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Abstract—Shear horizontal surface acoustic waves (SH-
SAWS) propagation in layered piezoelectric structure 
carrying an array of microbeams is studied in this paper. 
Based on the three-dimensional piezoelectricity theory, the 
coupling wave equations are obtained and solved by 
analytical method with consideration of both electrically open 
and short conditions. The beams are modeled using the 
Euler-Bernoulli theories when they are bending during the 
piezoelectric structures in shear motion. The effects of the 
microbeams on the phase velocity are presented and 
discussed in detail. From the results, we can find the phase 
velocity decrease with the non-dimensional wave number, 
while it is increase with the number of the microbeams. The 
geometric parameters of the cantilever beams, such as 
Young’s modulus, diameter and length have evident effect on 
the phase velocity, we can find that the phase velocity 
decrease with length-diameter ratio of the cantilever beams. 
The method and results presented in the paper could be 
useful to the analysis and design of surface acoustic wave 
devices. 
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I. INTRODUCTION 

In 1911, Love analyzed a layered structure consisting 
of an isotropic substrate covered with an isotropic thin film, 
solid-coupled at their interface, and the conclusion is 
drawn that shear horizontal surface waves (SH-SAWs) 
would propagate in the thin film and attenuate along 
thickness of the substrate if the velocity of the bulk shear 
wave in the thin film is less than that in the substrate [1]. 
These shear surface waves are now known as the Love 
waves and their polarization is perpendicular to the sagittal 
plane formed by both the normal to the interface of a 
medium and the wave vector in the direction of wave 
propagation. Another SH-SAWs is so-called B-G surface 
acoustic wave which was first discovered by Bleustein and 
Gulyaev simultaneously in 1968-1969 [2-3], which can 
exist only on certain cuts and propagate in certain 
directions of piezoelectric crystals. It is well known that 
piezoelectric materials are widely used in acoustic wave 
devices such as sensors, actuators, and transducers for their 
strong coupling between electric and mechanical 
constitutive behavior since White invented the interdigital 

transducers utilized for transmitting and receiving surface 
acoustic waves in 1965 [5]. There are numerous 
investigations have been taken on SH-SAWs in 
piezoelectric media due to their extensive applications [6-
7]. 

Recently, due to the extensive effort on micro- and 
nano-technologies, various micro- or nano-scale beam 
arrays can be made using different techniques [8-9]. These 
new structures have great potentials for new devices such 
as efficient microneedles, MEMS actuators and biosensors, 
and so on [10]. It is urgent and important to study the 
effects of microbeams on vibrations of structures or wave 
propagation in structures due to the design of resonators, 
sensors and actuators. Liu et al. [11] analyzed multi-
objective design optimization of electrostatically actuated 
microbeam resonators with and without parameter 
uncertainty. Liu et al. [12] investigated shear vibration of a 
rotated Y-cut quartz crystal plate carrying an array of 
microbeams with their bottoms fixed to the top surface of 
the plate. The plate was modeled by the theory of 
anisotropic elasticity and the beams were modeled by the 
Euler–Bernoulli theory for beam bending, and a frequency 
equation that determines the resonant frequencies of the 
structure was derived. Zhang et al. [13] studied thickness-
shear vibration of an elastic plate carrying an array of rigid 
microbeams with their bottoms attached to the top surface 
of the plate. The plate was modeled by the couple-stress 
theory of elasticity to properly take into account both the 
shear forces and the bending moments at the bottoms of 
the beams. However, in the above-mentioned researches, 
there is no paper about SH-SAW propagation in layered 
piezoelectric structures carrying an array of microbeams. It 
is necessary to analyze the surface acoustic waves in 
layered structures with consideration of an array of 
microbeams due to their potential applications. 

In this paper, the propagation of SH-SAWs in layered 
piezoelectric structures carrying an array of microbeams is 
investigated. The microbeams are modeled by the Euler-
Bernoulli theories when they are bending during the 
piezoelectric structures in shear motion. The dispersion 
relations are calculated and discussed in detail. 
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II. FORMULATION OF THE PROBLEM 

The layered piezoelectric structure carrying an array of 
microbeams is illustrated in Fig .1., where a half-space 
piezoelectric substrate is covered by a thin elastic layer. 
We here only consider the so-called anti-plane wave 
propagation problem.  

            
Figure 1. A layered piezoelectric               Figure 2. Notation 
structure carrying an array                             and coordinate 

      of microbeams                            system for beam bending 
 

The piezoelectric layer is polarized along the z direction. 
The displacement components and the electric potential are 
expressed as 

   0, , , , , , ,u v w w x y t x y t                      (1) 

where , ,u v w  are the displacement components in x, y 

and z direction, respectively;   is electric potential.  

The equilibrium equations of piezoelectricity with 
quasi-electrostatic approximation provided are 
summarized as follows 

, ,, 0, , 1,2,3,ji j i i iT u D i j  &&                             (2) 

where ij and 
iD  are the stress and electric displacements, 

respectively,  is the mass density. The subscript comma 

denotes a partial derivative with respect to the coordinates 
and a superimposed dot represents the derivative with 
respect to the time.  

For an anisotropic and linearly electro-elastic solid, the 
coupled constitutive relation can be written as 
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where qS  and iE  are the strain and electric field 

components, respectively; pqc  and ik
 
are the elastic and 

dielectric permeability coefficients, respectively; iqe  is the 

piezoelectric coefficients. It is obvious that various 
uncoupled can be reduced from the equations (3) by setting 
the appropriate coefficients to zero. 

The coupled wave equations and the constitutive 
equations can be reduced as 
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 is the two-

dimensional Laplace operator in the Cartesian coordinates.  
We use the Euler-Bernoulli theory of bending for the 

flexural motion of the beams [14]. All beams vibrate in 
phase corresponding to the anti-plane vibration of the 
structures, and the wave motion propagates along the y-
axis corresponding to the elastic layer. This moment 

distribution at the bottom of the beams can be neglected 
and we obtain [23] 
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where   is the rotation or slope, M  is the bending 

moment, 
1( )x  is the deflection curve, and V is the shear 

force. E  is the Young’s modulus, ̂  the mass density, 

and ,I S are the moment of inertia and area of the beam 

cross-section, respectively. We consider the time harmonic 
factor and can find in a straightforward manner that the 

solution to Equation (12) can satisfy ( ) 0, ( ) 0M L V L   

and (0) 0   is 

1
ˆ( , , , , )exp[ ( )],Cf x EI S L ik y ct                         (6) 

where C is an undetermined constant and 
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From the above equations, we can get the shear force at 
the bottom as 

ˆ(0) (0, , , , )exp[ ( )],V CEIf EI S L ik y ct              (8) 

III. BOUNDARY CONDITIONS 

The shear forces at the bottoms of many small beams 
effectively form a distributed shear stress on the layer 
surface and thereby affecting velocity or frequency of the 
waves. It was shown that through the beam array-
frequency effect, information about the beam array can be 
extracted. Assume the number density of the beams per 
unit area of the elastic surface is N. The traction-free and 
electrically open conditions at the free surface can be given 
by 
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The traction-free and electrically shorted conditions at 
the free surface can be given by 
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The continuity conditions at the elastic layer and the 
piezoelectric substrate are written as  
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IV. SOLUTION OF THE PROBLEM 

A. Solutions in the piezoelectric substrate 

We consider the following solution of  (4) 
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where k  is the wave number, c is the phase velocity, 

 m 2

441 /m mb c c   . 
mA and 

mB  are unknown 

constants. So 
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B. Solutions in the elastic layer 

The solutions of the displacement and the electric 
potential in the elastic layer are given by 
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where 2

44/ 1b c c  ,
1 2 1, ,A A B  and 

2B are unknown 

constants. 

V. THE PHASE VELOCITY EQUATION 

Inserting Eqs. (12), (13) and their corresponding 
components of stress and displacement into boundary and 
continuity conditions, we can obtain the algebraic 
equations of the unknowns 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3, , , , , , , , , , , , , ,
T

m m m m m m e e eC A A A A A A A A A A A A A A A   

i.e. 
           0.C A                                                     (14) 

In order to obtain the nontrivial solutions of the above 
mentioned unknown constants, the determinant of the 
coefficient matrix of these linear algebraic equations must 

equal zero, i.e. 0A  . So the dispersive relations of the 

electrically open and shorted case can be obtained. 

VI. NUMERICAL RESULTS 

For the numerical calculations, the piezoelectric 
material is assumed to be LiNbO3, and the elastic material 
is SiO2. Unless otherwise specified, the thickness of elastic 

layer is assumed to be 0.1h mm  and the beams are 

considered of ZnO  with    
3 11 2ρ̂ 5600 / ,L 1 , N 1 10 / ,kg m m m    E 40 ,GPa  

and diameter 0.1D m . For the cantilever beams   are 

given in [14] 
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Here we only consider the first two resonances and 
unless otherwise specified, here we take the first frequency 
into account. 

 
Figure.3 Dispersive relationship for shorted case with different N  

 
Figure.4 Dispersive relationship for open case with different N  

 
Figure.5 Dispersive relationship for shorted case with different D  

 
Figure.6 Dispersive relationship for open case with different D  

 
Figure.7 Dispersive relationship for shorted case with different L  

 
Figure.8 Dispersive relationship for open case with different L  
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Fig.3 and Fig.4 show the phase velocity of the first-
order mode for electrically open and shorted cases with 
different N , respectively. The calculation results for 

different number of microbeams are figured for a contrast. 
We can find the phase velocity decrease with the non-
dimensional wave number, while it is increase with the 
number of the microbeams. 

In order to show effect of geometric parameters of the 
cantilever beams, such as diameter and length, Fig.5, Fig.6, 
Fig.7 and Fig.8 show the phase velocity of the first-order 
mode for electrically open and shorted cases, respectively. 
we can find that they both have evident effect on the phase 
velocity. The phase velocity decrease with length-diameter 
ratio of the cantilever beams. 

VII. CONCLUSIONS 

The properties of SH surface acoustic waves in 
perfectly bonded piezoelectric layered structures covered a 
microbeam array are studied in this paper. The solutions of 
dispersion relations are obtained with electrically open or 
shorted conditions by analytical method. The effects of the 
microbeams on the phase velocity are presented and 
discussed in detail. From the results we can find that the 
phase velocity increases distinct when the layered structure 
carrying an array of microbeams. Furthermore, we can find 
that the phase velocity increase with the geometric 
parameters of the microbeams. The analytical method and 
the results can be useful for the design of the ultrasonic 
brush and sensors. 
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