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Abstract

The trajectory pattern mining problem has recently attracted much attention due to the rapid development
of location-acquisition technologies, and parallel computing essentially provides an alternative method
for handling this problem. This study precisely addresses the problem of parallel mining of trajectory
sequential patterns based on the newly proposed concepts with regard to trajectory pattern mining. We
propose an efficient and effectiveparallel sequential patterns mining (plute) algorithm that includes three
essential techniques: prefix projection, data parallel formulation, and task parallel formulation. Firstly,
the prefix projection technique is used to decompose the search space as well as greatly reduce the can-
didate trajectory sequences. Secondly, the data parallel formulation decomposes the computations asso-
ciated with counting the support of trajectory patterns. Thirdly, the task parallel formulation employs the
MapReduce programming model to assign the computations across a set of machines in a scalable and
easy-to-use fashion. Based on the properties of parallel trajectory sequences, item pruning and sequence
pruning strategies are applied to further prune the candidate sequences. Extensive experiments are con-
ducted to evaluate the performance ofplute in terms of parallel computing time and communication cost
among processors. Experimental results show that plute outperforms the previously proposed parallel
mining strategy (PartSpan) in mining massive trajectory data.
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1. Introduction

The growing advances in wireless communications
and location aware techniques enable us to collect a
large amount of trajectory data of moving objects.
For example, Global Positions Systems (GPS) have
been widely used to trace the instantaneous loca-
tions of traffic facilities and mobile devices. Telem-
atics is another rapidly growing real-time techniques
which can provide emergency roadside assistance,
stolen vehicle tracking and automatic crash notifica-
tion etc1. In addition, we can obtain ever-increasing
amount of trajectory data which are time-stamped
sequences of events by location-based facilities.

Discovery of frequent trajectory sequential pat-
terns is an essential data mining task with broad ap-
plications as well as a challenging problem espe-
cially for massive data. The objective of sequen-
tial pattern mining is to discover frequent subse-
quences in a data set2. The time annotation in tra-
jectory patterns is an important notion and works
as a user-specified constraint to preprocess the in-
put data into ordered sequences of events, or as a
pruning mechanism to shrink the search space3. Im-
portantly, the time annotated sequence can be used
in a variety of areas, i.e., the discovery of motifs in
DNS sequences, traffic tracking, the analysis of web
log4, crime hotspot detection5, and animal move-
ment extraction1. So, it is of great practical value
to utilize the spatio-temporal information of trajec-
tories to improve the computational efficiency which
provide an opportunity to automatically discover the
useful knowledge from the trajectory databases6.

Parallel computing is a form of computation in
which a large amount of calculations are carried out
simultaneously, operating on the principle that large
problems can be divided into smaller ones, which
are then solved in paralle‡. There are several different
kinds of parallel computing, e.g., bit-level, instruc-
tion level, data, and task parallelism. Parallelism has
been employed mainly in high-performance com-
puting, but interest in it has grown lately in com-
puter architecture, especially in the form of multi-
core processors7. Parallel computing is an alterna-
tive solution for parallel sequence mining8. Serial

algorithms cannot provide scalability when giving
strict constraints on the data size and the perfor-
mance especially for large databases8. The rapid de-
velopment of multiprocessor systems provide more
opportunities for use to develop efficient and effec-
tive parallel computing algorithms.

There are two commonly-used methods for uti-
lizing multiple processors, i.e., distributed memory
in which each processor has a private memory and
shared memory in which each processor has a com-
mon memory8. Subsequently, a distributed-shared
memory (DSM) architecture arises, which combine
the best of the previous two techniques. A good par-
allel algorithm should be efficient in the data parallel
and task parallel formulations, rather than more rely-
ing on the hardware or software share, which moti-
vate us to develop a new trajectory sequential pattern
mining algorithm based on parallel formulations.

In this paper, we make the following contribu-
tions.

1. We exactly address the problem of parallel
trajectory sequential pattern mining and pro-
pose a new task parallel formulation approach
based on MapReduce9.

2. We propose a hybrid approach by combining
the data parallel and the task parallel formu-
lation techniques to decompose computations
and assign the computations of mining trajec-
tory sequential patterns to multiple processors
with lower communication and computation
cost.

3. We integrate the time constraint into the se-
quence items and use sequence pruning strate-
gies to eliminate the candidate patterns based
on the properties of trajectory patterns in par-
allel computing environment.

4. We perform extensive experiments to estimate
the performance of the proposed parallel algo-
rithm of discovering trajectory sequential pat-
terns based on the parallel formulation tech-
niques in terms of the parallel time and com-
munication cost across multiple processors.

‡https://computing.llnl.gov/tutorials/parallelcomp/
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The rest of the paper is organized as follows.
Section 2 summarizes the related work on the trajec-
tory sequential pattern mining. Section 3 formally
addresses the problem statement associated with the
trajectory sequential pattern mining and the essen-
tial concepts used in this paper. Section 4 analyzes
the properties of parallel trajectory patterns. Section
5 details the parallel sequence mining of trajectory
patterns. Included is the MapReduce based task par-
allel formulation approach and the pruning strate-
gies. Section 6 presents and analyzes the experimen-
tal results. Finally, section 7 gives the concluding
remarks and outlooks future research directions.

2. Related Work

In this section, we will introduce the related works
that can be categorized into three research directions
including sequential pattern mining, spatio-temporal
sequence mining and parallel computing.

2.1. Sequential Pattern Mining

The problem of mining frequent sequential patterns
can be defined over a sequential databaseD, and
the item of each sequence is annotated with a time-
stamp, which determines the order of the elements in
the sequence10. For instance, an item sets is denoted
as (s1 s2 . . .sk) that containsk items. A sequence
a= a1 7→ a2 7→ . . . 7→ am, whereai is an item set. If
there exists a sequenceb= a1 7→ a2 7→ . . . 7→ an sat-
isfying that∀16k6n,ak ⊆ bik, where 16 s1 < .. . <

sm 6 n, then we calla is a subsequence ofb, de-
noted asa � b. The support count ofa, denoted
as Support(a), is the total number of sequences
that containa. Given a minimum support threshold
min sup, a is frequent if it occurs more thanmin sup
times, i.e.,Support(a) > min sup3.

Mining sequential patterns has been studied for
several years. To our knowledge, Dietterich et al.
were the first to systematically address the problem
of discovering patterns in sequences of events. How-
ever, this work focuses on discovering the rules char-
acterizing a sequence and is able to predict a plau-
sible sequence continuation11. Then, Agrawal et al.
proposed an algorithm for finding all sequential pat-
terns, called AprioriAll2. However, the phase of

transformation by replacing itemsets in each trans-
action is costly. In order to better handle the problem
of transforming in massive data, Srikant proposed
an influential approach for mining sequential pat-
terns, called GSP12, which is a generalized sequen-
tial pattern algorithm for mining all the frequent se-
quences without transforming the database. Another
typical approach for mining sequential patterns is
SPADE13 that employs lattice search techniques and
simple join operations. Essentially, SPADE needs
only three scans over the database.

Several efficient sequential pattern mining algo-
rithms has been proposed, among which the prefix-
based approaches, i.e., FreeSpan14 and PrefixSpan15

are more efficient than the above methods. They use
the prefix projection technique to reduce the size of
projected databases. PrefixSpan is widely applied to
discover the temporal-spatial patterns.

2.2. Spatio-temporal Sequence Mining

Spatio-temporal pattern mining has recently grown
to be an active research topic, which helps under-
stand the mobility-related phenomena16. In order
to discover spatio-temporal patterns, Cao et al.17

transform the spatio-temporal sequence into spatial
regions around frequent line-segments and detect
frequent regions in a heuristic way. An influen-
tial work was done by Giannot et al3. They pro-
posed the trajectory pattern mining problem and em-
ployed an aggregated trajectory extraction method
within an observed population of trajectories to mine
spatial-temporal patterns3. Trajectory patterns are a
spatio-temporal variant of the temporally-annotated
sequences (TAS)10, where the time dimension is
considered. By extending the work on TAS-mining
(especially suitable for weblog analysis), Giannotti
et al.3 proposed a density-based algorithm to find
regions of interest. The mechanism of discovering
popular region is to compute candidate places by
selecting all minimal square regions that are visited
relatively frequent. Moreover, Lee et al.18 proposed
adensity-based line-segment clustering algorithm to
discover the sub-trajectories simultaneously. How-
ever, all the previous approaches for discovering se-
quential patterns are serial algorithms. In case of
a large sequence database with massive data, these
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algorithms need multiple passes over the databases,
which needs much calculation time. An alternative
solution is the parallel technique that relies on mul-
tiprocessor system to handle this problem, because
a parallel algorithm can be executed for a piece at a
time on several processers that can utilize the collec-
tion of computer resources.

2.3. Parallel Algorithms

The parallel mining of sequential patterns has re-
cently received increasing attention8,19,20. Shintanik
et al.19 proposed three parallel algorithm for min-
ing sequential patterns. The hash-based partition
sequential pattern mining algorithm (HPSPM) uses
an intelligent method to partition the candidate se-
quences by using hash function and it was evaluated
to be better than the other two approaches. An effi-
cient parallel algorithm for discovering the sequen-
tial patterns in massive data is pSPADE8. Its na-
ture is a parallel SPADE13. pSPADE decomposes
the search space into multiple suffix-based classes
and uses the dynamic load balance strategy to pro-
cess the tasks independently without synchronized
operations. An alternative method is the parallel tree
projection algorithm21. The key idea behind this ap-
proach is to integrate the data parallel and task paral-
lel formulations based on tree projection in order to
distribute the computations into multiple processors
in an accurate manner, i.e., assign the tasks in terms
of the relative amount of workload associated with
each sequential pattern. The recently typical work
includes FDMSP22 and DMGSP23, which adopt the
similar strategy to compress local frequent sequen-
tial patterns into a lexicographic sequence tree with-
out translations of repeated prefixes.

The trajectory pattern mining problem is spe-
cific, since the time-stamps of the sequence is con-
strained with a specified time interval. For instance,
there are several routes fromp1 to p2. One time
interval t1 corresponding to a path is 10 minutes,
and the other onet2 is 15 minutes. Suppose a time
toleranceτ equals 8 minutes, because|t1− t2| < τ ,
we treat these two routes as similar. Whereas, we
have to take into consideration the minimum sup-
port threshold for eliminating the infrequent sequen-
tial patterns. In order to discover trajectory pat-

terns from massive data, we have proposed a par-
allel sequential pattern mining algorithm, namely
PartSpan, which combine effective data parallel and
task parallel formulations to distribute the computa-
tions across multiple processors. However, the scal-
ability and fault tolerance of the task parallel for-
mulation in PartSpan have not been carefully con-
sidered. When a processor fails, the performance of
parallel computing will drastically fall down. This
limitation pushes us to propose a more robust and
scalable task parallel formulation approach.

3. Problem Statement

The parallel mining of trajectory patterns is defined
as discovering frequent trajectory patterns (i.e., FT-
pattern) across multiple processors3. It is a prefer-
able solution to the sequence mining problem8. In
this section, we first introduce the preliminaries, and
then formalize the trajectory pattern mining problem
in a parallel computing environment.

Definition 1. (Trajectory pattern)3 A trajectory pat-
tern, called T-pattern, is a sequence of triples:

S= {(x0,y0, t0) . . . (xi ,yi , ti) . . . (xn,yn, tn)} (1)

whereti is a time annotation,∀06i<n, ti < ti+1, and
(xi ,yi) is a 2-dimensional point.

Definition 1 is beyond the concept of tempo-
rally annotation sequences (TAS)24. TASis an exten-
sion of sequential patterns with the transition times
between its elements. An illustrative example of
TAS over the railway travel routes along the re-
gions of interest in China denoted by the latitude and

longitude positions is given as5: (126.7,45.8)
11.5
−→

(116.4,39.9)
26
−→ (104.1,30.7), representing a se-

quence that starts from the city ofHarbin, then after
11.5 hours reachesBeijing railway interchange, and
finally arrives at the tourist destinationChengduaf-
ter 26 hours trip. Note that we use trajectory pattern
and trajectory sequence interchangeably.

The important concept of T-pattern mining is the
frequency based on thesupport count, which is the
number of input sequences that contain the speci-
fiedTAS. The notion ofτ-containment10 with a time
constrainτ is defined as follows.
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Definition 2. (τ-containment) Given a time toler-
anceτ , aTAS T1 = (s1,τ1) the length of which ism,
and the otherTAS T2 = (s2,τ2) the length of which
is n with m6 n, wheres1 ands2 are T-patterns.T1 is
τ-contained inT2, denoted asT1 �τ T2, iff there exist
a serial of integers 06 i0 < .. . < in 6 m satisfying
that:

1. ∀06k6n s1,k ⊆ s2,ik

2. ∀k616n |α1,k−α∗,k|6 τ

where∀16k6n α∗,k = Σik−1< j6ikα2, j .
We say thatT1 is τ-constrained inT2 if there is

an occurrence ofT1 in T2 (Condition 1) having tran-
sition time similar to the temporal annotations inT1

(Condition 2). To facilitate understanding, we give
an example ofτ-containment as follows.

1. {i1}
5

−→ {i2, i3}
7

−→ {i4, i5}

2. {i1}
4

−→ {i2, i3, i4}
3

−→ {i6, i7}
6

−→ {i4, i5, i8}

where the itemset inT1 occurs inT2, and the transi-
tion time of the occurrence differs at most by 2 time
units (i.e., 3+6-7=2). Therefore, ifτ>2, we con-
clude thatT1 �τ T2.

Definition 3. (Sub-trajecotry) A trajectory se-

quenceα = (α1
τ1−→ α2

τ2−→ . . .
τn−1
−→ αn), whereαi is

the ith itemset consisting of multiple 2-dimensional
points represented by(xi ,yi) and denoted asαi =
{p1, p2, . . . , pn}. τ1, . . . ,τn−1 are temporal annota-
tions. α is a sub-trajectory of another trajectory se-

quenceβ = (β1
τ1−→ β2

τ2−→ . . .
τm−1
−→ βm), whereβ j is

the jth itemset andβ j = {q1,q2, . . . ,qm}, denoted as
α ⊑ β , if there exist integersi6 j such thatαi ⊆ β j

for all αi .
Note that the relationship ofαi ⊆ βi implies that

the points inαi appear at least once in itemsetβi.
By Definitions 2 and 3, the support and par-

allel mining of frequent trajectory patterns can be
straightforwardly defined by extending the concept
of τ-support10.

The support count in parallel computing is dis-
tinct from that is based on a single processor. In
general, the support for a sequence is defined as the
fraction of the total data-sequences that contain this

sequence12. Whereas, there exist lots of processors
in a distributed environment, the support w.r.t. the
ith processor is denoted asPi. Assume that there is a
trajectory patternT1, the number ofT1 appearing at
the processorPi is called the local support count, de-
noted asLCounti(T1). By extendingsupport count
andτ-containment, the formal concept of the local
τ-support is defined below.

Definition 4. (Local τ-Support) Let P=
{p1, p2, . . . , pm} be a set of processors,Φi be
the set of trajectory patterns that is assigned to
pi(i = 1,2, . . . ,m), τ be a time tolerance, and
minSupport∈ [0,1] be the minimum support thresh-
old. The localτ-support is defined as10:

τ−L Suppi(T) =
|T �τ T∗&T∗ ∈ Φi |

|Φi |
(2)

where i is the serial number of processors and
i ∈1,2,. . . ,m.T is frequent atΦi if τ-L Suppi(T)>
minSupport.

Apparently, LCounti(T)=τ-L Supp(T) × |Φi |
from Equation 2. The global support count
GCount(T) corresponding to trajectory sequenceT
is calculated by Equation 3 as below. It collects the
local support information from processors to deter-
mine whether a trajectory sequence is frequent.

GCount(T) = Σ06i6m LCounti(T) (3)

Given a T-patternT and a minimum support
count min count, if GCount(T) > min count, we
say thatT is globally frequent.T is called a global
FT-pattern.

Based on the above concepts, a general definition
of the parallel FT-pattern mining6 can be defined as
follows.

Definition 5. (Parallel FT-pattern mining) Given
a trajectory databaseD, a set of processorsP, a
time toleranceτ and a minimum support thresh-
old min supp, the parallel frequent trajectory pattern
mining aims to find all global FT-patternss satisfy-
ing that:

G SuppD,P,τ (s)> min supp

whereG SuppD,P,τ = GCount(s)
|D| is the global support

of the trajectorys at P, ands is the input trajectory
S∈ D satisfyings�τ S.
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The T-pattern mining problem is complex in
the parallel computing environment, since the com-
munication overhead across multiple processors is
costly in general cases for frequent sending and re-
sponding to requests in a parallel communication
network. In particular, an efficient and effective par-
allel T-pattern mining algorithm should contain the
following characteristics22.

• The approach must be more accurate and efficient
than that of a single processor with similar pa-
rameter settings. The T-patterns discovered by
multiple processors should be consistent with the
data mining results from a single processor. The
method does not only minimize I/O cost by reduc-
ing the database scans, but also minimizing the
computation cost by developing efficient search
schemas.

• Parallel algorithm should have low communica-
tion overhead. For parallel computing, the com-
munication overhead is costly if the processor fre-
quently sends and responses to requests in a com-
munication network composed of multiple pro-
cessors. Accordingly, it is essential to design
a more efficient parallel algorithm to reduce the
communication cost across processors.

• The subprocedures of a parallel algorithm must be
executed asynchronously. Each processor should
work separately without any need for sharing or
synchronization.

Before introducing our approach, we have to il-
lustrate the properties from the parallel T-pattern
mining problem. In the following section, we will
discuss the properties of frequent trajectory patterns
and provide the theoretical foundations in parallel T-
pattern mining.

4. Property Analysis of Parallel T-patterns

In this section, we analyze the properties of T-
patterns and introduce the methodology of T-
patterns mining in a parallel computing environ-
ment. Firstly, we will introduce some useful lemmas
as follows6.

Lemma 1. For a global FT-pattern T , there exists
at least one processor pi such that T and its sub-
trajectories are globally frequent at pi

23.
Proof: We can prove this lemma by the method
of reduction to absurdity. Suppose there exists
no such processor, in terms of parallel sequen-
tial pattern mining, we know thatLCounti(T) <
min counti(i = 1,2, . . . ,m). Therefore, the sum of
the number ofT in the trajectory database should
satisfy:

∵ GCount(T) = LCount1(T)+ . . .+LCountm(T)

< min count1+ . . .+min countm
= min supp×{|d1|+ . . .+ |dm|}

= min supp×|D|

∴ G Supp(T)�min supp
∴ T is not a global FT-pattern, which is a contradic-
tion. Therefore, the assumption does not hold. In
the way,T is regarded as a global FT-pattern.

All sub-trajectories ofT are global FT-patterns
at pi based on theApriori property. 2

The commonly-used approach for min-
ing sequential patterns is the tree projection
algorithm14,15,25,26. The key idea behind this cat-
egory approaches is to construct a projection tree.
In general, the tree is in lexicographical order and
each node is associated with ak-itemset. In this
paper, we employed the PrefixSpan tree projection
technique15 to construct a T-pattern tree. Here, we
give a formal definition of FT-pattern tree as below.

Definition 6. (FT-pattern tree)6,22 A FT-pattern tree
(FTP-tree) contains all the frequent trajectory pat-
terns. A trajectory sequence starting from the root
node to a node at thekth level is called aLk-pattern.
The predecessor above thekth level node is its pre-
fix, its corresponding T-pattern is called aLk−1-
pattern, and its length isk-1. The child node be-
low the kth level node is its suffix, its correspond-
ing T-pattern is called aLk+1-pattern. FTP-tree can
be partitioned into multiple subtrees byLk-patterns,
and the corresponding subtree is called aLk-subtree
at thekth level.

Definition 7. (Local subtree, Global subtree)22 The
subtree composed of local FT-patterns is called local
subtree(L Subtree). Similarly, the global subtree is
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such tree that is consisted of the global FT-patterns,
denoted asG Subtree. For any globalLk-patternγ , its
correspondingG Subtree, which treats itsk+1-level
node as its root node, is calledγ-Subtree. IfT is
a global T-pattern atpi, then the local subtree that
containsT at pi is calledT-Subtreei , and the corre-
sponding projection database is calledT-DBi.

Lemma 2. If a T-pattern is globally frequent, it is
locally frequent at each processor.
Proof: Given a global FT-patternγ , a set of pro-
cessors{p1,p2,. . .,pm}, a trajectory database|D| =
|d1|+ |d2|+ . . .+ |dm|.

∵ GCount(γ) = LCount1(γ)+ . . .+LCountm(γ)
> min supp×|D|

= min supp×{|d1|+ . . .+ |dm|}

= min count1+ . . .+min countm
∵ min counti > 0,∀i ∈ (1,2, . . . ,m)

∴ GCount(γ) > min counti .

therefore,γ is locally frequent at each processor.

Theorem 3. The set of global FT-patterns is a sub-
set of local Lk-subtrees22.
Proof: Given a global FT-patternγ , by Lemma 2,
we can see thatγ is a local FT-pattern, which im-
plies thatγ at least appears in oneLk-subtree and
locally frequent. However, it cannot guarantee that
γ is frequent in each localLk-subtree, which meansγ
occurs in thisLk-subtree but infrequent. Therefore,
the theorem is proved. 2

5. Parallel T-pattern Mining Algorithm

In this section, we propose a new parallel trajec-
tory pattern mining algorithm, calledplute. It con-
tains the following essential techniques: (1) use the
PrefixSpan projection approach to decompose the
search space of sequential patterns in order to reduce
the candidate subsequences, (2) employ a new par-
allel formulation approach that integrates google’s
MapReduce model9 to distribute the data and the
mining tasks among the available processors over
the prefix sequential patterns, (3) further prune the
candidate T-patterns by utilizing the properties of lo-
cal FT-patterns and global FT-patterns, and finally

(4) use an asynchronous algorithm to tune the sub-
procedures of parallel computations in order to ob-
tain the global FT-patterns.

5.1. PrefixSpan Algorithm

PrefixSpan is an efficient sequential pattern mining
algorithm. To the best of our knowledge, Giannotti
et al. was the first to extend PrefixSpan to discover
the frequent T-patterns10. The key idea behind this
approach is as15: for each frequent itema, a projec-
tion of this initial databaseD is created, denoted as
D|a, and a mining process contains: (i) finding fre-
quent sequential patterns only containing itema, (ii)
finding frequent trajectory patterns containing other
items (e.g.,b), but no item after them, and (iii) find-
ing other subsets of FT-patterns in the similar man-
ner. The main idea of this approach is that any se-
quence starting witha can be obtained by only an-
alyzing D|a, which can help reduce the candidate
items. Then, a frequent patternab (or (ab)) is de-
rived from itemb that is frequent inD|a, and a new
smaller projection databaseD|ab (or D|(ab)) is recur-
sively calculated for finding longer frequent patterns
starting withab (or (ab)).

The T-pattern mining problem is distinct from
traditional sequential pattern mining algorithms,
sinceTASare constrained by the time toleranceτ .
So, we extended the definition of T-sequence10 by
combining the parallel information.

Definition 8. (Parallel trajectory sequence) Given
a projected, time-stamped trajectory sequenceS=
{(s1, t1),(s2, t2), . . . ,(sn, tn)}, obtained as projection
of sequenceS0 w.r.t. the prefixs∗ (i.e., S= S0|s∗ ),
and a set of processorsqi , wherei is the serial num-
ber of processors. Parallel trajectory sequence (PT-
sequence) is defined as the couple(S,Ni), where
Ni = {(ai1, pi1),(ai2, pi2) . . . ,(ain, pim)} at qi : each
couple (ai j , pi j ) represents one occurrence of the
prefix s∗ in the original sequenceS0, ai j is the se-
quence of time-stamps of such an occurrence, and
pi j is a pointer to the element ofSwhere the occur-
rence terminates or the symbol /0 if such element is
not in S.

PT-sequence explicitly integrates such informa-
tion in a trajectory together with the time point in
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the sequence and the processor where the sequence
assigned to. To facilitate understanding, we give an
illustrative example as follows.

Example 1. Given a time annotated tra-
jectory sequence at Processor 1,S1 =
{({a},1),({a,b},2), ({c},3), ({a,c},4)}, the PT-
sequence w.r.t. prefixa is the couple(S1|a,N1),
where:

S1|a = {({a,b},2),({c},3), ({a,c},4)}
N1 = {(〈1〉, /0),(〈2〉,→ 2),(〈3〉, /0),(〈4〉,→ 4)}
We use the similar T-pattern projection approach

proposed in Ref. 10. As shown in Example 1, we
first project the T-sequence w.r.t. the prefix ‘a’, then
perform an enlargement projection w.r.t. ‘b’ until
the last annotation cannot be enlarged.

Here, the notation→ 2 stands for “pointer to ele-
ment having time = 2”. The first occurrence of ‘a’ is
moved into the prefix, so its corresponding pointer
is set to /0. In addition, since the third element inN1

does not treat ‘a’ as its prefix, its pointer is set to /0
as well. Then, we consider the case w.r.t. the prefix
‘ab’ beyondS1|a, we can obtain:

S1|ab = {({c},3),({a,c},4)}
N1 = {(〈1,2〉, /0),(〈2,3〉,→ 3),(〈2,4〉,→ 4)}
Note thatN1 has two time annotations for each

occurrence of the prefix ‘ab’, since the prefix has
two items distributed in two itemsets.

5.2. Parallel Formulation

The overall structure of the computations performed
by the FTP-tree projection for discovering FT-
patterns is generated by the PrefixSpan algorithm.
Generally, there are two methods that can be used to
decompose the computations27. The first approach
is the data parallel formulation that exists in com-
puting the support at each node, whereas the second
method exploits the task formulation that lies in the
tree-based nature of the computation. We integrate
the basic idea of FDMSP22 and MapReduce9 to per-
form the data parallel and task parallel formulations,
respectively, in order to maximize the parallel pro-
cessing of computations.

First, we use the data parallel formulation to de-
compose the computations associated with counting

the support of each T-pattern in a projection tree.
The formulation works as follows.

The trajectory database is initially partitioned
into k parts of equal size and each one is assigned
to a distinct processor, wherek is the serial num-
ber of a processor. Then we use the following steps
to generate the globalL1-patterns. Firstly, compute
the union of the localL1-pattern at each processor.
Secondly, compute the support count (density) of
each localL1-patterns based on theComputeDen-
sity approach3. Thirdly, each processor broadcasts
the support counts of its T-patterns to any other pro-
cessor. Finally, each processor sum up the support
count of every local T-patternγ . If the value of
Count(γ) > min count, γ is treated as a globalL1-
pattern, then output it into a globalL1-pattern set
S . The communication complexity of computing
theGCountof each T-pattern isO(k2). The detail of
the data parallel formulation is available in Ref. 6.

The second phase of the parallel processing is the
task parallel formulation, i.e., distributing the tasks
among processors. In this study, we borrow the basic
idea behind the MapReduce programming model9 to
achieve the task parallelism.
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Fig. 1. Workflow overview.

Figure 1 shows the workflow of a MapReduce
based task parallel formulation. When the user calls
the MapReduce function, the following series of op-
erations occur. Note the numbered labels in Figure 1
correspond to the numbers in the list below9.

1. The MapReduce library in the user program
partitions the inputL1-subtree intoM pieces
of L2-subtrees. Then, it starts up many copies
of the program on a cluster of processors.

2. The master processor is special, and it is
responsible for assigning work to the rest
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agents. There areM map tasks andR re-
duce tasks to distribute. The master picks idle
agents and distributes each one a map task or
a reduce task.

3. A agent who is distributed a map task reads
the L2-subtree of the corresponding input
split. It parses the key/value pairs out of
the input data and passes each pair to the
user-defined Map function. The intermediate
key/value pairs produced by the Map function
are buffered into memory.

4. The buffered pairs are written to the local disk,
partitioned intoR regions by the partitioning
function. The locations of these buffered pairs
on the local disk are passed back to the mas-
ter, who is responsible for transferring these
locations to the reduce agents.

5. When a reduce agent is activated by the
master about these locations, it uses re-
mote procedure calls to read the bufferedL2-
subtrees from the map agents. When a reduce
agent has read all intermediateL2-subtrees,
it merges them into one singleL2-subtree so
that all occurrences of the similar prefix are
grouped together. The detail of the merge ap-
proach is given in Example 2.

6. After the reduce agent receives the counting
value from the map agents, it will find the
FT-patterns as well as output theL2-patterns
to G . In this phase, the reduce agent iter-
ates over the intermediateL2-subtrees and for
each unique intermediate key encountered, it
passes the key and the corresponding set of
intermediate values to the user’s Reduce func-
tion.

7. Finally, the agents will generate the globalL2-
subtrees by pruning infrequent T-patterns, and
the master wakes up the user program. The
MapReduce call in the user program returns
back to the user code and iterates the above
steps to achieve the task parallel formulation
of generating the globalLk-subtrees (k> 1).

Example 2.Given three processorsp1, p2, p3, the
FT-patterns w.r.t. prefix{a,b} at each processor are
as follows:
L1|ab = {{ab},{(ac)},{(d)},{a(c) f }}

L2|ab = {{ab},{a(cd)},{(d)},{b(de)},{(cd)},{( f ),{d f}}

L3|ab = {{(a)},{(ab)},{(c)},{(d)},{(cd)},{ f },{( f )}}

In Figure 2, the subtrees corresponding to the
above FT-patterns and the union tree clustered top2

below the above three subtrees.
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Fig. 2. Subtree union operation.

5.3. Candidate T-sequence Pruning

The pruning phase in the plute algorithm plays
an essential role in the improvement of the min-
ing efficiency. In order to save the storage space
of candidate T-patterns, we combine the pruning
strategy23 and the annotation-based projection prun-
ing approach10.

The basic idea of pruning the annotation-based
projection10 is to determine whether the time an-
notation within its hyper-cubic neighborhood (the
hyper-rectangle centered in each dataset point and
having the edge of 2τ , whereτ is the time toler-
ance) is dense, which means any annotation within
the specified interval is frequent. Since a T-pattern
that does not contain any useful occurrence of the
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prefix can generate a large volume of useless se-
quences, if no annotation within the neighborhood
is frequent, the item could safely be removed. The
detailed pruning strategies is given in Ref. 23.

The sequence extension can be divided into two
categories: (i) item extension〈t1t2 . . . tn(p)〉, wherep
is an item, and (ii) sequence extension〈t1t2 . . . tnp〉,
wherep is a suffix of the original sequence. Here,
the sequence extension is called a superset of the
initial T-pattern. Based on theApriori property28,
we can straightforwardly obtain the following two
corollaries23.

Corollary 4. The superset of a local infrequent T-
pattern is infrequent.

Corollary 5. The superset of a global infrequent
T-patterns is infrequent.

Based on the above corollaries, plute adopts the
following two pruning strategies23.

1. Item pruning. Given two extension T-
sequencesS⊕ µ1 ⊕ µ2 ⊕ . . .⊕ µn andS⊕i ν ,
whereν is an item extension, denoted as⊕i. If
S⊕i ν is not a global FT-pattern,S⊕µ1⊕µ2⊕
. . .⊕ µn ⊕i ν is not globally frequent, which
means the possible item extension ofS⊕ µ1

to the last itemν can be disregarded.

2. Sequence pruning. Given two extension T-
sequencesS⊕ µ1⊕ µ2 ⊕ . . .⊕ µn andS⊕s ν ,
where ν is an sequence extension, denoted
as⊕s. If S⊕s ν is not a global FT-pattern,
S⊕µ1⊕µ2⊕ . . .⊕µn⊕sν is not globally fre-
quent, which means the possible item exten-
sion ofS⊕µ1 to ν should be pruned.

Since there exist several T-sequences likeS⊕i ν
andS⊕sν as the sequence is augmented. The candi-
date pruning can help eliminate the unnecessary T-
patterns in order to reduce the communication cost
before sending the support computation request to
other processors.

6. Experimental Evaluation

6.1. Experimental setup

In this section, we report the experimental studies
by comparing plute with the typical parallel sequen-
tial pattern mining algorithm (PartSpan)6 which per-
forms the task parallel formulation by using the
hash partitioned sequential pattern mining approach
HPSPM19. The experimentations consist of measur-
ing two important parameters including: execution
time and communication cost. Without loss of gen-
erality, all algorithms were run on the real as well as
the synthetic data sets, respectively. The description
of the data sets are given as follows.

1. Trucks data set consists of 276 trajectories
from 50 trucks delivering concrete to several
construction places around Athens metropoli-
tan area in Greece for 33 days, for a total of
112,203 points§.

2. The synthetic data are generated by
Brinkhoff’s network-based generator of mov-
ing objects29. It contains 100,000 trajectories
of one day movement over the road-network
of Oldenburg. The data size is about 225Mb.

All experiments are conducted on a computer
workshop consisting of 8 PC with Pentium IV 2.4
GHz CPU, 512 Mb of RAM, and running Microsoft
Windows XP Professional Operating System.

6.2. Comparison of Parallel Time

In this series of experimentations, we will evaluate
the parallel execution time under a variety of param-
eter settings. We first compare the parallel execution
time of plute with PartSpan by changing the number
of processors from 4 to 8. Figures 3 and 4 illustrates
the execution time between these two algorithms in
the real as well as the synthetic data sets at a mini-
mum support of 0.1%.

§Available from http://www.rtreeportal.org/
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Fig. 4. Synthetic data

As we can see from Figures 3 and 4, the run-
time of PartSpan and plute decreases as the number
of processors increases. This is due to the specific
data and task parallel formulation approach used in
these two algorithms. In particular, plute performs
better than PartSpan in all cases with distinct pro-
cessors, and reduces the execution time with respect
to PartSpan by a factor up to 1.85 in the real data set
and 1.35 in the synthetic data set, respectively. This
is because plute employs MapReduce programming
model to find the global T-patterns which helps re-
duce the communication cost, and we will further
explore the communication cost in Section 6.3. In
addition, it specifies aMap and Reducefunction
to schedule the program’s execution across a se-
ries of processors and can handle machine failures.
Whereas, PartSpan only uses the hash partitioned se-
quential pattern mining approach19 to assign tasks to
processors.
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Fig. 6. Synthetic data

Figures 5 and 6 show the execution time compar-
ison of these two algorithms as the minimum sup-
port threshold is increased from 0.2% to 1% in the
parallel computing environment of four processors
in the real and the synthetic data sets, respectively.
We can see that the execution time of PartSpan and
plute decreases linearly with the minimum support.
This is duo to the specific candidate pruning strate-
gies, which reduce the candidate trajectory patterns
in a nearly linear fashion with the minimum support
that have been addressed in Ref. 21. We also find
that plute is the winner and achieves the biggest gap
with regard to PartSpan of 1.47 times in the real data
set and 1.8 times in the synthetic data set with the
minimum support ranging from 0.2% to 1%. The
reason is that the MapReduce based task parallel
formulation approach applies a number of optimiza-
tions that are targeted at reducing the amount of tra-
jectory patterns sent in the network, e.g., the local-
ity optimization allows us to read trajectory patterns
from local disks9.
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Finally, we study the effect of the changing data
size on the parallel performance among these algo-
rithms with four processors. Note that the experi-
mental result are similar in any number of proces-
sors. We can see how PartSpan scales up as the car-
dinality of data is increased ten-fold, from 500k to
5M in the real data set (in Figure 7)and from 20M to
200M in the synthetic data set (in Figure 8), respec-
tively. The minimal support is set to 0.5% in this set
of experiments.
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Figures 7 and 8 show that the execution time
w.r.t. these two algorithm increases as the data size
grows. The execution time of PartSpan and plute
increase linearly with respect to the varying data
sets, which implies that these two algorithm are
more scalable. Because PartSpan and plute apply
the prefix-based item and sequence pruning strate-
gies that are not sensitive to the changing cardinality
of data.

6.3. Communication Cost Comparison

In parallel systems, the communication cost across
distinct processors is often high, thus we have to
further analysis the effect of this evaluator. In this
set of experiments, the communication cost includes
the broadcasting time and the respond time to other
processors. We observe the communication time be-
tween PartSpan and plute executed at four proces-
sors as the cardinality of the synthetic data sets in-
creases from 10M to 200M at the minimum support
of 0.2%.
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The results are shown in Figure 9, and they agree
with the cases in the real data sets as well. By Fig-
ure 9, we see that the communication cost in terms
of plute increases linearly with respect to the car-
dinality of data. The plute algorithm is the win-
ner in each experiment. This is because plute em-
ploys the MapReduce model to discover the global
T-patterns, each processor only needs to sent theLk-
subtree (wherek is the level of subtrees) to its cor-
responding agent instead of broadcasting to all pro-
cessors that helps reduce the communication cost.

7. Conclusions and Future Directions

In this paper, we propose a novel parallel sequen-
tial time annotated patterns mining method for mas-
sive trajectory data, called plute. Its general idea is
to partition the search space by the prefix-projection
approach, and introduce the parallel strategy to di-
vide the parallel computation into the data formula-
tion and the MapReduce based task formulation. To
further improve the mining efficiency, two specific
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candidate strategies are applied, i.e., item pruning
and sequence pruning. The performance study de-
scribes in detail the merits of plute with regard to
different parameter settings in the real as well as the
synthetic data sets.

The plute algorithm is a new methodology for
efficiently mining the trajectory patterns in massive
data, it can also be directly applied to mining other
sequential patterns with time annotations. Our fu-
ture research direction includes: (i) extend plute to
mining the web logs; (ii) optimize the low-level pa-
rameters, e.g., the support for parallel computations;
(iii) design a prediction method of uncertainty tra-
jectories in moving databases based on plute; (iv)
apply other data mining approaches30,31,32,33 to im-
prove the performance of plute.
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