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Abstract—In this paper, a predator-prey system with 

Beddington-DeAngelis functional response is studied, where 

the n predators prey on one prey. Using the continuation 

theorem of coincidence degree theory and analysis 

techniques, a criteria for the existence of periodic solutions 

of predator-prey models with the Beddington-DeAngelis 

functional response governed by impulsive differential 

equations is established. Further, some numerical 

simulations show that our models can occur in many forms 

of complexities including periodic oscillation and Gui chaotic 

strange attractor.  

Keywordscomponent Periodic-Solution; Predator-Prey 

Model; Coincidence degree theory; Impulses; Beddington-

DeAngelis Functional Response. 

I. INTRODUCTION  

Recently, many authors have devoted their efforts to 
the predator-prey system with Beddington-DeAngelis 
functional response which was introduced by Beddington 
and DeAngelis et al.  independently (see [1-2]). It is well 
known that the traditional predator-prey systems with 
prey-dependent functional response fail to model the 
interference among predators. To overcome this 
shortcoming, Arditi and Ginzburg [3] proposed the ratio-
dependent predator-prey model which incorporates mutual 
interference by predators. 

Although much progress has been seen in the study of 
predator-prey models with the Beddington-DeAngelis 
functional response (eg. [4,5]), such models are not well 
studied yet in the sense that all the existing results are 
based on the assumption that the predator preys on one 
prey. This assumption is rarely the case in real life. 
Naturally, more realistic and interesting model should take 
into account the predator preying on more than one prey. 
Therefore, Z.J. Zeng and M. Fan [6] established a more 
reasonable model with multiple preys. However, the 
corresponding problems (eg. [7]) with periodic coefficients 

and impulsive perturbations are studied far less often. In 
this paper, we will consider the following system: 
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where ( )x t and ( )iy t  ( 1,2, ,i n  ) represent prey and 

predator densities respectively. ( )a t  stands for prey 

intrinsic growth rate; ( )id t stands for the death rate of the 

predator; ( )ic t  and ( )if t  are the uptake and predation 

constants of the predator and prey; ( ), ( ), ( )i i it t t   are 

positive constants; , i

k kp q  are constant. 

In system (1), we assume: 

(H1) ( ), ( ), ( ), ( ), ( ), ( ), ( )i i i i ic t a t b t d t t t t    and ( )if t are 

all positive periodic continuous functions with 
period 0  . 

(H2) There exist a positive constant M  and constant 

iN  which satisfy 0 1iN    such that 
kp M , i

k iq N , 

1,2.k  . 

(H3) 1 0,k kI p   1 0i

ik kI q    and there exists a 

positive integer q  such that 
k q kt t    , 

i i

k q kq q  , 

k q kp p  , ( 1,2,..., )i n . 
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II. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS 

To prove our results, we need the notion of the 
Mawhin’s continuation theorem formulated in [8]. 

Lemma 1 Let X  and Y  be two Banach spaces. 
Consider an operator equation Lx Nx  where :L  

Dom L X Y   is a Fredholm operator of index zero and 

[0,1]  is a parameter. Let P and Q denote two 

projectors such that : KerP X L  and : / ImQ Y Y L . 

Assume that :N Y  is L -compact on  , where  is 

open bounded in X . Furthermore, assume that 

(a) for each  (0,1) , Domx L , Lx Nx ;  

(b) for each  Kerx L , 0QNx  ; 

(c)  deg , Ker ,0 0JQNx L   , where : ImJ Q   

Ker L and deg{*}  represents the Brouwer degree. 

Then the equation Lx Nx  has at least one solution in 

Dom L . 

For the sake of convenience, we introduce the 
following notations: 
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  (2) 

Now we are ready to state and prove the main results of 
the present paper. 

Theorem 1   Assume (H1)-(H3) hold, furthermore, we 
assume: 

(H4)  
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( 1,2..., )i n . 

Then system (1) has at least one -periodic solution.    

Proof. To complete the proof, we only need to search for 
an appropriate open bounded subset X   verifying all 
the requirements in Lemma 1. 

Note  1( ), ( ),..., ( )
T
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2 pY X  ¡ , then it is standard to show that both X  and 
Y  are Banach space when they are endowed with the 
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    It is easy to prove that L is a Fredholm mapping of 
index zero. 

Consider the operator equation 

 (0,1).Lx Nx     (3) 

Integrating (4) over the interval [0, ] , we obtain 
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Obviously, there exists a constant
3 0N  such that 

  3max | | ,| |, 1, 2,...,x y i n N   . Take  
1 2r N N    

3N ,  :|| ||cx X x r     then N  is L -compact on  . 

So, for  1 2, , ,..., Ker
T

nu x y y y L   , we have 

0QNx  . Let : ImJ Q X ,  ,0,...,0d d . Then for 

Keru L  , in view of the assumptions in Mawhin’s 

continuation theorem [8], one obtains 

 deg , Ker ,0 0JQNx L  . By now we have proved 

that  satisfies all the requirements in Mawhin’s 
continuation theorem. Hence, system (3) has at least one 
 -periodic solution. By Lemma 2, we derive that system 

(1) has at least one positive  -periodic solution. The 

proof is complete.  

III. AN ILLUSTRATIVE EXAMPLE  

In this section, we shall discuss an example to illustrate 

our main results. In (1), we take 2, kn t kT  , 

( ) 3 sin( ),a t t   
1( ) 1 0.5cos( ),d t t   

1( ) 1 0.3cos( ),c t t   
1( ) 5 2sin( ),f t t   

( ) 1 0.2cos( ),b t t   
2 ( ) 1 0.1sin( ),d t t   

2 ( ) 0.7 0.3sin( ),c t t   
2 ( ) 4 3cos( ),f t t   

1( ) 3 0.3sin( ),t t    
1( ) 1 0.3cos( ),t t    

1( ) 0.8 0.5sin( ),t t    
2 ( ) 2 0.2sin( ),t t    

2 ( ) 1 0.2sin( ),t t    
2 ( ) 1 0.5cos( ).t t    

If 0.3kp  , 1 0.2kq  , 2 0.3kq  , all conditions of 

Theorem 2 are satisfied. If  T  ,  then system (1) under 

has a unique periodic solution (see Fig .1-Fig .4). Because 
of the influence of the period pulses, the influence of pulse 
is obvious. 

 

Figure 1.  Time-series of ( )x t  of system (1)  with  T  . 
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Figure 2.  Time-series of 
1( )y t  of system (1)  with  T  . 

 

Figure 3.  Time-series of 
2 ( )y t  of system (1)  with  T  . 

 

Figure 4.  Phase portrait of periodic solution of system (1). 

 
Figure 5. 

 

Phase portrait of Gui strange attractor

 

of system (1).

 If 2T  ,

 

then

 

(H3)

 

is not satisfied. Periodic oscillation

 
of system (1) will be destroyed

 

by impulsive

 

effect. 
Numeric results

 

show that system (1) has Gui chaotic 
strange attractor

 

[9-13], see Fig

 

.5.
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