

Quick Rendering of Outdoor Small Objects and

Persistent Research and Implementation

YE Li-na

Computer center of public course，Wuhan Institute of Shipbuilding Technology

Wuhan，China

e-mail：504292159@qq.com

Abstract—This paper first introduces the method of drawing

an efficient outdoor small object group widget batch, then

design a representation to the method of creating widget

visible set search strategy based on improved BSP tree and its

corresponding to the efficient use of memory, and finally

achieve the efficient and fast rendering terrain surface small

objects in a demo display using this method.

Key words-outdoor small objects; Quick render; persistent；

BSP tree; Batch(key words)

Anybody who played 3D games knows that small objects

in 3D games are usually immobile objects(they can’t

participate in the interaction), they exist only to increase the

depth of feeling the ground. Although these small objects

with the new regional activities can randomly generated

scenarios, but astute players in a position to return to the

time before may notice some subtle differences. In addition,

artists usually want to control the appearance of all levels

affect things, so how to define better what type of small

objects will appear in the piece of the region, as well as the

frequency in which they appear, and in extreme cases, a

separate place some small objects to achieve special look for

terrain rendering part also can’t be ignored. Another problem

can’t be ignored is that their destructiveness: though small

object itself is not moving, but the players hope a scene

incident will affect them. For example, the game will be a

huge explosion by changing the original terrain texture to the

performance of the damage suffered by the ground, so if the

grass unharmed in the blast will be very absurd, it can be

temporary or permanent removal of small independent from

the scene small objects or groups of objects help to increase

immersion.
For how to efficiently render small objects, we need to

pay attention to two issues:
1) How to make small objects that was generated

quickly fall on the visually truncated body;
2) How to draw results list mode efficiently.

I. INTRODUCTION

Although our goal is to render highly complex, covered

with small objects of the scene, the independent grids that

make up the small objects don’t have to be complicated. In

fact, the most effective models as objects of small objects

(we call widget) are usually only a few single-sided

polygons and textures. This simplicity allows us to render

much more objects than other methods, thereby we can

increase the overall complexity of the scene. Fig .1 shows a

widget that can be used as a simple grid, which consists of

eight-sided triangle and a texture components.

Figure 1. A simple ground cover grid

Although the grid itself is very simple, but it’s not easy to

draw them. Now, the graphic hardware can render a

considerable number of triangles. But only when the unit is

rendered block by thousands of vertices can we get the best

performance. Rendering thousands of copies of eight

different triangular mesh is not the best use of the graphics

hardware.

II. EFFICIENT BATCH RENDERING OF THE WIDGET

A．Widget set

Usually, it’s ok that we use the pre-conversion widget fill

the vertex buffer, in fact, you can find a way to make the

graphics hardware with the correct matrix transformation for

each widget. This is similar to skin problems, each vertex in

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015)

© 2015. The authors - Published by Atlantis Press 1046

time will transform the role of a matrix version of the index

and then multiple copies of the same widget join buffer.

Each independent widget it contains every vertex must have

the same index value, but continuous widget may have

different values. Using such an index system, as long as

there is a constant matrix vertex space, you can put as many

widget into a single vertex buffer. This method introduced

by Gosselin[1] et al., Used to render the role of large, but

because the skeletal animation, so during one API call, it can

only render four characters. For small objects, in one API we

call can be rendered more widget. The following structure

describes the possible vertex format of the widget:
typedef struct
{
 float position[3];
 float uv[2];
 u32 strIndex;
}WIDGETVTX;

Because vertex buffer contains multiple widget, so we

have to build an index buffer contains a single strip to draw

all widget. We must remember that we should increase the

number of vertices of a widget an each successive widget

base vertex to be addressed to the correct set of vertices.

B. Draw widget set

When we completed the vertex and index buffers, we can

draw multiple widget in a single draw call a. To achieve this,

you first need to generate a set of widget that must be drawn

and a transformation matrix corresponding to them, and then

the transformation matrix of the first widget is sent to the

corresponding vertex shader constant registers, and drawing

primitives. If the widget's number to the number that can be

sent in a single group, just send many groups that contain as

much widget as possible.

III. FAST RENDERING WIDGET AND LASTING WAY TO

ACHIEVE

After mastering how to draw a lot of widget efficiently,

followed by the method that is to solve how to generate the

corresponding instance, according to one point of view

which is always changing, and this will be discussed in detail

in the next section of a position in the scene all the widget by

precomputed and to establish an efficient method BSP tree

representation method to generate visible widget set quickly.

We call the method that is used to store the scene widget

location BSP tree. Use BSP tree, rather than quadtree or

octree, making the scene become irregular shape, and spend

no extra memory storing the empty node. BSP tree is a

hierarchical composition of the surface, each plane would

cut scene into two pieces, each object on the scene surface is

at each side or the other side[2]. Fig .2, which shows an

example of the first two planes of BSP tree.

Figure 2. BSP tree structure

As can be seen from the figure, figure A shows the entire

scene, a panel divides the entire scene into upper and lower

ports in the figure B, panel C and B in another plane

perpendicular to the plane of division of the whole turn the

upper part of the scene being further subdivided into more

detail about the two parts, this method divides the objects in

the scene into a binary tree.

A. Improvement strategies based approach represents

efficient use of memory BSP tree

Enhance the utilization of the CPU cache is to reduce the

size of the BSP node structure and the use of some type of

memory predictable access patterns. Structure defined node

checks the beginning, which shows that it is divided into two

roughly equal parts: the first part contains the division planes,

while the second part contains the position of the child node.

To ensure that each selected plane is axis aligned with

one of the three axes, we can greatly reduce the storage

required for each node divided plane memory. This plane

can be reduced to the desired 16 bytes to 4 bytes (to save the

plane from the origin), and two bits (for which is represented

by the axis), the remaining number of 30 to store a pointer to

the tree . In addition, in order to save memory consumption

for storing pointers, we also need to use some of the memory

access patterns for tree query. If we can ensure a child node

of given node can be saved in the parent node, we don’t have

to need preceding node pointer. Finally, in order to reduce

the memory that was saved to point next nodes, you can save

it as an absolute displacement distance of the current node,

these changes make the definition of BSP node only need 8

bytes total, its structure is as follows:
typedef struct
{
 u32 axie:2;
 u32 numFrontLeaves:4;
 u32 numBackLeaves:4;
 u32 backNodeOffset:22;
}WIDGETNODE;

B. Improved build BSP tree

After creating an array of all the widget scene, the
system will calculate an axis-aligned bounding box for them,
and then be able to find the longest axis of the box on each
node. This axis will become division planes in the node
ordering their location and distance between the axes follow
after, then place on the plane between two middle widget.
For example: There are 63 scene widget, split plane will be

1047

placed between the first 31 and second 32 widget. In this
manner continue to build nodes, until each node has only a
small amount of widget, finally, this node is called leaf node.
Here is the structure, said:

typedef struct
{
 float position[3];// widget position
 s8 sinAngle;// Toward the sin (* 127)
 s8 cosAngle;// Toward the cos(*127)
 scale;// widget zoom ratio * 32
 pad;
}WIDGETLEAF;

Here we describe CWidgetBSP bsp.h class through

widgets bsp.cpp and widgets to be responsible for

establishing and managing a widget BSP tree. The parameter

of number function in code is a WIDGETLEAF structure

array, the system will create a BSP tree based on them. Once

the trees are established, we can efficiently search to find a

list of widget that must be drawn. Here is the core algorithm

of the process:
class CWidgetBSP
{

public:
 CWidgetBSP();
 ~CWidgetBSP();

void CreateTree(CWidgetMesh *pMesh, WIDGETLEAF
*pLeaves, u32 uNumLeaves);
 void DestroyTree();

// Construct an observation box
 void Draw(const D3DXMATRIX &rViewMtx, const float
fov[2], float fFar=50.0f);
protected:
 void DrawNode(const WIDGETNODE *pNode);
 void DrawLeaves(const WIDGETLEAF *pLeaves, u32
uNumLeaves);
 void CalculateViewBox(const D3DXMATRIX
&rViewMatrix, const float fFov[2], float fFar);
 u32 m_uTreeLength;
 CWidgetMesh *m_pMesh;
 WIDGETNODE *m_pTree;
 float m_viewBox[3][2];
};
#endif
……
void CWidgetBSP::CreateTree(CWidgetMesh *pMesh,
WIDGETLEAF *pLeaves, u32 uNumLeaves)
{
 u32 uNumNodes,uLength;
 void *ptr;
 assert(sizeof(WIDGETNODE)==8);
 assert(sizeof(WIDGETLEAF)==16);
 DestroyTree();
 // Here you must create at least two branches for a tree
 if(uNumLeaves>1)
 {
 uNumNodes =
(uNumLeaves+(LEAVESPERNODE-1))/LEAVESPERNODE;
 uNumNodes = uNumNodes*2;
 m_uTreeLength =
uNumNodes*sizeof(WIDGETNODE) +
uNumLeaves*sizeof(WIDGETLEAF);
 m_pTree =
(WIDGETNODE*)malloc(m_uTreeLength);

 if(m_pTree)
 {
 m_pMesh = pMesh;
 // Create a tree
 ptr =
_CreateTree((void*)m_pTree,pLeaves,uNumLeaves);
 uLength = ((u8*)ptr) - ((u8*)m_pTree);
 assert(uLength<=m_uTreeLength);
 }
 }

}
…….

CWidgetBSP::~CWidgetBSP()
{
 DestroyTree();
}
void CWidgetBSP::DestroyTree()
{
 FREE(m_pTree);
 m_uTreeLength = 0;
 m_pMesh = 0;
}
……

C. BSP tree search strategy

When we have a compact, efficient memory access BSP

tree definition, in relation to the study of how to calculate the

rendering widget. For this reason, all the cones must be

within a certain distance and the viewpoint of the widget

from a BSP tree. We can use the size of the viewport, the

camera field of view to construct a matrix and the

axis-aligned box to encompass all such areas, as shown in

Fig .3.

Figure 3. An axis-aligned box observation

With this box, search BSP tree becomes simpler. At each

node, we can put the distance associated with it and the

corresponding observation axis cassette precomputed

maximum and minimum values are compared, in order to

ensure access to which one or more child nodes. Note that, in

order to maintain cache coherence, to access this first node

of the child node we must accessed before the next child

node.

After passing the observation parameters and maximum

drawing distance, CWidgetBSP Draw class member function

will construct an observation box, and then perform a search

based on the viewpoint, for each widget found in the

observation box will call the appropriate class of widget BSP

tree CWidgetMesh the AddInstance member functions.

1048

Widget will eventually render quickly and permanently. The

following is the core of this part of the algorithm:

void CWidgetBSP::DrawLeaves(const WIDGETLEAF

*pLeaves, u32 uNumLeaves)
{
 while(uNumLeaves--)
 {
 m_pMesh->AddInstance(pLeaves->position,
 pLeaves->scale/32.0f,
 Leaves->sinAngle/127.0f,
 pLeaves->cosAngle/127.0f);
 pLeaves++;
 }
}
……

IV. IMPLEMENTATION AND OPERATING RESULTS OF THE

WIDGET

Through the above exposition we can basically achieve a

fast rendering and persistent examples of small objects,

operating conditions can execute vertex shader and pixel

shader in PC graphics hardware to version 2.1 or higher on

the basis of this article using the above method to achieve a

demo example, its operating results as shown in Fig .4, the

scope of this example to draw grass on the ground can be

flexibly designated or randomly generated by the program

can be.

Figure 4. Fast rendering renderings outdoor small objects

REFERENCES

[1] [Gosselin04]Gossdlin,David,Pedro V.Sander,and Jason

L.Mitchell,”Drawing a Crowd:Instancing in Current
Hardware.”In Shader X3(edited by Wolfgang
Engel)[J].Charles River Media,2004．

[2] Samuel Ranta-Eskola.Binary Space Partitioning Trees and
Polygon Removal in Real Time 3D
Rendering[D].Sweden:Information Technology Computing
Science Department Uppsala University.2001.

[3] Heinzle S, GreisenP, Gallup D. Computational stereo camera
system with programmable controlloop. ACM Transactionsons
on Graphics, 2011, 30(4) : Article No.94.

[4] Liu Wei, Wu Yi-Hong, Hu Zhan-Yi. Survey of 2D to 3D
conversion technology for film. Journal of Computer-Aided Design
and Graphics, 2014, 24(1): 14-28 (in Chinese).

[5] Northam L, Asente P, Kaplan CS. Consistent stylization and painterly
render of sterescopic 3D images//Proceedings of the 10th
Non-Photorealistic Animation and Renderng(NRAR’12). Annecy,
French, 2012: 47-56

[6] Liu Bo, Wang Zhangye, Wang Liying, et al. Efficient
modeling and real-time rendering of large-scale urban scenes
[J]. Journal of Computer–Aided Design &Computer Graphics,
2008, 20(9):1153-1162 (in Chinese).

[7] Peng C, Cao Y. A GPU-based approach for massive model rendering
with frame-to-frame coherence[J]. Computer Graphics Forum, 2012,
31(2pt2): 393-402.

[8] AlHalawani S, Yang Y L, Liu H, et al. Interactive facades analysis
and synthesis of semi-regular facades[J]. Computer Graphics Forum,
2013, 32(2pt2): 215–224.

[9] Ma Chunyong, Chen Yong, Han Yong, et al. A GPU-based rendering
acceleration algorithm for urban simulation[J]. Periodical of Ocean
University of China: Nature Science Edition, 2010, 40(7),
141-144+158 (in Chinese).

[10] Krecklau L, Born J, Kobbelt L. View-dependent realtime rendering of
procedural facades with high geometric detail[J]. Computer Graphics
Forum, 2013, 32(2pt4): 479-488.

[11] Hujun Bao and Wei Hua. Real-Time Graphics Rendering Engine[M.
Hangzhou: Zhejiang University Press, 2010: 258-260.

[12] Yongli Zhu，Research of Mesh Simplification and Visualization for
Terrain[D]．Henan：Henan Polytechnic University，2012.

[13] Simulation of 3D Fountain Visualization Based on
Particle System. MEC2013: The 2013 2nd International
Conference on Mechatronic Sciences, Electric Engineering and
Computer 2013,12(7):2638~2641.

[14] Okabe M, Anjyo K, Igarashi T, et al. 2009. Animating pictures of
fluid using video examples[C]//Computer Graphics Forum. Blackwell
Publishing Ltd, 28(2): 677-686.

1049

