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Abstract—A direct adaptive controller based on improved 
radial basis function (RBF) neural networks (NN) is 
proposed for an omni-directional mobile robot (OMR). The 
OMR is a multi-input and multi-output (MIMO), unmodeled 
and uncertain nonlinear system which is difficult to be 
modeled due to a large number of immeasurable and 
uncertain variables. To model the system exactly and 
increase the real-time performance, a novel direct adaptive 
control approach based on improved RBF-NN is designed to 
approximate the OMR, which needs no explicit knowledge of 
the uncertain nonlinear MIMO system. Besides the 
kinematics, the dynamics of the OMR are considered to 
perform tasks with heavy load transportations or high speed 
movements. A stable on-line adaptive law is derived and 
proved using Lyapunov stability theory. The proposed 
controller is applied the OMR trajectory tracking and shows 
excellent robustness and stability. The simulation results 
demonstrate the feasibility and validity of proposed scheme. 

Keywords-direct adaptive controller; radial basis function 
neural network; omni-directional mobile robot; nonlinear and 
uncertain nonlinear system; Lyapunov stability theory 

I. INTRODUCTION 

It is well known that factors on unmodeled 
uncertainties and nonlinear disturbance widely exist in 
most practical control systems. The existence of those 
uncertain and nonlinear factors usually make the stability 
control more difficult than conventional certain and linear 
one. In recent years, a great deal of research progress has 
been achieved on nonlinear and uncertain SISO/MIMO 
feedback control systems by some researchers[ 1 , 2 , 3 ]. 
Meanwhile, many neural network-based adaptive control 
methods are studied and developed extensively[4,5,6,7].  

The radial basis function (RBF) neural network (NN) 
is a local approximation network, and it has been proved 
that the RBF-NN can approximate any continuous function 
in a definite precision [8,9,10]. RBF-NN can be applied in 
many relative control fields. Lewis et al.[4] presented a 
multilayer neural network controller for a general serial-
link rigid robot arms using a filtered error approach. 
Huang et al.[ 11 ] proposed an adaptive control method 
using RBF-NN for tracking control of mechanical systems 
in the presence of friction and periodic disturbances. Kim 
and Inman[ 12 ] proposed a NN-based learning control 

scheme for the motion control of autonomous underwater 
vehicles. Wang et al.[6] developed a neural network-based 
robust adaptive control design scheme for nonlinear 
systems with an unknown nonlinear function and un 
modeled dynamics. Boquete et al.[ 13 ] applied two 
recurrent RBF-NNs for the identification and control of a 
wheelchair. Chen et al.[14] discussed the stability of a 
genetic algorithm-based adaptive neural network controller 
for a nonlinear plant using the structure of a RBF-NN.  

The main contribution of this paper is to provide a 
direct adaptive control method based on improved double-
model structured RBF neural network for a nonlinear and 
unmodeled uncertain MIMO omni-directional mobile 
robot (OMR) system. The proposed method guarantees the 
stability, real-time and robustness of the nonlinear system 
with unmodeled uncertainties, random external 
disturbances simultaneously.  

The organization of this paper is as follows. In section2, 
the problem statement is described on the basis of 
kinematics and dynamics of the OMR system. In section 3, 
improved adaptive RBF-NN controller is obtained. In 
section 4, analysis of stability is proved by Lyapunov 
theory. In section 5, simulation results are shown. Finally, 
the conclusion is provided in section 6. 

II. PROBLEM STATEMENT 

We consider dynamics of an OMR based on literature 
[15]. The rigid body model in the body-fixed reference 
frame can be represented by 

( ) ( ) ( )

( )
d+ + + + =

=
Mv C v v D v v g q τ τ

q J q v

&
&

  (1) 

where T[ , , ]x yv v w=v , and T[ , , ]x y f=q . Here, v  
represents the position and attitude vector of  in the body-
fixed reference frame, q denotes the position and attitude 
vector of OMR in the earth-fixed reference frame, and 
τ denotes the control forces and moments generated by 
motors on the OMR in the body-fixed reference frame. 

( )J q  denotes a transition matrix, by which the velocity 
vector in body-fixed reference frame can be transformed 
into the earth-fixed reference frame. M is a symmetric, 
positive definite inertia matrix including the mass of the 
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OMR and its user, ( )C v is the centripetal and Coriolis 
matrix, ( )D v is the friction matrix, ( )g q  is the 
gravitational vector of forces and moments, and 

dτ  

represents the forces and moments of nonlinear random 
disturbances. Here, we consider ( )=0g q  since the 
movement of OMR is two-dimensional planar motion. 
Therefore, the equation of an OMR can be transformed 
into the earth-fixed reference frame and written as follows 

T( ) ( , ) ( , ) ( )q q q dq
-+ + =M q q C q v q + D q v q τ J q τ&& & &  (2) 

where T 1( ) ( ) ( )q q q q- -=M J MJ ,  
T 1 1( , ) ( ) ( , ) ( ) ( ) ( )q q q q q q q q- - -é ù= -ë ûC v J C MJ J J&& , 

T 1( , ) ( ) ( , ) ( )q q q q q q- -=D v J D J& , and T ( )dq dq-=τ J τ . 

Here, ( )q qM is symmetric and positive definite, and 

( , )q qC v satisfies the skew symmetric relationship 

as T ( ) 2 ( , ) 0q qx q q v xé ù- =ë ûM C& . The friction matrix 

( , )q qD v is positive definite. Figure 1 shows the coordinate 

system of OMR.  
In (2), the friction matrix ( , )q qD v  and the forces and 

moments of disturbances 
dτ  are relevant to some random 

nonlinear factors, such as the ground condition, the load of 
OMR, the current posture of user’s. As mentioned above, 
it is very difficult to build a conventional mathematical 
model of an OMR in practical applications. The frictions 
coefficients between the four wheels and ground are not 
only difficult to be obtained exactly, but also variable with 
the motion state of the OMR. Even if each element was 
measurable in (2), some unmodeled uncertainties would be 
still in existence for the disturbances from the 
circumstances. Therefore, the design of an adaptive 
controller is necessary for this class of nonlinear systems 
with unmodeled uncertainties and random disturbances. 

III. DESIGN OF RBF-NN-BASED ADAPTIVE CONTROLLER 

The RBF-NN neural networks can be used as a direct 
adaptive controller for a class of nonlinear dynamic 
systems[8], for which an explicit linear parametrization of 
the uncertainties in the dynamics is either unknown or 
impossible. In this study, the RBF-NN is used to 
approximate the nonlinear dynamics of OMR to a 
specified degree of accuracy. If an enough number of 
hidden layer neurons are employed, even though the OMR 
nonlinear dynamics is completely unknown. 
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Figure 1. Coordinate system of OMR (planform) 

A. RBF-NN Architecture  
The conventional RBF-NN consists of three layers, 

which are input layer, hidden layer and output layer. The 
connections between layers are multiplied by weights of 
appropriate dimensions[ 16 ]. The RBF-NN structure is 
shown in Figure 2. In RBF-NN, we denote by  ×  any 

proper vector norm, and we also denote the p-norm by 

p
 × . Each output of hidden layer can be represented by 

2

2( ) exp 1,2,..., )
2

i
i

i

C
i kf

s

æ ö- -
ç ÷     ( =
ç ÷
è ø

X
X = ，  (3) 

where T
1 2[ ... ]mx x x=X denotes the input vector, 

and  m  denotes the number of input layer neurons. Here, 
k  denotes the number of hidden layer neurons with 

1,2,...,i k= , 1k
iC ´Î mR denotes the centre position of 

Gaussian function in hidden layer neurons, and 
is  

denotes the width of Gaussian function in hidden layer 
neurons.  
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Figure 2. RBF neural network structure 

The output of output-layer can be written as 

1

( ), ( 1,2,..., ; 1,2,..., )
k

j ij i
i

y w i k j nf
=

=   = =å X  (4) 

where 1,2,...,j n=  is the number of output-layer neurons, 

ijw  denotes the weights between hidden-layer neurons 

and output-layer neurons, and jy  denotes the output of 

the RBF-NN. Thus, the RBF-NN equation can be easily 
written in terms of vectors as 

T=Y W F    (5) 
where T

1 2[ ... ]ny y y=Y , it is the output vector of 

RBF-NN, k n´ÎW R is the weight vector between hidden-
layer and output-layer, and 

T
1 2( ) [ ( ) ( ),..., ( ) ]kX X Xf f f= ,  XF  is the output vector of 

the hidden layer neurons. 

dt
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Figure 3. Schematic diagram of the nonlinear control system 

B. Improved RBF-NN 
Considering real-time performance of the online 

adaptive controller, the conventional RBF-NN is improved 
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on dynamic training algorithm. Direct adaptive control 
laws based on RBF-NN are derived as follows. The control 
structure with two RFB-NNs is shown in Figure 3. 

In Figure 3, the RBF-NN-A is used to learn and 
approximate the inverse dynamic model to generate the 
compensated control signals for self-learning in offline 
mode. The dynamics of the OMR are obtained by RBF-
NN-A using dynamic training algorithm. In off-line 
learning mode, the model learning is efficient because 
actual operation is unnecessary. After the RBF-NN-A is 
training offline, it can be trained to approximate the 
nonlinear and uncertainties online.  

The RBF-NN-B is only a duplicate of RBF-NN-A, but 
as the controller is working, its weights will be adjusted in 
response to the adaptive law as discussed in the next 
subsection. The RBF-NN-B is mainly used to compensate 
for approximation errors and uncertain disturbance in the 
OMR system. Compared with conventional RBF-NN, the 
number of hidden layer neurons of RBF-NN-B is dynamic, 
since each neuron can be set in a sleeping state and be 
easily awakened if need be. In the dynamic weight vector 
adjustment process, the neurons of hidden layer are not cut 
but in dormancy. Considering few samples obtained at the 
beginning of learning period, a parallel proportion 
derivative (PD) controller is running for better dynamic 
performance in the initial learning stage online. 

C. Controller Design based on Improved RBF-NN  
In this section, our main goal is to design an adaptive 

controller that can guarantee the boundedness of all 
variables in the closed-loop control system. At the same 
time, a desired trajectory tracking can be assured by the 
output of the RBF-NN. Therefore, some assumptions are 
provided throughout the paper as follows. 

Assumption 1: During motion process of the OMR, 
the desired position and attitude are known bounded 
functions, satisfying the condition as 

TT T T
d d d Bqé ù £ë ûq q q& &&

 
 (6) 

where 
dq  denotes the desired position and attitude of the 

OMR in the earth-fixed reference frame, and we assume  

dq&  and 
dq&& , the time derivatives of 

dq , can be obtained 

from a trajectory planner. Here, Bq  
is a positive constant. 

The filtered errors can be written as 
l= +s q q&% %    (7) 

where d= -q q q% , d= -q q q&% & & ， and l  is a positive 

constant.  
Let us define rq&  as vector of the virtual reference 

trajectory in the earth-fixed reference frame, and (8) is 
satisfied as 

 ( )r rq=q J v&    (8) 

where 1 1( ) ( ) ( )r r rq q q- -é ù= -ë ûv J q J J q&& && & . Therefore, (7) 

can be rewritten as 

r= -s q q& &    (9) 

The first deviation of (9) can be obtained as 

r d l= - Þ = +rs q q q q q& && && & & %   (10) 

Considering (2) and (9), (2) is easily rewritten as 
T ( )q r q r q r d

-+ -M q C q D q J τ τ&& & &+ =  (11)
 

With (1) and (11), we can obtain 

 
T ( )q r q r q r r r r

-+ + = +M q C q D q J Mv + Cv Dv&& & & &
   

(12)
 

From (10) and (12), taking the time derivative of 
s , we can write the dynamics in terms of s  as follows.

 

T

( )

( ) ( )

q q r q r q

r r r d q q
-

- = -

        = + + + - -

M s M q q M q M q

J Mv Cv Dv C + D s

& && && && &&

&

=

t t    

(13) 

Because the accurate model is impossible to be 
obtained for unmodeled and certain factors as 
mentioned above, the (13) cannot be applied in actual 
system. Let us define function ( , , , )r rf v v v q&

 
as the 

output of the proposed improved RBF-NN, and this 
function is used to approximate the real dynamics of 
the OMR to a specified degree of accuracy. Since the 
unstructured or unmodeled dynamics usually cannot be 
described exactly, we define the function as follows. 

T( , , , )r rf e= +v v v q W& F   (14) 

where nonlinear function is defined as 
( , , , )r r r r rf v v v q Mv Cv Dv= + +& &     (15) 

here, W ,F  are the same as defined above. 
Assumption 2: For the designed RBF-NN above, 

the weight vector W is bounded as 
maxF

W W£  with 

max 0W > , where 2 2

,

( )T
ijF

i j

W tr W W w= = å , 
F

 ×  denotes 

the Frobenius norm, and tr( ) ×  is the trace operation of a 
matrix or a vector. 

Assumption 3: The RBF-NN approximation errors 
e  

is bounded as 
Ne£e , where Ne  

is a positive 

constant. 
Because the RBF-NN is used to approximate the 

OMR dynamics with high precision, the system error 
will be small enough. Therefore, we have 

ˆ ( , , , ) ( , , , )r r r rf f»v v v q v v v q& &   (16) 

where ˆ ( , , , )r rf v v v q&  is the approximation of the 

OMR dynamics. In this paper, we choose a control 
input of the RBF-NN as 

Tˆ ( , , , )r r df= + +v v v q J K s&t a   (17) 

where 0T
d d= >K K , and it denotes the control gain 

matrix. Here, a  denotes the robustness control term, 
which is used to enhance the robustness of the RBF-
NN controller when external disturbances or 
approximation errors exist. We define

 Tˆ ˆ( , , , )r rf =v v v q W& F   (18) 

here, Ŵ is the approximation of weight vector between 
hidden layer and output layer of RBF-NN, and the time 
derivative of Ŵ  can be written as 

1 Tˆ ˆ( ) z-= -W J s s W& F GΓ   (19)
 

where G  is a positive constant matrix with T 0= >G G , 
and z  is a constant with 0z > . Taking a control input 
as (17), the closed-loop system described in (13) can be 
rewritten as 

T[ ( , , , ) ] ( )q r r d q d qf K-= + + -  - - +M s J v v v q C s D s%& & e t a  (20) 

where ( , , , )r rf v v v q% &  is the difference between the 

practical dynamics and the approximation one as 
 T Tˆ( , , , ) ( , , , )r r r rf f= - =% %& &F Fv v v q W v v v q W

 

 (21) 
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where the weight estimated error is defined as 
ˆ= -W W W%     (22) 

IV. ANALYSIS OF SYSTEM STABILITY 

Theorem 1: If Assumptions 1-3 are satisfied, the 
control input satisfies (17), the adaptive control law of 
RBF-NN weight vector is (19), and the robustness control 
term is defined as  

1

1
( )N Bde

-

-
= +

J s

J s
a    (23) 

then both the filtered tracking errors ( )s t  and the weight 

estimated errors W% of the closed-loop system are 
uniformly ultimately bounded stable.  

Proof: The Lyapunov function is selected as 

{ }T T 11 1
tr

2 2q
-= +V s M s W W% %G   (24) 

Taking derivative along (13) and (17), we have 

( ) ( )TT T T 11
tr

2 q q q
-= + + +V s M s s M s s M s W W&& & % %& & G

  
(25) 

with considering that T T
q q=s M s s M s& & , (13), (17), (20), 

(21), and with using diagonal matrix 
T ( ) 2 ( , ) 0q qq q vé ù- =ë ûX M C X& , (25) can be rewritten as 

( ) ( )
( ) ( )

( )

T T 1

TT 1 T
d

T 1      

tr

tr

q q

q d

-

-

-

= +

é ù   = - + + + + - +ë û

&& % %&

%

&% %

G

F e t a

G

V s M s + C s W W

s D K s J s W

W W

 (26) 

Using (23), we can rewrite (26) as 

( ) ( ){ }
( ) [ ]

( ) ( ){ }
( ) [ ]

TT T 1 1

T1
d

T T

T1
d

        

 

tr

tr

       

q d

q d z

- -

-

-

é ù£ - + + + +ê úë û

+ -

    £ - + + - +

 + -

&& % %

% %

F G

e t a

e t a

V s D K s W J s W

J s

s D K s s W W W

J s

  (27) 

Using (23), we have 

( ) ( ){ }
( ) [ ] ( ) ( )

( ) ( ){ }
( ) [ ] ( )

T T

1
T T1 1

d 1

T T

T1 1
d

    

     

tr

t

 

r

q d

N B

q d

N B

d

d

z

z

-
- -

-

- -

£ - + + - +

    + - e +       

   = - + + - +

+ - e +

& % %

% %

V s D K s s W W W

J s
J s J s

J s

s D K s s W W W

J s J s

e t

e t

  (28) 

Then (28) can be rewritten as 

( ) ( )
( ) ( )

2

min min max

min min max

q d F F

q d F F

D K W

D K W

z

z

£ - + + -

é ù    = - + + -ë û

V s s W W

s s W W

& % %

% %
 

(29) 

where 
minqD

 
and 

mindK are the minimum eigenvalues of 

vector 
qD  and vector 

dK , 
F

W%  denotes the Frobenius 

norm of W% , and 
maxW  is the maximum eigenvalue of the 

weight vector W . Therefore, we can obtain (30) as  

( ) ( )
( ) ( )

min min max

2
2

max max min min2 4

q d F F

q dF

D K W

W W D K

z

z z

é ù+ + -ë û

      = - - + +

s W W

W s

% %

%
 

(30) 

If the closed-loop control system is stable, then (29) 

should be negative definite, meaning that (30) must be 
positive definite. Therefore, we have  

( )
2

max

min min

4

q d

W

D K

z
>

+
s

  

or  
maxF

W>W%  (31) 

From (31), it implies that V& decreases as s  and 

F
W%  converges toward the boundary and remains in its 

vicinity. By choosing arbitrarily large 
dK , a small 

tracking error can be obtained. 
Theorem 2: If Assumption 1 is satisfied, while the 

OMR dynamics RBF-NN approximation errors is =0e , 
the external disturbances becomes zero, the control 
input satisfies (32), and the adaptive control law of 
RBF-NN weight vector is defined as (33) 

Tˆ ( , , , )r r df K= +v v v q J s&t   (32) 
1 Tˆ ( )-=W J s& ΓF     (33) 

then both the filtered tracking errors ( ) 0s t ® , and the 

weight estimated errors W% of the closed-loop system are 
uniformly ultimately bounded stable. 

Theorem 2 can be concluded and proved referencing 
to literature [17]. 

Theorem 3: If Assumptions 1-2 are satisfied, the 
control input satisfies (32), and the adaptive control law of 
RBF-NN weight vector satisfies (19), then both the 
filtered tracking errors ( )s t  and the weight estimated 

errors W% of the closed-loop system are uniformly 
ultimately bounded stable.  

Referencing to the proof process of Theorem 1, we 
can obtain that the time derivative of Lyapunov function is 
negative as long as (34) is satisfied. 

( )
( )

2
max

min min

4 N B

q d

W d

D K

z + e +
>

+
s     or   

( )2
max max2 4 N BF

W W d z> + + e +W%
     

(34) 

By comparing (31) with (34), it is easy to find the 
steady-state tracking error decreased through adding the 
robustness control term or increasing control gain matrix. 

V. SIMULATION RESULTS 

We present the simulation results in order to verify that 
the proposed controller can compensate the unmodeled and 
uncertain disturbances. The desired velocities and 
positions are generated as a reference trajectory in our 
simulation study. 

A. Parameters Initialization of Adaptive Controller 
The trajectory tracking process is shown in Figure 4, 

when the OMR system is under the bounded and random 
disturbance. The number of RBF-NN hidden layer is 25, 
the maximum training time is 300, the final train error is 
0.01, the initialized width of Gaussian function in hidden 
layer is 1, and the Gaussian function center of is 
initialized randomly. Considering the actual driving ability, 
the input gain matrix is [200,200,100]dK = , 0.5l = , the 

adaptive learning coefficient of weight vector is 
diag{[200,200,100]}G = , and the learning rate is set as 0.3. 

The desired tracking trajectory is defined as 
 sin(2 100), 2sin(2 100)x t y tp p= =      (35) 
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B. Results of Simulation 
The simulation result shows the proposed adaptive 

controller is efficient under bounded and random 
disturbance in Figure 4. 
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(a) 2-D tracking trajectory 
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(b) Tracking errors with random bounded disturbances 

Figure 4. Simulation results with random bounded disturbances 
The initial condition of the RBF-NN is the same as 

the above simulation. The disturbance is decreased to 
zero, and the tracking errors of positions in two 
directions can be obtained as shown in Figure 5. The 
proposed controller is also verified under zero 
disturbance condition. 
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Figure 5. Tracking errors with damped disturbances 

VI. CONCLUSIONS 

In this paper, an adaptive RBF-NN-based controller is 
proposed for an OMR with uncertain model and nonlinear 
dynamic disturbances. The proposed RBF-NN is used to 
approximate the real OMR model. The control scheme can 
obtain significant trajectory tracking performance without 
the explicit prior mathematical model, and guarantees the 
control bounded in the closed-loop system simultaneously. 
In addition, the adaptive controller is robust and adaptive 
for nonlinear and uncertain system, which is verified by 

the simulation results through being trained and applied 
online. The results demonstrate the feasibility of the 
proposed direct adaptive controller.  
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