
Behavior-aware Trustworthiness Study of Networked Software

Xianwen Fang *
Department of Computer Science and Technology, Tongji University, Shanghai 201804, China

Changjun Jiang ,Xiaoqin Fan
Key Lab of Embedded System and Service Computing, Ministry of Education,

Tongji University, Shanghai 201804, China
E-mail{:cj-jiang,xqfan}@tongji.edu.cn

www.tongji.edu.cn

Abstract

The essence characteristics of software trustworthiness are software execution effect and behavior can be
anticipated, which is an important index of software quality. Under the open and dynamic environments, some
uncertainty factors cause the behavior of software to be uncontrolled, uncertainty and unpredictable. Behavior-
aware networked software trustworthiness research methods are proposed in the paper. Firstly, we propose the
analysis methods of the consistency between the inferred specification models with component specification model.
Then, for analyzing the component interaction behavior, the behavior relativity analyzing method is presented
based on Petri net. Finally, aimed to the outer factors, we analyze the behavioral congruence between theoretical
composite models with dynamic behavior model based on running logs. Theoretical analysis and the example
analysis indicated that this method is benefit to analyze the trustworthiness of networked software.

Keywords: trustworthiness, software behavior, networked software, consistency, Petri net.

*Corresponding author. Tel.: +86-013162346379; fax: +86-021-69589864. E-mail address: fangxianwen@hotmail.com; xwenfang@tom.com.

1. Introduction

With the computer application and network technology
development, software has entered into the national
economy and social life domains, and plays the very
important role in the information society. Software is
taken as the information system's core, the Internet
application's cornerstone, has already become the
modern computer system's soul. But computer system's
flaw is led to by software's question to a great extent.
One hand, along with the application demand's
complication and the dynamic change, software's scale
becomes bigger and bigger, the function is getting more
and more complex, which causes software development

and evolution continually to become more and more
complex, and corresponding trustworthy software
construction technology is lacking, these causes
software product having known or the unknown flaws
which threat software system security and reliably
running seriously. On the other hand, software's running
environment and development environment extend from
the traditional close static environment to open,
dynamic and changeable network environment, thus
application software system formerly whose properties
are implement in one action, the structure inlaying and
the weak evolution, and having the limited
independency, the fixed encapsulation, the interactive
monotonous, can not meet the present application
requirements. Under the network environment, the

International Journal of Computational Intelligence Systems, Vol.3, No. 5 (October, 2010), 542-552

Published by Atlantis Press
 Copyright: the authors
 542

zegerkarssen
Texte tapé à la machine
Received: 26-12-2009
Accepted: 02-06-2010

X.W. Fang et al

behavior of computing entity is uncontrollability,
uncertainty and unpredictable and so on, so the quality
assurance of software has been affected greatly in
execution process, at the same time, the traditional
software engineering thought faces stern challenge1.
Therefore, the development trend of software industry
faces the complicated and diversified application
demand based on existing and new development
software components, produces high quality software
system with controllable, manageable and prevention
ability through component collaboration.

Under the open environment, the trustworthiness of
networked software system mainly comes from the
three reasons: Firstly, in the traditional data-driven
software construction method, data effect is played
attention more, the process behavior is neglected, thus
which leads to the execution behavior of large software
system uncontrolled, unmanageable and unpredictable.
This reason is along with the software scale expanding
quickly, the software system need use the composite
way to build, these components development usually
needs over a hundred people, and even over a thousand
people design together, so we must avoid person
subjective difference as far as possible. At the same
time, components are also content self-containing,
structure independent. But “the black-box” aware, data-
driven construction method is unable to determine and
solve individual difference question in the component
collaboration process, simultaneously neglect the
individual interaction influence each other. Secondly,
view from software structure, the software entity and
the collaboration part is the tight coupled. This kind of
tight coupling development pattern is very difficult to
adapt the dynamic change of application demand in
networked environment. Finally, the network
application environment's opening and dynamic change
cause to have the gap between the seal supposition in
software design and the network environment opening
reality. Network environment's open characteristic
causes the software to be able to process the disturbance
and the destruction from the natural factor (for example
network delay, blocking and so on) and the human
factor (for example malicious attacking, virus attacking
and so on), and safeguards the software normal
operation, however the existing seal supposition design
method is unable to satisfy such application
requirements.

Therefore, in order to make software system
trustworthy, aimed to the open and dynamic
environment, software system development, running
and maintenance need to be provided direct and
effective support, and to transform from the data-driven
software construction way to the behavior-aware
construction way, from the tight coupling software
architecture to the collaboration entity polymerization
loose coupling structure, from inlay and monotonous
interaction mode to separate and diversiform
collaboration mode, from the close running environment
to the open running environment.

The rest of this paper is organized as follows.
Section 2 introduces related work. In Section 3 details
proposes behavior-aware trustworthiness study methods
of networked software. A case of E-Banking simulation
system is given out in the Section 4. Finally,
Conclusions are in Section 5.

2. Related Works

Software trustworthiness is introduced since the 1970s,
in the Ref.2 proposed the credible system concept. The
trustworthiness question of information system has been
focus point of the academic circle and the industrial
world. In recent years, the software trustworthiness
research has been paid a big attention all over the world.
In the US, DARPA, NSF, NASA, NSA and other DoD
organization participated positively the trustworthy
software and system research3. Europe started the
research project of “Open Trusted Computing” in
January, 2006, in order to develop the source
trustworthy software. Regarding the concept of
trustworthiness, researcher has proposed different
description from different angle. From system's angle,
the definition of trustworthiness based on the ISO/IEC
15408 standards are: A trustworthy component,
operation or the process behavior under the operating
condition can be predicted, and can resist the
destruction well by the application software, virus and
physical disturbance. The trusted computing organize
4proposed the definition of trustworthiness: If an entity
always execute conforming to the expected goal, then
the entity is trustworthy. From the user experience's
angle, Ref.5 thought that the trusted computing was the
reliable security computing, and including the user trust
degree to software. From the network behavior angle,
Ref.6 thought that the trustworthy network system's
behavior and result may be anticipated, and can reach

Published by Atlantis Press
 Copyright: the authors
 543

 Behavior trustworthiness of software

the function that the behavior can be monitored, the
behavior result may be appraised, and the abnormal
behavior may be controlled. Ref.7 proposed that
trustworthy software was the credible status, credible
ability and the trusted behavior. Ref.8 proposed
behavior model and verification methods of internet
software architecture aimed to the software behavior
uncertainty and imperfection under the networked
environment.

For guaranteeing software trustworthiness, the
formal method has obtained many attentions. Like
formal verification, model checking method, theorem
proof method, software testing and so on 9. The existing
theory and method have some role in trustworthiness for
these software components which in the close
environment supposition, the small scale and low
complexity to a certain extent, but have big limitation
for opening environment and dynamic construction
large scale application software system10. This reason is,
firstly, the components are trustworthy, but the obtained
large scale software system may not be trustworthy after
dynamic construction. Because software component
behavior may influence mutually in collaboration
process, thus causes to composite software behavior
may not be equal to the behavior sum of the software
components. Secondly, the state space explosion
question has limited the formal method enormously in
the large scale software application, thus reduces its
usability. Moreover the formal theory, software testing
and the fault-tolerant technology by simple splicing are
also insufficient as unified foundation to analyze
software trustworthiness. Thirdly, the formal
verification methods mainly aim the program
correctness question in the close environment, but under
the networked environment, the function correct
software cannot guarantee that it is trustworthy.
Fourthly, with the improvement of software complex
and scale, and the dynamic evolution of process, the
traditional software testing technology is difficult to
discover and locate software untrustworthy point, and
the difficulty is also getting bigger and bigger. Because
under the networked environment, the software
components carry on the tasks to implement
interconnection, intercommunication, cooperation and
alliance with other software entity on cross network
through collaboration way. Therefore, untrustworthy
behavior of software not only exists in the software
components, simultaneously also exists in the software

collaboration process, but the present checking
technology mainly faces in the internal component.
Finally, the existing program proof theories and the
model checking methods carry on the program
properties verification by execution effect. But
according to the definition of trustworthiness, the
software behavior is the core of the software
trustworthiness.

3. Behavior-aware Trustworthiness Study
Methods of Networked Software

3.1. Analysis Framework

Under the networked environment, owing to software
evolution continually, it is very difficult to guarantee the
software quality using traditional software engineering
method; meanwhile, for dealing with outside attacking,
there is a big limitation using the existing program
verification and model checking methods. So it is
difficult to guarantee networked software controlled,
managed, prevention ability, as well as the result and
the behavior may be unpredictable, also very difficult to
realize the trustworthiness. The software running
behavior can reflect comprehensively the software
interaction behavior change situation in the dynamic
evolution under the complex environment.

Trustworthiness is important index of software
quality, its essence is the software execution effect and
the execution behavior can be anticipated. Therefore,
this paper viewed from the software behavior, a
behavior-aware networked software trustworthiness
research framework is proposed, showed in Fig.1. The
main research ideas are that determining the consistency
between the component specification description and
component implementation before the components used,
that is, the consistency between the specification
description models with the inferred specification11
behavior model. If they are consistent, it showed that
the component function of specification description and
the component implement function are the same, which
may guarantee the component identify, may also
analyze some bug in the component. The component
which satisfies the specification consistency is sent to
the behavior certification center for identity certification,
and the center issues the behavior certificate to the
component provider after inspection.

Published by Atlantis Press
 Copyright: the authors
 544

X.W. Fang et al

Some components with behavior certificate may
combine together to realize complex function
requirements, but composite component need be
verified in the combination process, in order to
determine that the composite component is function
correctness, does not have the deadlock or trap
structures. At the same time, the composite component
need analyze component interaction behavior relativity,
the aims are to determine whether one component

behavior be influenced by the others. If the composite
component does not satisfy the interaction behavior
consistent relativity, then the function of composite
component may not be the function sum of the
candidate components. So, it can not satisfy the function
requirements. Finally, we extract the dynamic
behavioral model of composite component according to
the component running logs, and compare the dynamic
behavior model with theoretical composite model, judge
whether the two models satisfy behavioral congruence,
if they are behavioral congruence, then the component
interaction process is not to be influenced outside

factors, such as virus, vicious program, and network
environment and so on. The implementation process can
be controlled, managed, and prevented, its result may be
also anticipated, and building networked software by the
methods is also behavior trustworthy.

3.2. Component Specification Consistency and
Behavior Certification

In networked environment, owing to system evolution
constantly and unpredictable external environment, it is
necessary to use software behavior to analyze software
quality which can be controlled and managed in
software lifecycle. So we need keep the software
specification description consistent with implementation.
Many software tasks require specifications: verifying
programs requires specifications of their intended
behavior, testing programs requires specifications to
determine the input domain and expected outputs, and
maintaining programs requires specifications to
understand what aspects of the behavior can be
modified. Unfortunately, most programs do not come
with precise specifications. Worse, those that do often
fail to preserve the consistency of specifications and
implementations. As the implementation changes, the
specification becomes increasingly incorrect11.

Analyzing the behavior of software systems, in
order to aid program comprehension, reduce their
maintenance costs, and improve their quality, further to
make the software trustworthy, is a complex and
challenging task. Having incorrect, incomplete, or
outdated documented specifications, as a result of short
time-to-market constraints, changing requirements, and
poorly managed product evolution, reduces
comprehension of the code base, increases maintenance
costs, and adds challenges towards verification of their
correctness. One approach to address this challenge is to
automatically infer specifications of a system from its
execution traces by specification mining methods.
Specification mining methods have been addressed in
Ref.12and Ref.13. Which includes two methods; one is
static specification inference12 on basis of program code,
the other is dynamic specification inference13 using a
program’s dynamic behavior on sample executions.

Fig. 1. The trustworthiness analyzing framework of networked
software.

Published by Atlantis Press
 Copyright: the authors
 545

 Behavior trustworthiness of software

Ref.14 proposed a dynamic analysis approach for
automatically inferring temporal properties from a
program’s execution traces and demonstrated that the
inferred properties are useful for supporting program
evolution on some small examples under controlled
conditions, but the methods is only available in small
program, and can not deal with dynamic behavior, the
networked software scale is comparatively big and
dynamic.

 Although early work in this area emphasized static
analysis of the program text, several researchers have
explored the possibility of using a program’s dynamic
behavior on sample executions to infer a specification
recently. Ref.11 identified reasons why scaling dynamic
inference techniques had proven difficult, and
introduced solutions that enable a dynamic inference
technique to scale to large programs and work
effectively with the imperfect traces typically available
in industrial scenarios, and described approximate
inference algorithm, and evaluated heuristics for
winnowing the large number of inferred properties to a
manageable set of interesting properties. But the
methods omitted some inappreciable behavior, which
may be vicious behavior or lead to some problem in
networked environment. In the paper, we propose a
novel analyzing methods about component specification
description model consistent with the inferred
specification model (showed in the Fig.2), and behavior
certification methods.

The digital certificate provides the identity
certification for the network computing, but there is still
not having the very good mechanism to verify
component behavior presently. The behavior certificate
method is proposed based on the digital certificate; the
aims are to describe the software behavior conveniently,
in order to make up the insufficiency that digital
certificate can not describe the behavior. The behavior
certificate method is a supplement, but it is not a
substitute for the digital certificate. About the
mechanism of behavior certificate and the behavior
certification center construction, the paper does not
make the analysis. This paper only uses the behavior
certificate methods to carry on the component behavior
certification. Through behavior certification, the
component meets requirements as follows: component
specification description model is consistent with the
inferred specification model, and the component is
function correct, executable, not existing deadlock or

trap structures and so on, which may influence running
correctly.

In the Fig.2, we can see that the methods aimed to
verify the consistency between the component
specification description and component
implementation. In open environment, the new
components and legacy components are required to
make the specification consistency checking before
component used. We build up the behavior model of the
component specification description through analyzing
the dependent relationships in component specification
description, the work is simple, there is some tools15 can
be used. The inferred component specification behavior
model is obtained by analyzing component code, which
is transformed into instrumented program firstly, and
abstract the events and states of interest. Then run the
instrumented program through a set of test cases to
collect execution traces. We present an algorithm about
inferred specification behavior model using the Petri net
behavior theories. Finally, we compare the behavior
model of component specification description with
inferred specification behavior model, and determine
whether they satisfy consistency. If they satisfy the
consistency, the component specification description is
consistent with the component implementation, at the
same time, the component is function correctness, no
deadlock or trap by analyzing the inferred behavior
model, then the behavior certification center passes the
component certification, and issue a behavior certificate
to the component provider, keep a copy in the behavior
certification center. Here, the certificate content is the
inferred specification behavior model. In our methods,
we adopt the temporal Petri net to analyze the
consistency. Temporal Petri net which combine the

Fig. 2. The methods of component specification consistency
and behavior certification.

Published by Atlantis Press
 Copyright: the authors
 546

X.W. Fang et al

advantages of Petri nets and temporal logic in which
temporal constraints of a given net are represented by
the temporal logic formulas, can describe clearly and
compactly causal and temporal relationships between
the events of a system16. The basic Petri net is
convenient to descript the component behavior, and the
temporal logic formulas can depict the behavior
constraint and component properties.

Definition 1.Let σ is execution trace of
event/transition model M, if event/transition model M
satisfies the behavior property bp, noted as M|=bp, then

σσ ∈∀ ' , bp=|'σ .
Definition 2.If Φ≠∩ ji MM (nji ≤≤ ,1), then

model iM and jM can be assembled into a new model
by the share point, noted as ji MM ∝ .

Algorithm 1. The building algorithm of inferred
specification behavior model

Input: component code.
Output: inferred specification behavior model.
(i) Transforming component code into

instrumented program, and abstracting the
events and states of interest.

(ii) Running the instrumented program through a
set of test cases, in order to collect component
execution traces.

(iii) Suppose the execution traces are nσσσ ,......,, 21
based on different test cases, σ is compose of
the events and states of interest. Aimed to every
execution tracesσ , building the corresponding
event/transition models nMMM ,......,, 21 .

(iv) According to component domain knowledge,
determining that the component need satisfy
behavior properties, and using the temporal
logic formulas to represent them, assuming the
behavior properties are kbpbpbp ,......,, 21 .

(v) Selecting the event/transition model in order,
according the definition2, assuming

bpMM ji =|, , iM and jM composite model
is newM , if newM |=bp, then newM is put into
the model table, and rid the iM and jM from
the model table. Else, we use heuristic inference
methods14 to alter the composite model, until all
model be accomplished.

(vi) Transforming the event/transition model which
satisfies the properties into temporal Petri net
model, that is, transforming the event into the
place of Petri net, transforming the transition
into the transition of Petri net, and transforming

the edge into the directed arc of Petri net.

3.3. Component Interaction Behavior Relativity
Analyzing based on the Behavior Theories of
Petri net

Under the networked environment, some complex and
large scale function requirements are implemented by
many components interaction each other, but there may
be have some problems in the process of interaction,
such as deadlock, trap, and conflict and so on, so the
behavior verification of interaction component is very
necessary. Deadlock and trap checking have been
studied in many literature presently, in Refs.17-19
mentioned the verification method based on Petri net.
Owing to the verification methods based on Petri net
has been mature; the problem of behavior verification
should not be studied in the paper.

After the interaction behavior of components is
verified, the composite interaction component satisfies
the structure properties, no deadlock or trap in the
composite component. At the same time, the candidate
components satisfy the function requirements. But,
these according with the function needs may not to
reach the expected function requirements. Main reason
is the behavior relativity not taking into account during
components interacting, which may influence the
function implementation. Component behavior relativity
mainly refers to one model behavior may be influenced
by others when component interacting, leading to some
model behavior function occur to change, even some
interactions are insignificance. The interaction behavior
relativity has four kinds: consistent behavior relativity,
interactive behavior relativity, controlled behavior
relativity, exclusive behavior relativity. Consistent
behavior relativity is one kind of good interactive
behavior relationship, which indicates two interaction
models accomplishing the function requirements and the
behavior of themselves are not influenced. Interactive
behavior relativity refers to mutually overlapping
phenomenon happened in behavior after interacting with
each other, the both model behavior are influenced, and
can not keep the behavior invariance. Controlled
behavior relativity refers to one model behavior
controlled by the other, function and behavior of
controlled model can not be original behavior after
interacting. Exclusive behavior relativity refers to that
the both interaction models are not compatible,
behaviors are mutually-exclusive, can not carry out

Published by Atlantis Press
 Copyright: the authors
 547

 Behavior trustworthiness of software

composition. Under the networked environment, we
should guarantee the interaction components behavior is
consistent, and unable to appear interactive behavior
relativity and controlled behavior relativity, let alone the
exclusive behavior relativity. With regard to non-
consistent behavior relativity, some adaptation measures
must be adopted, in order to make the interaction
components behavior consistent. We propose an
analyzing algorithm of component interaction behavior
relativity (showed in Algorithm 2) based on the
behavior theories of Petri net20,21.

Algorithm 2: The decision algorithm of component
interaction behavior relativity

Input: two Petri net models
Output: the interaction behavior relativity type of

two components
Let () ()0, ; , 1, 2i i i i iPN P T F M i= = are two Petri

nets, 1 2TPN PN O PN= , and 1 2T TΔ = ∩ ,

()'1, 2,..., ; 1, 2
iij i iX j q i= = are all the minimum T-invariant

of
iPN , ()i i iij T ijX XΔ

→Δ= Γ , '1, 2,..., , ; 1,2i i i ij q q q i= ≤ = are the

non-zero projection vector of the minimum T-invariant
of iPN , 1q and 2q are the number of PN1 and PN2
respectively.
(i) According to the definition of Petri net incidence

matrix, computing the incidence matrix of PN1 and
PN2.

(ii) Computing the minimum T-invariant
()'1,2,..., ; 1,2

iij i iX j q i= = of PN1 and PN2.

(iii) Computing the projection vector ()i i iij T ijX XΔ
→Δ= Γ ,

'1,2,..., , ; 1,2i i i ij q q q i= ≤ = of the minimum T-

invariant of PN1 and PN2 on the share transition Δ .
(iv) Determining if the projection vectors can be linear

expression each other, that is, if the projection of
minimum T-invariant of PN1(PN2) can be expressed
by linear combination of the projection of minimum
T-invariant of PN2（PN1）?
\\ The problem can be transformed into to

determine if the equation 3

3 3

3

3 3
1

i

i i i

i

q

ij ij ij
j

X k X
−

− −

−

Δ Δ
− −

=

= ∑
,

{ }1,2,...,i ij q∈ ,
3 31, 2,...,i ij q− −= ,

330 1
iijk

−−≤ ≤ , 1 2i = ∨ has
non-zero solutions (that is, solving the equation
about

33 iijk
−−

).
\\ If the equation has non-zero solutions, the

33 iijk
−− is not all zero, which means that

iijX Δ can be non-
negative linear expressed by other some vectors, then
()iijb X Δ =1, otherwise, there only has 0 solution, that is

33 iijk
−−

=0, which means that
iijX Δ can not be non-negative

linear expressed by other some vectors, then ()iijb X Δ =0.

The interaction behavior relativity type is
determined as followed:

(a) If },2,1{, iiij qjX
i

∈∃ Δ makes Δ∃
iijX can not be

liner represented by vector group
Δ
− −

∃
iijX

33 },,2,1{ 33 ii qj −− ∈ , 21∨=i , then
PN1 and PN2 are not consistent behavior
relativity.

(b) If },2,1{, 11 qjX iji
∈∃ Δ makes

11
Δ∃ jX can not be

liner represented by vector group Δ∃
22 jX ,

},,2,1{ 22 qj ∈ ,))((22
PNLT Δ→Γ)((11

PNLT Δ→Γ⊆ ,
then PN1 and PN2 are controlled behavior
relativity.

(c) If },2,1{, iiij qjX
i

∈∃ Δ makes Δ∃
iijX can not be

liner represented by vector group Δ
− −

∃
iijX

33 ,

},,2,1{, 333 3
iiij qjX

i
−−

Δ
− ∈∃

−
, 21∧=i , and

))(())((21 21
PNLPNL TT Δ→Δ→Δ Γ∩Γ∈σ :

"*'
ΔΔΔ = σσσ , then PN1 and PN2 are interactive

behavior relativity.
(d) If },2,1{, iiij qjX

i
∈∃ Δ makes Δ∃

iijX can not be

liner represented by vector group Δ
− −

∃
iijX

33 ,
},,2,1{ 33 ii qj −− ∈ 21∧=i , then PN1 and PN2 are

exclusive behavior relativity.
(v) Repeating the process (ⅱ)-(ⅳ), and then returning

the interaction behavior relativity.

3.4. The Consistency Analyzing between Theoretic
Model with Dynamic Behavior Model

Viewed from component interaction, many components
are assembled to realize the function integration,
implement new demand, and meet the dynamic change.
But the combination operation may bring some
problems, mainly including the structure question, the
behavior interaction influence, and dynamic running
behavior abnormal and so on. The component
interaction verification is to process the structure
properties question, the aims are that the composite
component may carry out, does not have the deadlock or
trap. The component interaction relativity analyzing is
to solve the component behavior mutually influenced
after interacting with each other, in order to avoid the
function and behavior of component to suffer injury,

Published by Atlantis Press
 Copyright: the authors
 548

X.W. Fang et al

cannot achieve the function and behavior requirements
of composite component. But under the networked
environment, the component is affected constantly by
outer, such as the malicious program, the virus, other
extraneous factor and so on, which may lead to the
abnormal behavior. It is very difficult to solve through
the behavior verification and the behavior relativity
analyzing methods. The dynamic behavior analyzing of
component is very necessary, to analyze affected
situation by other factors in the process of component
interaction. The paper uses the running logs to mine the
calling relationships of every component, extract the
components running traces, and build dynamic behavior
model. Then we compare theoretical composite model
with dynamic behavior model, if they satisfy the
behavioral congruence, then showed that the execution
process has not been influenced, the behavior is normal,
so the composite component can meet the requirements.
Otherwise, it cannot achieve the requirements.

The dynamic behavior model construction has been
studied in some literature. Ref.7 proposed the process
mining model, generated the running traces through
mining the running log, and then analyzed whether the
running traces can be accepted by the theoretical model.
If it can be accepted, then indicated that its behavior
belongs to the theoretical model, otherwise, there exists
non-consistent behavior. This method deficiency is that
the running traces may be correspond to theoretic model,
but the same traces may also be accepted by other
model which is different from the theoretic model. This
kind of question mainly is easy to appear in the model
which has the choice structure; this method deficiency is
also mentioned in Ref.22 and Ref.23. The bidirectional
simulation methods, its principle is that generating
process model according to the running traces firstly,
then analyzing the congruence of theoretical model and
the process model through bidirectional comparison.
But this method deficiency is the result has high error
rate. The reason is similar to the front method, the
construction process model is not correct, sometimes is
not comprehensive. In Ref.22 proposed that an
analyzing method based on the behavior inspection,
which mainly examines the key part congruence of two
models, not overall system behavioral congruence. The
methods can avoid causing the non-consistency of
whole system because of unimportant part, but the
deficiency cannot examine system behavior

comprehensively, and it is also difficult to search key
behavior.

To the behavioral congruence between theoretical
model and the dynamic construction process model, it is
insufficient only to take the key behavior into account.
For comparing all behavior, the dynamic behavior
model must be constructed comprehensively, and the
dynamic model need satisfy determinacy in the
construction process, like the question in Ref.4
mentioned. In order to determine the choice point in
branch structure, we must analyze all running traces,
and adopt certain strategies to locate the choice point. In
order to make the dynamic behavior model construction
as far as possible comprehensively, and correctly, the
paper uses L* algorithm thought24 to realize the
dynamic process model construction. The L* algorithm
thought is to build definite finite state machine to accept
the language strings based on the known alphabet. Its
merit is to learn the knowledge in the process of
building model, aimed to the contradiction situation;
counter-example is constructed, then amending the
model to eliminate the counter-example, at last, a
comprehensive and reasonable as far as possible
dynamic behavior model is achieved. When
constructing the dynamic model, the two judgments is
need, one is whether the string U belongs to the regular
language sets, the other is whether definite finite-state
machine C constructed can accept these the language
strings, that is, L (C) =U? If the key of each question is
no, then we need produce counter-example CE.

Algorithm 3: Dynamic behavior model construction
algorithm based on L* algorithm thought

Input: the component running traces
Output: the dynamic behavior model

(i) Let Petri net Φ=N , select the trace string
from extracting running traces, and take the
character of traces as the transition of N. At
the same time, add the place of N
corresponding to the transition of N.

(ii) If the running traces are not end, then continue
to select the traces. New traces will run in the
behavior model constructed, if the model can
accept the new selecting traces, then not
handling the operation, else, goto (ⅲ).

(iii) If)(σϑ⊂T , here,)(σϑ is the string of
traceσ ,T is the transition sets of N, then we
add the transition T−)(σϑ to N, and renew the
Petri net N.

(iv) if)(σϑ=T and N does not accept the)(σϑ ,

Published by Atlantis Press
 Copyright: the authors
 549

 Behavior trustworthiness of software

then we using the L* algorithm thought to
generate a counter-example CE,

UNLCE −∈)(, and using learning methods to
eliminate the counter-example, the obtained
model can accept the selecting string. Next,
goto (ⅱ), continue to select other traces, until
the traces are end.

(v) Output the building Petri net model, which is
the dynamic behavior model.

A comprehensive and reasonable as far as possible
dynamic behavior model can be achieved based on the
algorithm above mentioned, which laid the foundation
for the behavioral congruence analyzing between
dynamic behavior model and theoretical model. When
comparing the behavior congruence of two Petri net
models, we use the Petri net language theory, and
analyze the equivalence of prefix languages20 of two
models.

4. A Case: E-Banking Simulation System

With the development of electronic and Internet
technology, the financial system's business model and
management has brought new changes. The form of
monetary is changed from the physical currency to the
electronic money. Service mode is changed from
"people-to- person" on the bank counter to the "people-
to-machine" dialogue model. Capital flows is changed
from the entity certificate to the electronic certificate.
These indicate that the banking industry begin to break
through the traditional "reinforced concrete" style of
marketing channels, and take part in electronic services,
circulation and payment. The concept of banking
changes from entities banks to E-Banking. "E-Banking"
refers to a virtual bank which provides financial self-
service for customers by the network and electronic
terminals.

The current solution is workflow method oriented to
SOA, and the trustworthiness research is the core in the
process of integrating business processes. For example,
the upgrading of one module may lead to unpredictable
results for other interrelated models. At the same time,
for there are many public business interfaces between
banking system and interrelated corporation business

system, and they lack the corresponding methods, so it
leaves chance for malicious attack. Therefore, it is
urgent to study effective computing techniques, which
can not only make the software components distributed
in every banking department constitute the new
software rapidly and dynamically with the change of
business demands, but also guarantee the consistency in
behavior between the components and the composite
software.

Some experts and scholars have analyzed and
researched the technical aspects of these issues. Existing
theories and methods are not specifically designed for
the trustworthiness of E-Banking transaction system,
but to solve certain aspects of trustworthiness, such as
security, reliability, accuracy, etc, or to solve the
certification of the object transactions. Scarce research
is for the trustworthiness of E-banking transaction
system itself. However, the research of the
trustworthiness of E-Banking transaction system
mechanisms is not just the integration of a variety of
trustworthiness properties, because different
trustworthiness properties may have conflicts with each
other. Therefore, the above theory and methods are
limited to protect the trustworthiness of E-Banking
transactions system.

Based on the methods proposed in the paper, on the
one hand, the identify certification of component can be
solved by comparing the consistency between the
specification description model with the inferred
specification model. On the other hand, the deadlock or
trap produced in the process of building business
process may be diagnosed, and malicious components
can be prevented from choreographing the composite
software through dynamic behavior consistency
analyzing.

The simulation analysis is in E-Banking simulation
system platform, which can simulate some function of
E-Banking system. In order to find problem, we select
some representative components purposely, some
components are not consistency between the
specification descriptions with implementation, and
some are non-consistent interaction behavior relativity.

Published by Atlantis Press
 Copyright: the authors
 550

X.W. Fang et al

We compare our methods with Methods 1 which is
studied in Ref.22, in Fig.3, with the component increase,
the success ratio of component function (success
ratio=the function of success implementation/
component number) declines quickly, and the result
indicates the success ratio of our methods is better than
Methods 1. The reason is that component specification
consistency and dynamic behavior congruence are taken
into account in our methods.

 In Fig.4, we analyze the relationship between the
component numbers with the trust value. The trust value
is degree of the effect conforming to user anticipation.

The trust value of two methods all decrease with the
component number increase, and the trust value of our
methods is better than the methods 1, and our methods
have little change when the component number reaching
certain count.

5. Conclusions

The paper presents the behavior-aware trustworthiness
analyzing methods of networked software. Firstly, in
order to determine whether the component specification
description is consistent with the component
implementation, we present the algorithm of building
inferred specification behavior model, and analyze the
consistency between the inferred specification behavior
models with component specification model. For
component that satisfying specification consistency, the
behavior certification center issues the behavior
certificate to the component provider after the
component checked. Next, the complex function
demand needs many components with behavior
certificate interaction to accomplish, for analyzing the
component interaction behavior, the behavior relativity
analyzing method is proposed based on the behavior
theories of Petri net, aiming to analyze whether
component behavior is influenced after component
interaction. Finally, we extract the composite
component running traces, and build the component
dynamic behavior model, and compare the dynamic
behavior model with the theoretic composite model. If
they are behavioral congruence, it manifests that the
component execution process is not influenced by outer
environment.

Based on the theoretical analysis and experimental
results, the innovation and advantage of the paper are: 1)
Behavior-aware trustworthiness analyzing framework of
networked software is presented, which can realize the
software execution process to be manageable,
controllable and prevention ability through analyzing
software execution behavior. 2) The behavior model
building methods of inferred specification is proposed,
we can analyze the consistency between the
specification descriptions of component with
component implementation through comparing the
component specification description model with the
inferred specification behavior model. 3) For analyzing
one component be influenced by other component in the
process of component interaction, a determining
algorithm of component interaction behavior relativity
is given out. 4) Aimed to networked environment, we
analyze the behavioral congruence between dynamic
behavior models with theoretic composite model, and
propose the building methods of dynamic behavior
model.

0 10 20 30 40 50
0.75

0.8

0.85

0.9

0.95

1

Component Number

Th
e

S
uc

ce
ss

 R
at

io
 o

f C
om

po
ne

nt
 F

un
ct

io
n

our methods
methods 1

Fig.3. the relationship between the component
numbers with the success ratio of component
function.

10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Component Number

Tr
us

t V
al

ue

our methods
methods 1

Fig.4.the relationship between the component
numbers with the trust value.

Published by Atlantis Press
 Copyright: the authors
 551

 Behavior trustworthiness of software

In the future, we plan to study the trustworthy
evaluation of networked software, and study the
adaptation methods of non-consistent behavior relativity.

Acknowledgements

We would like to thank the support of the National
Natural Science Foundation of China under Grant
No.90818023 and No.90718012, the National High-
Tech Research and Development Plan of China under
Grant No.2009AA01Z401, the Program for Changjiang
Scholars and Innovative Research Team in University,
the Major State Basic Research Development Program
of China under Grant No. 2010CB328100, the Anhui
provincial Natural Science Foundation of China under
Grant No.KJ2010B310.

References

1. H. Wang, Y. Tang and G. Ying, The trustworthy
mechanism of internet software, Chinese Science (E
series), 36(10) (2006) 1156-1169.

2. J. P. Anderson, Computer security technology planning
study. ESD-TR-73-51, Vol. I, AD-758 206, ESD/AFSC,
Hanscom AFB, Bedford MA, October 1972.

3. High Confidence Software and Systems Coordinating
Group. High Confidence Software and Systems Research
Needs. USA. January 10, 2001.

4. Trusted Computing Group, TCG TNC Architecture for
Interoperability Version 1.3. Apr. 28, 2008.

5. G. Bill, Trustworthy computing. Microsoft Corporation.
July 18, 2002.

6. C. Lin. The study of trusted network, Chinese Journal of
computer, 28 (5)(2005)751-758.

7. K. Liu, Z. G. Shan and J. Wang, The general study on
the major project of trustworthy software, Chinese
Science Foundation, 22(3) (2008)145-151.

8. L. Zhou, G. Huang and H. Mei, Negotiation-enabled
modeling and verification of architectural behavior of
Internetware, Journal of Software, 19(5) (2008)1099-
1112.

9. G. J. Holzmann, The spin model checker. IEEE Trans on
Software Engineering, 23(5) (1997)279-295.

10. J. Lv and X. Ma, The study and improvement of
Internetware, Chinese Science (E series), 36(10) (2006)
1037-1080.

11. J. Yang, D. Evans and D. Bhardwaj, Perracotta: Mining
temporal API rules from imperfect traces. Proc. 28th
Int’l Conf. Software Eng., 2006, pp. 282-291.

12. R. Alur, P. Cerny and P. Madhusudan, Synthesis of
interface specifications for Java classes. (POPL, 2005).

13. H. Doreswamy and M. N. Vanajaskhi, Similarity
measuring approach for engineering materials selection,
International Journal of Computational Intelligence
Systems, 3(1) (2010)115-122.

14. S. Sharon, Y. Eran and J. F. Stephen, Static
specification mining using Automata-based abstractions,
IEEE Transactions on Software Engineering, 34(5)(2008)
651-666.

15. J. F. Stephen and Y. Eran, Effective type state
verification in the presence of aliasing. ACM
Transactions on Software Engineering and Methodology,
17(2) (2008)9:1-34.

16. P. Georg and T. Roger, Intelligent concepts for the
management of information in workflow systems,
International Journal of Computational Intelligence
Systems, 2(4) (2009) 332-342.

17. L. Piroddi, R. Cordone, and I. Fumagalli, Selective
siphon control for deadlock prevention in Petri nets,
IEEE Transactions on Systems, Man, and Cybernetics
Part A: Systems and Humans,38(6)(2008)1337-1348.

18. A. Aybar and A. Iftar, Deadlock avoidance controller
design for timed Petri nets using stretching, IEEE
Systems Journal, 2 (2) (2008)178-188.

19. Y. Huang and M. Jeng, Deadlock prevention policy
based on Petri nets and siphons, International Journal of
Production Research, 39 (2) (2001)283-305.

20. C. Jiang, Behavior theory and its application of Petri
net, (Higher education press, 2003).

21. T. Murata, Petri nets: Properties, analysis and
applications. Proc. IEEE, 77(4) (1989) 541-580.

22. M. P. Wil, D. A. Van and C. Ouyang, Conformance
Checking of Service Behavior, ACM Transactions on
Internet Technology, 8(3) (2008), 13:1-30.

23. L. Davide, Automatic generation of software behavioral
models, in proc.30th International Conference on
Software Engineering (IEEE Press, 2008), pp.501-510.

24. S. P. Corina and G. Dimitra, Learning to divide and
conquer: applying the L* algorithm to automate assume-
guarantee reasoning, Form Methods System Design, 32(2)
(2008) 175–205.

Published by Atlantis Press
 Copyright: the authors
 552

