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Abstract 

As limits of time, labors and expenses, observed data usually have the characteristic of small sample sizes in 
development test program. Redesigns or corrective actions can result in changes of reliability for equipments. We 
propose an improved GM(1,1) model to predict reliability growth in this paper. First, a newly initial condition in 
time response function is set in this improved GM(1,1) model. The newly initial condition is comprised of the first 
item and the last item of a sequence which is generated from applying the first-order accumulated generation 
operator to a sequence of raw data. Then the improved model can express the principle of new information priority 
well and improve prediction precision through fully applying new information in raw data. Secondly, we make use 
of the improved model to predict reliability growth in a numerical example. The comparison of predicted reliability 
growth curve from the improved GM(1,1) model and that from the Lloyd-Lipow model indicates that the improved 
GM(1,1) model is much better than the Lloyd-Lipow model for the reliability growth prediction. 
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1. Introduction 

Reliability growth often comes of some appropriate 
redesigns or corrective actions for detected faults of 
system. Each system modification determines a new 
change to the system and results in a new reliability 
level.1 Reliability growth studies are necessary to insure 
that the reliability goals are met by acceptance. It is 
important for a project manager to use a reliability 
growth model on project completion data. If the 
predicted reliability value from the reliability growth 
model can meet or beyond requirements of specified 

goal, then the reliability growth testing can be realized 
carrying out well. Otherwise, the project manager 
should have to reassess the reliability growth prediction 
technologies or modify designs and take corrective 
actions of the equipment to meet reliability goals.2 So 
reliability growth prediction technologies are essential 
to reliability testing of equipments. And a suitable 
reliability growth prediction technology chosen to 
predict reliability growth of equipment can also save a 
number of labors, time and expenses. 

There are a large number of models can be utilized to 
predict reliability growth of equipment. Fard presents 
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that reliability growth model can be deterministic or 
probabilistic. The deterministic reliability growth model 
refers mainly to the maximum likelihood estimations or 
least square estimations; the later refers mainly to the 
Bayesian estimation method.3 Robinson4 divides 
reliability growth model into discrete reliability growth 
model and continuous reliability growth model. And he 
also presents a continuous parametric model to analyze 
the failure rate of a system that is undergoing 
development testing. Discrete reliability growth models 
emphasize on improvements in the probability of a 
success as a function of total test trials rather than the 
failure rate as a function of total test time in continuous 
reliability growth models. We will focus mainly on the 
discrete reliability growth model in this paper. 
    As the importance for discrete reliability growth 
model， there are a large number of models  proposed 
to predict reliability growth of equipment. Barlow and 
Scheuer assume that a test program is carried out in K 
stages and similar items are tested within each stage. 
They utilize maximum likelihood estimation to obtain 
probabilities of inherent failure and assignable cause 
failure in a trinomial model.5 Lloyd and Lipow consider 
an N-stage test program and utilize least square method 
to obtain parameters of reliability growth model.6 
However, estimators obtained from Lloyd and Lipow’s 
method will result in positively high s-biased when N is 
not large enough and the actual reliabilities of 
equipment are not increasing rapidly.1 Read finds that 
the method proposed by Lloyd and Lipow is incomplete 
and then presents a supplementary method to deal with 
that problem.7 Lloyd predicts reliability growth using a 
binomial model when reliability requirements are high 
and testing data are limited. The author also assumes 
that when a corrective action of a fault system is 
implemented and the failures should not be carried as 
full failures in the subsequent reliability estimates.8 The 
Gompertz equation to predict reliability growth of a 
product is used by Vlrene9 and the modified Gompertz 
reliability growth model is presented by Kececiodlu to 
predict a reliability growth model with s-shaped curve.10 
However, an approximate fixed proportion of maximum 
attainable reliability at inflection point of a curve with s-
shaped and a highly initial reliability value setting may 
be not impractical for some equipment. In addition to 
these models mentioned above, there are still other ones 
such as Bayesian methods4, 11-13 and logical growth 
curve2, 14, artificial neural network15-16 etc. 

    As natures of equipment vary from each other and 
then their reliability growth models may appear to 
distinct increasing trends. So it is difficult for us to find 
a reliability growth model fitting increasing trends well 
under all situations. However, it is common that because 
of expense, resources, schedule and other 
considerations17 the data observed from a development 
testing program may be resulted in a characteristic of 
small sample size mostly. It will be difficult for 
traditional statistic methods to obtain good results of 
parametric estimators and reliability growth prediction 
values. In this paper we will present a new prediction 
method for reliability growth prediction based on an 
improved GM(1,1) model. This model can obtain a 
better prediction results especially for data of small 
sample sizes and without requirement of prior 
distribution assumption for observed reliability growth 
data in advance. 
    The remaining of this paper is organized as follows. 
A brief introduction to the original GM(1,1) model and 
the improved GM(1,1) model will be presented in 
section 2. Section 3 will be utilized to illustrate the 
method of applying the improved GM(1,1) model to 
predict reliability growth by a numerical example. 
Conclusions and future work focused mainly will be 
given in section 4. 

2. Reliability Growth Prediction Method Based 
On an Improved Grey Model 

Grey systems theory was proposed first in 1982 by 
Professor Julong Deng.18 From then on this theory has 
been applied in a wide range of fields. Grey systems 
theory focuses on dealing with problems of uncertain 
systems such as systems with partial information known 
and partial information unknown or poor information 
systems. Grey systems theory can implement correct 
description and effective monitor of uncertain systems 
mainly by some calculations of sequence generation 
which can extract valuable information from partially 
known information.19 GM(1,1) model is one of the 
important models in grey models group. And this type 
of models have been applied in a wide range of 
scientific fields such as natural science20 and social 
science21 etc. However, the time response function of 
original GM(1,1) model can not make full use of new 
pieces of information emphasized in grey systems 
theory. Then a newly initial condition is set in time 
response function of the improved GM(1,1) model to 
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express the principle of new information priority fully in 
this paper. 

2.1. The original GM(1,1) model 

Assume that 

  (1) 

is a non-negative sequence of raw data, then 

  (2) 

is a sequence generated from applying the first-order 
accumulated generation operator (1-AGO) to X(0), 
where, 

 , . (3) 

In grey systems theory the following equation, 

  (4) 

is called a grey differential equation, also denoted as 
GM(1,1) model.18-19 Where, 

 ,  

 . (5) 

If we assume that 

 ,   (6) 

then we can obtain the parametric estimators according 
to least square method as following, 

  (7) 

 

 (8) 

Proof is omitted.19 
  The equation 

  (9) 

is called the whitened equation of the GM(1,1) model. 
And the time response function of the whitened 
equation yields, 

  (10) 

Then the time response function of the GM(1,1) model 
is given below21,22, 

  (11) 

The restored values of raw data can be given by, 

  

  (12) 

  This Eq. (12) can be used to simulate or predict the 
sequence of raw data. It should be noted that we can 
utilize the first-order accumulated generation operator 
several times in accordance with the smooth condition 
of raw data to increase prediction precision of GM(1,1) 
model. However, we should restore the predicted values 
at corresponding times for obtaining prediction values 
of raw data. Moreover, we can find that the initial 
condition in time response function of the original 
GM(1,1) model is the first item in a sequence generated 
from applying the first-order accumulated generation 
operator to . And this type of initial condition in 
time response function can not take full advantage of 
new pieces of information in raw data. In addition, the 
principle of new information priority can not be 
expressed fully by this type of initial condition. Then we 
propose a newly initial condition which can express this 
principle well in time response function in next section. 

2.2. An improved GM(1,1) model based on the 
newly initial condition 

From the construction procedure of the original 
GM(1,1) model we can find that the time response 
function of the whitened equation can be expressed as 
following, 
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  (13) 

where c is a constant, and ; parameters 
and can be derived from the least square estimation 

as mentioned above. 
For Eq. (13), if we let , then Eq. (14) can be 

obtained, 

  (14) 

And if we let , then Eq. (15) can be derived, 

  (15) 

To make full use of new pieces of information in raw 
data and also reserve the initial condition in time 
response function of the original GM(1,1) model, then 
we set a newly initial condition in time response 
function equaling to . And the 
constant can be derived in accordance with (14) and 
(15) as shown in Eq. (16), 

 (16) 

Then the time response function of the improved 
GM(1,1) model is given by, 

 

  (17) 

And the restored value of raw data yields, 

  

  (18) 

We can utilize Eq. (18) to simulate or predict values 
of raw data. This newly initial condition in time 
response function is comprised of the first item and the 
last item from a sequence derived from applying 1-AGO 
to the sequence of raw data. This type of initial 
condition can preserve not only the format of initial 
condition in original time response function but also 
make full use of new pieces of information by the 
expression of . 

3. Numerical Example 

In this section we will demonstrate an application of the 

Table 1. Predicted reliability from the Lloyd-Lipow model and the improved GM(1,1) model. 

Number of 
test stage, k 

Number of 
tests in kth 
states, Nk 

Number of 
successful tests in 

kth stages, Sk 

Reliability 
calculated from raw 

data,Sk/ Nk,  

Predicted reliability 
from Lloyd-Lipow 

model,  

Predicted reliability 
from improved 

GM(1,1) model,  
1 10 5 0.500   
2 8 5 0.625 0.637 0.6391 
3 9 6 0.667 0.700 0.6522 
4 9 7 0.778 0.732 0.6656 
5 10 6 0.600 0.751 0.6792 
6 10 7 0.700 0.764 0.6932 
7 10 8 0.800 0.773 0.7074 
8 10 7 0.700 0.780 0.7219 
9 10 6 0.600 0.785 0.7367 

10 11 7 0.636 0.789 0.7518 
11 10 9 0.900 0.793 0.7672 
12 11 10 0.909 0.795 0.7829 
13 12 9 0.750 0.798 0.7990 
14 10 8 0.800 0.800 0.8150 
15 10 7 0.700 0.802 0.8321 
16 10 8 0.800 0.803 0.8492 
17 10 9 0.900 0.805 0.8666 
18 10 9 0.900 0.805 0.8843 
19 10 10 1.000 0.807 0.9025 
20 10 9 0.900 0.808 0.9210 
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improved GM(1,1) model by predicting reliability 
growth curves. The observed data and predicted 
reliability ones from Lloyd-Lipow model citing from 
Kececioglu2 are shown as table 1. 

According to the reliability values calculated from 
raw data we can obtain parameter estimators and time 
response function of the improved GM(1,1) model as 
following, 

   

  (19) 

From the time response function (19) we can derive 
the restored values of raw data easily as shown in table 
1. In table 1 the predicted reliability values from the 
Lloyd-Lipow model2 are also shown for the aim of 
comparison with the predicted reliability values from 
the improved GM(1,1) model. The reliability growth 
curves derived from the Lloyd-Lipow model and the 
improved GM(1,1) model are depicted in Fig. 1 
respectively. 

 
 
 

For the reliability growth curve from the Lloyd-
Lipow model in Fig. 1 we can find that reliability values 
in initial testing stages are overestimated mostly. 
However, reliability values in later testing stages 
increase slowly which can not fit the increasing trend of 
reliability values from raw data well. Furthermore, for 
the reliability growth curve from the improved GM(1,1) 
model we can find that reliability values in the whole 
testing stages can fit the increasing trend of reliability 
values from raw data better than those from the Lloyd-
Lipow model. This reliability growth curve may be seen 
as a good fit to the actual reliability growth data. To 
compare with predicting efficiency of the Lloyd-Lipow 
model and the improved GM(1,1) model more 
intuitively, relative errors of predicted reliability values 
in all testing stages are calculated in table 2 and 
depicted in Fig. 2, respectively. 
 
 
 
 
 

 
 
 

 

Fig. 1. Reliability growth curves predicted from the Lloyd-Lipow model and the improved GM(1,1) model. 
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Where, residual error ( ) and relative error ( ) are 
denoted as below,  , , . (20) 

 

Fig. 2. Relative errors of predicted reliability values from the Lloyd-Lipow model and the improved GM(1,1) model. 

Table 2.  Relative errors of predicted reliability values from the Lloyd-Lipow model and the improved GM(1,1) 
model. 

Number 
of test 

stage, k 

Reliability 
calculated 
from raw 
data,  

Predicted 
reliability 

from Lloyd-
Lipow model, 

 

Residual 
error from 

Lloyd-Lipow 
model,  

Relative error 
from Lloyd-

Lipow 
model, , % 

Predicted 
reliability 

from 
improved 
GM(1,1) 

model,  

Residual 
error from 
improved 
GM(1,1) 

model,  

Relative error 
from 

improved 
GM(1,1) 

model, ,% 

1 0.500       
2 0.625 0.637 -0.0120 -1.9200 0.6391 -0.0141 -2.2560 
3 0.667 0.700 -0.0330 -4.9475 0.6522 0.0148 2.2189 
4 0.778 0.732 0.0460 5.9126 0.6656 0.1124 14.4473 
5 0.600 0.751 -0.1510 -25.1667 0.6792 -0.0792 -13.2000 
6 0.700 0.764 -0.0640 -9.1429 0.6932 0.0068 0.9714 
7 0.800 0.773 0.0270 3.3750 0.7074 0.0926 11.5750 
8 0.700 0.780 -0.0800 -11.4286 0.7219 -0.0219 -3.1286 
9 0.600 0.785 -0.1850 -30.8333 0.7367 -0.1367 -22.7833 

10 0.636 0.789 -0.1530 -24.0566 0.7518 -0.1158 -18.2075 
11 0.900 0.793 0.1070 11.8889 0.7672 0.1328 14.7556 
12 0.909 0.795 0.1140 12.5413 0.7829 0.1261 13.8724 
13 0.750 0.798 -0.0480 -6.4000 0.7990 -0.0490 -6.5333 
14 0.800 0.800 0.0000 0.0000 0.8150 -0.0150 -1.8750 
15 0.700 0.802 -0.1020 -14.5714 0.8321 -0.1321 -18.8714 
16 0.800 0.803 -0.0030 -0.3750 0.8492 -0.0492 -6.1500 
17 0.900 0.805 0.0950 10.5556 0.8666 0.0334 3.7111 
18 0.900 0.805 0.0950 10.5556 0.8843 0.0157 1.7444 
19 1.000 0.807 0.1930 19.3000 0.9025 0.0975 9.7500 
20 0.900 0.808 0.0920 10.2222 0.9210 -0.0210 -2.3333 
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Relative error is a good means to evaluate how well 
the predicted result is tracking raw datum in each testing 
stage. It is desirable for relative error to have error as 
close to zero as possible. From Fig. 2 we can find that 
relative errors from the improved GM(1,1) model 
fluctuate in the interval [-22.78%, 14.76%] and relative 
errors from the Lloyd-Lipow model fluctuate in the 
interval [-30.8333%, 19.30%]. The relative errors from 
the improved GM(1,1) model are much closer around 
zero than those from the Lloyd-Lipow model. In 
addition, if we take the absolute of relative error in table 
2 and we can obtain the average absolute of relative 
error ( ) for the Lloyd-Lipow model is 11.2207% and 
the average absolute of relative error ( ) for the 
improved GM(1,1) model is 8.8624%, respectively. 
Where,  

 , . (21) 

From comparison of average absolute of relative error 
we can also find that the result of reliability growth 
curve predicted from the improved GM(1,1) model is 
much better than that from the Lloyd-Lipow model. 

4. Conclusion and Future Work 

In this paper we present an improved GM(1,1) model to 
predict a reliability growth curve of equipment. As the 
limit of time, labors and expenses, it is difficult for us to 
collect adequately large sample sizes to evaluate 
reliability level within each testing stage. This also 
limits some applications of classical mathematical 
models to predict reliability growth with small sample 
sizes. Then we try to present and apply an improved 
grey prediction model to predict reliability growth with 
small sample sizes. The improved GM(1,1) model can 
make full use of new pieces of information in raw data 
to increase prediction precision by setting a newly initial 
condition in time response function. And the newly 
initial condition is a combination of the first item and 
the last item in a new sequence generated from applying 
1-AGO to the sequence of raw data. And this newly 
initial condition can emphasize more about the impact 
of new pieces of information in raw data. This is more 
consistent with the principle of new information priority 
emphasized in grey systems theory. From the result of a 
numerical example analysis we can see that the 
improved GM(1,1) model can predict the reliability 
growth curve better than the Lloyd-Lipow model. 

From long-term studies we find that there are several 
types of causes resulting in errors in GM(1,1) model.23 
In this paper we just consider to improve one of causes 
to increase prediction precision of GM(1,1) model. In 
addition to keep a continuous study on optimizing the 
initial condition in time response function we will focus 
mainly on improvements of other causes such as 
optimization of background value, optimization of grey 
derivative and a combining optimization of several 
causes to improve prediction accuracy of GM(1,1) 
model in future work and we will also apply these 
improved models to reliability growth prediction in 
practice. 
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