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Abstract—Information asymmetry is one of the most 

important dynamic properties of complex networks. It has 

important significance to explore the effect of information 

asymmetry on cascading failures for realizing cascading 

dynamic properties. In this paper, after analyzing the 

information asymmetry during the load redistribution, 

asymmetric game theory has been constructed to describe 

the behavior of game among nodes during the load 

redistribution. And on the basis of this framework, a new 

cascading model is proposed in which the network 

robustness is mostly influenced by initial load of nodes and 

profit asymmetry ratio. The simulation results show initial 

load has a positive correlation with the cascading 

propagation and exists an intermediate value guaranteeing 

the minimum of the tolerance threshold, while the results of 

profit asymmetry ratio are on the contrary. These research 

results effectively demonstrate the value of information 

asymmetry theory on network security and provides new 

perspective to investigate the cascading failure dynamics.  
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I. INTRODUCTION 

After finding the features of small-world [1] and scale-
free [2] of real networks, a number of network models are 
constructed to investigate different statistical and 
dynamical properties in different real systems. The 
statistical and dynamical properties have significant 
influence on the field of the network safety. An important 
class of dynamical processes is the so-called cascading 
failure dynamics, addressing how the failure of a node or 
a small part ofnodes in a network induces other nodes 
failure over the network. Owing to existing a large 
amount of the load in networks and the limited capacity of 
the node, cascading failures are common phenomena in 
many infrastructure networks, such as, the largescale 
blackouts in power grids [3], the internet collapse [4] and 
the traffic congestion [5]. To minimize the effect of 
cascading failures, many cascading models have been 
proposed [6-9]. The above cascading models put more 
emphasis on the effect of topology and load distribution 
on cascading propagation and treat cascading failures as 
static behaviors. However in real networks, information 
transmission among nodes is a kind of dynamic self-
organizing process. There exists competitive behaviors 

during the load redistribution among nodes to keep 
themselves safty.  

In the process of load redistribution, each node wants 
to maintain its normal and efficient functions by 
maximizing its output load and minimizing extra input 
load from its neighbors. In this competitive process, if the 
transferred load of a node is treated as payoff, the load 
redistribution in the network is equivalent to an 
evolutionary game [10]. During the process of the 
information redistribution, to avoid the reallocated load 
excessively concentrating and causing cascading overload, 
all node pairs should share the extra load mutually so that 
the total profit can be maximized; but for each node in the 
pair, the best strategy to maintain the maximum of its 
functioning is to reject the extra reallocated load from 
neighbors. So it is evident that there exists the similar 
dilemma in the process of information asymmetry 
compared with PDG.  

Considering the cascading propagation highly depends 
on the load redistribution, thus to investigate the effect of 
information asymmetry on network robustness becomes a 
signicant issue. To this end, we introduce the theory of 
asymmetric game to describe the competitive behaviors 
during the load redistribution. Then based on the above 
theory, a cascading model is proposed to simulate the 
competitive behaviors among nodes. 

II. MODEL 

A. The definition of information asymmetry theory 

The information asymmetry theory uses the paradigm 
of prisoners dilemma game to study the self-organized 
behaviors in the load redistribution. Nodes connected in a 
pair are players in the game. Every player can choose 
either to cooperate(C) or to defect(D). When both nodes 
in a pair are cooperators, each of them is offered a reward 
R  for being able to transmit load to the partner during the 
redistribution; if one of them decides to defect for not 
receiving extra reallocated load, the defector can get 
higher payoff while the cooperator gets lower. Following 
previous models addressing cascading problems [6,11], 

initial load of a node i  whose degree is 
ik  is assumed to 

be i iL k , where   is a tunable parameter to control the 

strength of initial load on the node i . Since the node 

capacity on real-life networks is generally limited by cost, 

it is natural to assume that the capacity 
iC  of node i  is 
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proportional to its initial load and defined as 
i iC L  , 

where the constant   is the tolerance parameter 

characterizing the tolerance of the network. After a node 
fails, if its neighboring nodes have the enough capacities 
to handle the extra reallocated load, the network will 
remain a stable state and cascading failures will not occur. 
Therefore, the reward of cooperator i  with its neighbor j  

is defined as:  
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                          (1) 

where 
i  is the set of neighboring nodes of i . The 

reward of i  quantifies the node’s ability to transmit load 

to j  during the redistribution, which is not only 

determined by i ’s initial load but also determined by the 

capacity of the neighbor j . The higher the reward is, the 

more load the partner j  can handle in the process of load 

redistribution, which makes i  maintain its function when 

the congestion comes. However, the cooperator i  may 

preferentially change the strategy to defection for the 
reallocated load from cooperator j  is too much to be 

accommodated or it is too important to hold extra load. As 
the defection of i  implicates that cooperator j  receives 

reallocated load from i  while i  rejects j ’s, so the 

temptation (T) of defection is higher than the reward (R) 
of cooperation. Considering the mutual cooperation makes 
a node pair become more capable of handling reallocated 
load than the defection does in a real network, the 
temptation of a defector is quantified by R  . For 

simplicity, Nowak [12] rescaled the payoffs by setting 

T b , 1R   and 0P S  , where 1 2b   ensures a 

proper payoff ranking and preserves the essential dilemma 
between individual profits and welfare of the population 
for repeated games. Without loss of generality, the payoff 
matrix of information asymmetry is defined as:  

0

0
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                              (2) 

According to this payoff matrix, when node i  and 

node j  in a pair are both mutual cooperators, the reward 

of i  is 
iR  while the reward of j  is jR ; however, when 

node i  defects while the other cooperates, the temptation 

of i  is 
iR while the sucker’s payoff of j  is 0. The 

payoff of a node in the process of information 
redistribution represents its ability of handling the 
reallocated load. The higher the payoff is, the stronger the 
ability is, which leads the node less to overload. From 
above definition, it can be seen that when the topology of 
the network is fixed, the information asymmetry is 
determined by   and  . The parameter   controls the 

strength of initial load of nodes and determines the value 
of initial load; the parameter   represents the profit 

asymmetry ratio and determines the difference of profits 
between cooperators and defectors during the information 
redistribution. 

B. The definition of a cascading model based on the 

asymmetric game 

Considering the effect of the load redistribution on the 
network robustness, a cascading model is proposed based 
on the information asymmetry theory. Our aim is to 
investigate how to adjust initial load and profit asymmetry 
ratio to maximize the network robustness against 
cascading failures. The set of players involved in the 
game is consist of all survived nodes in the network. At 
each time step, the actual payoff gained by any individual 
is the sum of payoffs resulting from all interactions with 
others.Initially, each node is designated either as a 
cooperator or a defector with equal probability. Then there 
are two dynamical processes. Thus, the information 
asymmetry can be used to describe the load dynamical 
allocation and its determinants include initial load and 
profit asymmetry ratio. 
1). Asymmetric game playing and payoffs. The payoff of 
each node is initialized to be   which is positive but 

significant below unity. The reason will be explained soon 
afterwards. At each time step (iteration), each node i  

plays the game with all its neighbors and gets the payoff 
by Eqs.(1). The accumulated payoff of node i  in each 

iteration is 
iP . After all node-pair games finished in an 

iteration, each node i  randomly chooses a survived 

neighbor j  and adopts its strategy 
js  in accordance with 

the probability [13]: 
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( )
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                （1） 

where   quantifies uncertainty of strategy adoption [14]. 
The value of   is simply fixed to be 0 1    in this paper 

so that the results have better recognition. After several 
iterations, the cooperation density andthe average payoff 
of the network will become steady(see Fig .1). The final 

accumulated payoff 
iP  of node i  is defined as its ability 

which can transmit the reallocated load to neighbors for 
avoiding congestion. 

 
Figure 1.  Time series of the cooperation density and average payoff on 

each node of the BA scale-free network with 5000N  , 6k   for 

0.5   and 1.4  . The inset is a part from 0time   to 200time  . 
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2). Failures and overloaded removal. The cascading 
propagation firstly originates from the redistribution of the 
load on failed nodes under attacks. At each iteration, the 
failed nodes will be added to the removing queue. In 
process 1, after multiple repeated games, the ability of 
transmitting reallocated load of a node can be represented 
by its payoff. For the difference of the nodes’ abilities, the 
preferential redistribution principle of the load is widely 
adopted to better describe the dynamic process of the load 
propagation. In this sense, when a node i  is removed, the 

load on it will be redistributed to its neighbor j  by the 

preferential probability. The additional load jiL  received 

by node j  from node i  is: 

( )
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                           (4) 

as the initial payoff for each node has been set  , so 

mP  will never be 0. if 
j ji jL L C  , it indicates that 

node j  has been overloaded and has to be added to the 

removing queue. The process of the cascading 
propagation above will be repeated until the removing 
queue is empty. 

III. THE RESULTS AND ANALYSIS OF THE CASCADING 

MODEL 

The topological structure of a network has a great 
influence on its function. Considering the scale-free 
networks are ubiquitous in nature and human society, we 
adopt the well-known BA scale-free network [2] as the 
physical infrastructure on top of which a cascading process 
takes place. BA networks can be constructed as follows: 

starting from 
0m  fully connected nodes, a new node with 

m  (
0m m ) edges is added to the existing network at each 

time step according to the preferential attachment, i.e., the 
probability of being connected to the existing node i  is 

proportional to degree 
ik  of the existing node. In the 

numerical simulations, the network size is fixed as 

5000N   and the parameters are set to be 
0 3m  , 3m  , 

i.e., the average degree k   is about 6. 

To begin with, we first examine how initial load   

and profit asymmetry ratio   influence the cooperation 

density and the average payoff of the network during the 
information redistribution. Fig .2(a) features the number of 
cooperators for different values of   in four cases of 

0 6   , 0 8   , 1 0    and 1 2   . Every curve is 

obtained by averaging over 1000 different realizations on 
independent networks. It can be observed that no matter 
what the value of   is, the higher the value of  , the less 

the number of cooperators; however, when the value of   

is given, the higher the value of  , the larger the number 

of cooperators. The correlation between  ,   and the 

average payoff is presented in Fig .2(b). The results are 
similar to Fig .2(a)’s, i.e., the higher(lower) the value of 
 (  ), the more the average payoff. Hence, during the 

process of information redistribution, it is clear that the 
high initial load promotes the emergence of cooperation 
and the increase of the average payoff, while the high 
profit asymmetry ratio impedes. Comparing the results of 
Fig .2(a) and Fig .2(b), it can be found the average payoff 
is directly proportional to the cooperation density(see 
Fig .2(c)), which well validates the dilemma in the 
information redistribution among nodes, i.e., although 
defection optimizes the individual payoff, mutual 
cooperation could yield a higher collective benefit. This 
result well validates the situation in information 
asymmetry is consistent with that in real networks. 

 

Figure 2.  (a) the average payoff on each node and (b) the fraction of cooperators of the BA scale-free network as functions of parameter   for 

different values of  . (c) Demonstration of the correlation between the average payoff from (a) and the fraction of cooperators from (b).

 
Next, we explore the impact of initial load and profit 

asymmetry ratio on the cascading propagation. In order to 
measure the consequence created by the cascading 

propagation in a network, the average avalanche size 
nCF  

is adopted to quantify the network robustness against 
cascading failures and defined as:  

( 1)

i

i N

n

CF

CF
N N

 



                           (5) 

where N  represents the number of all nodes in a network 

and 
iCF  is defined as the number of broken nodes induced 

by removing node i . Apparently, 0 1iCF N    and 
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0 1nCF N   . In Fig .3, by the capacity parameter  , 

we compare the average avalanche size 
nCF  of the failed 

nodes for different values of   and  . Every curve is 

obtained by averaging over 1000 different realizations on 
independent networks. It can be seen that there is a 
relatively great difference between   and   to the 

network robustness against cascading failures. In Fig .3(a), 
for a given value of  , the higher the value of  , the 

faster the 
nCF  declines. In Fig .3(b), for a given value of 

 , the lower the value of  , the faster the 
nCF  declines. 

These findings indicate when the cascading occurs, the 
higher initial load is, the less the failed nodes are created; 
however, the higher profit asymmetry ratio is, the more the 
failed nodes are created. 
From above simulations, it can be realized   controls the 

whole capacities of all nodes in the network. Apparently, if 
the value of   is large enough, then all nodes have larger 

extra capacities to handle the load under whatever attack, 
no cascading failure occurs. However, it is not realistic for 
the cost. Once the value of   is small enough, the 

cascading failure emerges because the capacity of each 
node is limited, sweeping the whole or part network to stop 
working. Hence, it makessense to select the smallest value 

of the 
c  to protect the network at the lowest cost. For any 

curve in Fig .3, the responses of BA networks display 

threshold-like behaviors, namely, the critical threshold 
c . 

The value 
nCF  falls steeply when the value   increases to 

c , and then remains a stable and low value, i.e., no 

cascading failure emerges and BA networks maintain their 
normal and efficient functioning. Therefore, a natural 
question arises whatthe relationship is between the critical 

threshold 
c  and initial load   and redistribution   in 

Fig .3. To better observe the effect of  ,   on network 

robustness against cascading failures, by numerical 

simulations, we compare 
c  under given values of  (  ) 

for different values of  ( ) in Fig .4. As can be seen in 

Fig .4(a), no matter what the values of the parameter   

are,all the values of 
c  will be minimum when 1  . For 

the range of 1  , 
c  in each curve decreases with the 

increase of  , but its relationship with   is not clear. 

While for the range of 1  , 
c  has a positive correlation 

with  , that is the same with the values of  . As shown 

in Fig .4(b), no matter what the values of the parameter   

are, 
c  monotonically increases with   and it 

increasesmore steeply when   decreases. Therefore, it 

can be derived that there exists the optimal value of initial 
load at which the cascading is hardest to occur, while the 
value of the cascading critical threshold increases 
monotonically with the value of profit asymmetry ratio. In 
addition, comparing Fig .4(a) and Fig .4(b), it can be found 
that when the value of   is far from 1  , the value of 

the critical threshold 
c  is sensitive with profit asymmetry 

ratio  ; while the value of   is close to 1,   rarely 

influences the value of the critical threshold 
c . 

Above all, in the process of information asymmetry, 
the high initial load impedes the cascading propagation, 
while the result of profit asymmetry ratio is opposite; 
furthermore, there exists an intermediate value of initial 
load that could guarantee the minimum critical threshold 
of cascading, while the value of the critical threshold 
increases linearly with profit asymmetry ratio. 

 

Figure 3.  the average avalanche size nCF  as functions of parameter   for (a) different values of   and (b) different values of  .  
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Figure 4.  the critical threshold c  as functions of (a) parameter   for different values of   and (b) parameter  for different values of  .

 

IV. CONCLUSION 

In conclusion, we analyze the phenomenon of 
information asymmetry during load redistribution and 
construct a cascading model of asymmetric game to 
describe self-organizing competitive behaviors among 
nodes. It can be found that the results of the cascading 
model are determined by some tunable parameters: initial 
load and profit asymmetry ratio. The simulations show the 
high initial load impedes the cascading scale while the 
result of profit asymmetry ratio is opposite; furthermore, 
there exists an intermediate value of initial load 
guaranteeing the minimum of the tolerance threshold, 
while the tolerance threshold increases linearly with profit 
asymmetry ratio. These findings effectively demonstrate 
the value of information asymmetry theory on network 
security and give the important theory for emergent 
response and control of cascading failures under the major 
disaster. 
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