has been presented in figure 6. From these figure 5 and 
6 it is clearly understood that how GA is the optimum 
total machining cost and asymmetric quality loss cost 
as determined from the genetic algorithm model will be 
$55.8845.  
 
The result indicates that the minimum total cost of the 
assembly is lowest with Greenwood and Chase method 
and highest with RSS method. Table 6 shows the 
comparison of total machining cost with total cost for 
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Worst case method. The total cost obtained in this 
paper is very less, through it includes asymmetric 
quality loss with machining cost. The Figure7, 8and 9 
shows the comparison for different trail run of the 
complex method, Simulated annealing and genetic 
algorithm respectively.   
 
7. Conclusion 
In this paper, focus has been on the optimization of 
manufacturing cost and quality loss for a simple linear  
assembly model. GA has been implemented to find the 
optimized total cost. In this problem exponential model 
has been used to find the manufacturing cost.  

 

 
 

Figure 5 Manufacturing costs associated with feasible 
solutions of the algorithm. 

 

 
 

Figure 6 work Setup and results. 
 

 
Table 3 Optimal tolerances allocated using 

             Genetic Algorithm – RSS Method 
 
Tolerances for 

Piston 

Tolerances 
for Cylinder 

bore 

Least total cost 
(Manufacturing cost+ 

Asymmetric quality loss) 

11δ  0.0174 21δ
 

0.017
4 

12δ  0.0020 22δ
 

0.004
5 

13δ  0.0007 23δ
 

0.002
3 

14δ  0.0004 24δ
 

0.001
0 

$54.94 
 

 
Table 4 Optimal tolerances allocated using  

               Genetic Algorithm – Spotts Method 

Tolerances 
for Piston 

Tolerances for 
Cylinder bore 

Least total cost 
(Manufacturing cost+ 
Asymmetric quality 

loss) 

11δ
 

0.0173 21δ
 

0.0170 

12δ 22δ
 

0.0020 
 

0.0046 

13δ 23δ
 

0.0006 
 

0.0022 

14δ 24δ
 

0.0003 
 

0.0009 

$55.34 
 

 
Table 5 Optimal tolerances allocated using genetic 

algorithm – Greenwood and Chases Method 
 

            
Tolerances 
for Piston 

Tolerances 
for Cylinder 

bore 

Least total cost 
(Manufacturing cost+ 
Asymmetric quality 

loss) 

11δ
 

0.0171 21δ
 

0.0169 

12δ
 

0.0039 22δ
 

0.0044 

13δ
 

0.0020 23δ
 

0.0023 

14δ
 

0.0011 24δ
 

0.0009 

$55.18 
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Table 6 Comparison Optimum total machining cost  
              With total cost for worst method. 
 

Run 
No Total Machining cost  

Total Cost 
(Machining 

cost + 
Asymmetric 
quality loss) 

 Genetic 
Algorithms 

Simulated 
annealing 

Complex 
method 

Genetic 
algorithm 

1 66.91 67.24 71.09 55.88 
2 66.91 67.23 71.06 55.94 
3 66.91 67.21 71.00 55.74 
4 66.91 67.27 71.06 55.78 
5 66.91 67.25 71.03 55.98 
 
 
 

 
 
Figure 7 Comparison of total cost with number  
                of trial run for Complex numbers 
 
 
 

 
 

Figure 8 Comparison of total cost with number  
                of trial run for Simulated annealing 

 

 
 
Figure 9 Comparison total cost with number  
                of trial run for Genetic algorithm. 

 
The GA method is very efficient and effective and it is 
simple and easy to implement.  
 
In this paper, exponential model has been adopted to 
find the manufacturing cost and asymmetric quality 
loss by training the algorithm. A better model may be 
approached for different assembly problems to find the 
optimized cost using different optimization techniques.                          
 
Notation 
 

ic          - Coefficients used in Machining cost unction;  

mc         - Total machining cost for the components; 

rc          - Cost of casting process;                                     

( )g δ    - Machining cost function; 

( )ijkg δ - Machining cost – tolerance model;              

δ           - Machining tolerance parameter; 

ijδ          - Machining tolerance for part i and process j;   

ijdδ        - Design tolerance on dimension chain; 
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