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Abstract—The control system of myoelectric prostheses req-

uires high precision and rapid response. Many algorithms 

have been applied in prosthesis control. In this paper, Back-

Propagation Neural Network (BPNN) and Multiple 

Nonlinear Regression (MNLR) are applied to predict 

handgrip force through surface electromyography (sEMG) 

signals of forearm muscles. In the following experiments, the 

root mean square (RMS) data extracted from sEMG signals 

are randomly separated into training dataset (75%) and 

testing dataset (25%). When the dataset is trained, the Root 

Mean Square Error can reach about 1.145kfg (BPNN) and 

3.452kfg (MNLR), respectively. BPNN consumes about 

21.435s and MNLR spends about 0.013s. During testing the 

dataset, BPNN and MNLR obtain the Root Mean Square 

Error about 1.207kfg and 3.620kfg, respectively. BPNN 

consumes nearly the same time with MNLR. Based on the 

comparison of BPNN and MNLR, BPNN outperforms 

MNLR at accuracy, and MNLR is better than BPNN at 

response time. This study results will provide an important 

basis for the reasonable selection of prosthetic wrist system.  
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I. INTRODUCTION 

Nowadays, more and more individuals are disabled by 
industrial accidents, diseases and armed conflicts. Many 
myoelectric prostheses are used to assist the paralyzed 
individuals and compensate for the lost capabilities of the 
upper extremities [1]-[3]. Handgrip force prediction is 
important for controlling prostheses. In previous studies, 
surface EMG signal is often selected for handgrip force 
prediction because it can reflect muscle activity directly. 
Back-propagation artificial neural networks and statistical 
regression analysis are applied to estimate handgrip force 

[4][8]. The good relationships among sEMG signals, 
handgrip force and joint parameters were obtained using 
artificial neural networks [4]. Grip force was successfully 
estimated from integrated sEMG by two layered artificial 
neural network [5]. Some linear regression models 
indicated the valid estimation of handgrip force from 
sEMG signals [6][7]. J.Duque et al. applied multiple 
nonlinear regression to analyze the relationship between 
handgrip force and sEMG signals. The excellent relativity 
between measured force and estimated force was obtained 
[8]. 

In this paper, BPNN and MNLR are applied to map 
handgrip force signals onto sEMG signals off-line. RMS 
values extracted from sEMG signals are used as input data 
for BPNN and MNLR. BPNN is evaluated by comparing 
its performances (accuracy, correlation and response time) 
with MNLR. Then it can be decided that which strategy is 
suitable for the control system of myoelectric prostheses at 
different occasions. 

The remainder of this paper is organized as follows: 
two strategies used in this study are introduced briefly in 
Section Ⅱ. After the experiments are described in Section 
Ⅲ, Signal processing and evaluation indexes are presented 
in Section Ⅳ. The results are discussed in Section Ⅴ. 
Finally, the conclusion and future work will be mentioned 
in Section Ⅵ. 

II. METHODS 

A. BPNN 

BPNN is very effective for learning and calculating 
from mixtures of signals without too much detailed 
information [9]. BPNN has been applied in biological 

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015)

© 2015. The authors - Published by Atlantis Press 656

http://cn.bing.com/dict/search?q=myoelectric&FORM=BDVSP6
http://cn.bing.com/dict/search?q=prostheses&FORM=BDVSP6
http://cn.bing.com/dict/search?q=Prosthesis&FORM=BDVSP6
http://cn.bing.com/dict/search?q=Control&FORM=BDVSP6
http://cn.bing.com/dict/search?q=myoelectric&FORM=BDVSP6
http://cn.bing.com/dict/search?q=prostheses&FORM=BDVSP6
http://cn.bing.com/dict/search?q=myoelectric&FORM=BDVSP6
http://cn.bing.com/dict/search?q=prostheses&FORM=BDVSP6


fields, acting as a black box model to approximate 
complex nonlinear mappings directly from input values 
[10]. In this study, BPNN contains three layers (input layer, 
hidden layer and output layer). According to the 
Kolmogorov theorem, the number of hidden layer’s nodes 
is set to thirteen. BPNN works in following sections 
according to the flowchart (Fig .1). 

 

 
       Figure 1.  The flowchart of BPNN. 

B. MNLR 

Regression analysis is a method of making an 
interpretation when the value of one variable is defined as 
a function of the observed values of other variables. It can 
be defined as the estimated or predicted value of one 
variable from the values of other given variables [11][12]. 
Principal component analysis (PCA) is a technique that is 
useful for reducing the number of predictive variables and 
solving the multi-colinearity problems [13][14]. PCA 
looks for a few linear combinations of the variables that 
can be used to summarize the original data without losing 
too much information, that is, preserve as much 
information as possible. Details about PCA can be seen in 
[15][16]. In this study, the dimensionality of the input data 
is reduced through the PCA method. The MNLR works in 
the following sections according to the flowchart (Fig .2). 

 

 
Figure 2. The flowchart of PCA. 

III. EXPERIMENTS 

In this study, ten participants are recruited (age = 23±3 
years, weight = 61.6±8.0kg). They all apply the dominant 

right hand to handgrip force. All the participants had an 
examination to eliminate upper extremity complaints and 
give informed consent prior to the experiments. 

 

 
Figure 3.  The arm and hand posture in this study. 

 
According to the American Society of Hand Therapists 

(ASHT) [17][18], every participant put his wrist at the 
neutral position and hold a modified dynamometer (WCS-
1000, Shanghai Wanqing Electron Co.,Ltd) (Fig .3). The 
data of handgrip force is transmitted to the computer from 
the dynamometer by a microcomputer (Ardunio UNO). 
The sEMG signals are obtained by FlexComp System with 
EMG MyoScan modules and EMG electrodes (Thought 
Technology Ltd. in Canada), then sEMG signals are 
recorded and analyzed by BioNeuro Infiniti software 
during experiments [19]. 

Six forearm muscles are selected for study. These 
muscles are Brachioradialis (BR), Flexor Carpi Radialis 
(FCR), Flexor Carpi Ulnaris (FCU), Extensor Carpi 
Radiali (ECR), Extensor Carpi Ulnaris (ECU), Extensor 
Digitorum (ED). All these muscles, locating in the 
outermost layer, are available for sEMG recording. Every 
participant is required to conduct grip tasks following the 
curve profiles. As shown in Fig .4, the curve profiles from 
zero to MVC force with a duration time (about 8s) are 
performed. 

 
Figure 4.  The reference baseline and the curve profile. 

IV. SIGNALS PROCESSING AND EVALUATION INDEXES 

A. Signals processing 

For the curve profile of handgrip force, ten percent of 
MVC forces are extracted as its reference baseline. Then 
the curve profile is cut by its reference baseline. All the 
input and output data of two methods are normalized to [-1 
1] in this paper [19][20]. The forces from the processed 
curve profiles are normalized by its MVC force using 
Equation (1). 

min max min' 2 ( ) / ( - ) 1F F F F F              (1) 

Where F’ is the normalized data, F is the measured and 
processed data, minF is the minimum value in measured 
dataset, maxF is the maximum value in measured dataset, 
the minimum value in normalized range is set to negative 1, 
the maximum value in normalized range is set to positive 1. 
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                Figure 5.   RMS signals from one participant 

 
The sEMG signals are sampled at 1024Hz. A band 

pass filter (20Hz~500Hz) [6] and a notch filter (50Hz) [21] 
are applied to remove unnecessary contaminated noises in 
the recorded sEMG signals. RMS features are extracted 
from sEMG signals. Raw RMS signals from one 
participant are shown in Fig .5. Corresponding to handgrip 
force, RMS curves are cut by itself reference baselines 
(twenty percent of max RMS value). Then the remaining 
RMS signals are sub-sampled to the sampling frequency of 
handgrip force. The processed RMS signals are normalized 
using Equation (2) 

  
min max min' 2 ( ) / ( ) 1R R Rr r                   (2)                                             

Where r’ is the normalized RMS data, r is the measured 
and processed RMS data, minR is the minimum RMS value 
in measured dataset, maxR is the maximum RMS value in 
measured dataset, the minimum RMS value in normalized 
range is set to negative 1, the maximum RMS value in 
normalized range is set to positive 1. 

B. Evaluation indexes 

After the processing of RMS signals and handgrip 
force signals, the algorithm methods are selected for 
training and testing the data. During the experiments, the 
data from the cut curve profile are randomly separated into 
training dataset (75%) and testing dataset (25%). The 
performances of two strategies are evaluated by the Root 
Mean Square Error (RMSE), Correlation Coefficient (CC) 
and Consuming Time/1 run (CT).  

The RMSE is achieved using Equation (3). 

            
n 2

i ii 1
( )RMSE f F N


  
                       (3)                                 

Where fi is the predicted value, Fi is the measured value, N 
is the number of handgrip force in the dataset. 

The CC is achieved using Equation (4). 

( , ) ( ) ( )CC Cov f F Var f Var F                 (4) 

Where Cov( f, F) is the covariance of predicted value and 
measured value, Var( f ) is the variance of predicted value, 
Var(F) is the variance of measured value. 

In order to obtain the comparison results, firstly, BPNN 
and MNLR are trained for many times (100 times) 
separately based on training dataset. All the RMSE values 
(100 times) are averaged for every participant in training 
dataset and testing data. Then all the averaged RMSE from 

the participants are taken to Mean±Standard Deviation 

(MeanRMSE±S.D.RMSE). The MeanRMSE±S.D.RMSE  acts as 

one of evaluation indexes for BPNN and MNLR. In the 

same way, the processed CC (MeanCC±S.D.CC) and the 

consuming time/1 run (MeanCT± S.D.CT) are taken as 

evaluation indexes of BPNN and MNLR. 

V. RESULTS AND DISCUSSIONS 

After the experiments are conducted and the signals are 
processed, the results are shown in Table 1 and Table 2, 
respectively.  

 

TABLE  I.     COMPARISON OF HANDGRIP FORCE PREDICTION (TRAINING 

DATASET)  

Method MeanRMS±S.D.RMSE (kfg) MeanCC±S.D.CC MeanCT±S.D.CT (s) 

BPNN 1.145±0.525 0.991±0.008 21.435±2.930 
MNLR 3.452±1.808 0.938±0.035 0.013±0.005 

 
Table 2: Comparison of handgrip force prediction (Testing dataset) 

Method MeanRMS±S.D.RMSE (kfg) MeanCC±S.D.CC MeanCT±S.D.CT (s) 

BPNN 1.207±0.487 0.990±0.005 0.008±0.001 
MNLR 3.620±1.890 0.931±0.041 0.006±0.001 

 
As shown in Table 1, BPNN is about 66.831% better 

than MNLR at prediction accuracy. When two trained 
models are applied to testing datasets, the MeanRMSE value 
decreases by nearly 5.137% (BPNN) and 5.137% (MNLR), 
respectively. The prediction accuracy of BPNN is still 
about 66.657% higher than MNLR in Table 2. From Table 
1 and Table 2, BPNN outperforms MNLR at Correlation 
Coefficient in both training dataset and testing dataset. 

It is can be seen from Table 1 that BPNN takes long 
time to train the data. But BPNN consumes the time almost 
as much as MNLR in testing dataset. The MeanCT  is about 
0.008s (BPNN) and 0.006s (MNLR), respectively. 

The same results are demonstrated on every participant. 
The measured and predicted handgrip force from one 
participant is depicted in Fig .6 – Fig .9. The black solid 
line indicates the force measured from the dynamometer, 
and the red solid line indicates the force predicted by 
BPNN and MNLR. 
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             Figure 6.   The results predicted by BPNN training. 
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Figure 7.   The results predicted by BPNN testing. 
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Figure 8.   The results predicted by MNLR training. 

 

1 21 41 61 81 101 121 141 161 181 195
0

5

10

15

20

25

30
MNLR testing

Number

F
o

rc
e
(k

fg
)

Measurement

Prediction

RMSE=2.132(kfg)
CC=0.951
CT=0.006(s)

 
Figure 9.   The results predicted by MNLR testing. 

VI. CONCLUSIONS 

From the above experimental results, BPNN 
outperforms MNLR at prediction accuracy and Correlation 
Coefficient. If the control system of prostheses requires 
higher accuracy, BPNN is a suitable choice. As for 
consuming time, MNLR is better than BPNN When real 
time is required. 

In future, how to shorten the consuming time of BPNN 
and improve the accuracy of MNLR should be studied. 
Then the control system with higher accuracy and real-
time will be provided for prosthetic wrist. 
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