
Self-Reconfigurable Control - Part I: Modeling

Based on Automated Planning

He-xuan Hu
1,2

Agricultural and Animal Husbandry College of Tibet University
 1

Lin-zhi, Tibet, P.R. China

College of Energy and Electrical Engineering

Hohai University
2

Nanjing, Jiangsu Province, P.R. China

e-mail: hexuan_hu@hhu.edu.cn

Abstract—This paper presents a new formal modeling

framework for reconfigurable control. The main idea is to

use the STRIPS (STanford Research Institute Problem

Solver), a formal language for automated planning which

can integrate the cause-effect knowledge and the automated

reasoning mechanism into one model. A qualitative model

based on a graph of states is chosen. Transitions between

states are determined from the possible actions (as defined as

controls to the actuators). Each action is modeled in terms of

preconditions and effects. The STRIPS can qualitatively

define the fault models without requiring detail and precise

knowledge of faulty components. Automated planning is an

interesting tool for reconfigurable control. Since the process

may end up in any one of a very large number of states after

a break-down, it is not realistic to have recovery plans

designed in advance for all such states. It is, thus, desirable

to invoke a planner in the case of break-downs, which finds a

plan that brings the process back into normal operation

again, and that is the nature of reconfigurable control.

Keywords-STRIPS; Automated Planning; Reconfigurable

Control; Cause-effect; Qualitative Model

I. INTRODUCTION

The notion of "reconfiguration" has been widely used
among the various domains, for example, Autonomous
UAV (unmanned aerial vehicle) [1], Multi-robot System
[2], deep space missions [3], [4], and flexible and
reconfigurable manufacturing systems [5], [6], and [7]. A
reconfigurable system can be defined as a system with an
architecture consisting of the components of the system
and a configuration that specifies how these entities are
used to meet a goal, and it has a mechanism to choose a
new configuration and set it up in the process by itself. As
indicated in [8], "Autonomous systems" have appeared
largely in space exploration, elderly care and domestic
service; they are particularly attractive for such
applications because their advanced decisional
mechanisms allow them to execute complex missions in
uncertain environments. In [9], Williams and Nayak have
proposed an idea that is "Immobile Robots" similar to the
notion of total autonomous system. Immobile Robots need
the sophisticated regulatory and immune systems that
accurately and robustly control their complex internal
functions. They will use these models to dramatically
reconfigure themselves in order to survive decades of

autonomous operations. Achieving these large scale
modelling and configuration tasks will require a tight
coupling between the higher level coordination function
provided by symbolic reasoning, and the lower level
autonomic processes of adaptive estimation and control.
Self-modelling and self-configuration, coordinating
autonomic functions through symbolic reasoning, and
compositional, model-based programming are the three
key elements of model-based autonomous systems
architecture. That is the reason why, we propose in this
paper, a qualitative self-modelling algorithm which reflects
the real system possibilities (updated itself in presence of
faults) and which allows the search of an adequate control
strategy for reconfiguration.

The faults considered in this paper are faults which
totally change the system‟s physical structure, such as the
complete loss of an actuator or the complete loss of a
system component. The system model is no longer valid in
this case. This is the reason why, we propose a flexible
system modelling mechanism to automatically update the
system model when faults occur. The mechanism rests on
two parts: a database containing basic knowledge about the
system, and an algorithm for constructing a system model
based on that knowledge.

There are different modeling requirements in different
domains. In the context of fault diagnosis and fault tolerant
control, the modeling is expected to satisfy the following
requirements as mentioned in chapter 1, [23]:

(1) gaining experience and understanding of the
physical process to be controlled, including the constraints
set by nature and circumstances surrounding the job;

(2) setting goals that are attainable, or objectives along
with tradeoffs, that the computer can "understand"
sufficiently well to give proper advice or make control
decisions;

(3) formulating a strategy for going from the initial
state to the goal state;

(4) translating goals and strategy into detailed
instructions to the computer such that it can perform the
task automatically;

(5) monitoring the behavior of process;
(6) detecting the presence and location of faults, or

conflicts between actions and goals, and the anticipation
that either of these is about to occur;

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015)

© 2015. The authors - Published by Atlantis Press 1465

(7) making the correct decisions after the presence of
faults.

To achieve the challenge in reconfigurable control, we
propose a qualitative model based on the automated
planning (STRIPS) and a self-verification mechanism
based on model checking. The automated planning offers
the reasoning ability to formulate the physical process,
goals and strategy for going from the initial state to the
goal state. The model checking offers the verification
ability to make control decisions which will be presented
in the sister paper: Part II.

This paper is organized as follows. In section II, we
propose to use a state transition representation STRIPS
(Stanford Research Institute Problem Solver) to formalize
the system‟s knowledge. In section III, we present the
system modeling algorithm. In section IV, we summarize
the work done and discusses directions for future research.

II. SYSTEM KNOWLEDGE FOR SYSTEM MODELING

The basic system knowledge of the system corresponds
to the observations, diagnoses, and description. These
elements refer to three different kinds of knowledge [10]:
variable knowledge, semi-variable knowledge, and fixed
knowledge. The first includes such information as
observations, which vary according to the execution of
control commands and environmental changes; the second
includes such information as diagnoses, which only change
if the system moves from the normal to faulty operation
mode and vice versa, and the last includes such
information as system descriptions and domain priorities,
the non-changing information that expresses the intrinsic
system properties as intended by the designers. Domain
priorities allow expressing the possibility to achieve
“degraded” or non-nominal objectives in faulty modes. For
example, the rotation speed of a motor can be reduced of
10% if the overload of motor is inferior to 20%.

To formalize the system‟s knowledge, we propose to
use a state transition representation STRIPS (Stanford
Research Institute Problem Solver) [11] where the system
knowledge is represented as logical atoms derived from
first-order logic. Each state corresponds then to a set of
logical atoms (e.g., observations, diagnoses and system
descriptions) that are either true or false within a certain
degree of interpretation, the transitions are the control
actions that change the truth values of these atoms.

In artificial intelligence, STRIPS (Stanford Research
Institute Problem Solver) is an automated planner
developed by Richard Fikes and Nils Nilsson in 1971. The
same name was later used to refer to the formal language
of the inputs to this planner. This language is the base for
most of the languages for expressing automated planning
problem instances in use today. It is important to
distinguish between the original STRIPS planner and the
STRIPS representation language. Here, the STRIPS means
the formal language. The STRIPS suggests a
representation of planning problems, such as states, actions,
and goals. The key is that STRIPS is expressive enough to
describe a wide variety of problems, but restrictive enough
to allow efficient algorithms to operate over it. In this
selection, we first outline the basic representation language
of classical planners, known as the STRIPS language.

For the convenience of the reader, we briefly review
the relevant terminologies of propositional logic and first-

order logic. Propositional Logic is the most basic branch of
Mathematical Logic. The propositional logic is based on
“propositions” which one can argue as being true or false.
The propositions can be formed by combining atomic
propositions using logical connectives. First-order logic is
its extension by adding the notion of “predicate” which is a
verb phrase template that describes a property of objects,
or a relationship among objects represented by the
variables.

A literal is a symbol used to represent a Boolean
statement in logic that can take the value either true or
false. The positive literals just take the value true. Ground
and function-free literal means the simplest literal which is
indivisible and not composite.

Representation of states: Planners decompose the
world into logical conditions and represent a state as a
conjunction of positive literals. The propositional literals
and first-order literals can be used; for example, at(Plane1,
A) and at(Plane2, B) might represent plane 1 is at the
airport A and another plane 2 is at airport B. Literals in
first-order state descriptions must be ground and function-
free. Literals such as at(f(x), y) are not allowed. The
closed-world assumption is used, meaning that any
conditions that are not mentioned in a state are assumed
false.

Representation of goals: A goal is a partially specified
state, represented as a conjunction of positive ground
literals. A propositional state “s” satisfies a goal “g” if “s”
contains all the atoms in “g ” (and possibly others).

Representation of actions: An action is specified in
terms of the preconditions that must hold before it can be
executed and the effects that ensue when it is executed. For
example, an action for flying a plane p from one location A
to another B is:
Action (Fly (p, A, B)

Precond: at(p, A)  Plane(p)  Airport(A) Airport(B)
Effect: ¬at(p, A) at(p, B)

at(p, A) means that the plane p is at the location A; Plane(p)
means that the plane exists; Airport(A) and Airport(B)
mean that the airport A and B are available.

This action schema consists of three parts:
(1). The action name and parameter list - for

example, Fly(p, A, B) - serves to identify the action.
(2). The precondition is a conjunction of function-

free positive literals stating what must be true in a state
before the action can be executed.

(3). The effect is a conjunction of function-free
literals describing how the state changes when the
action is executed. A positive literal P in the effect is
asserted to be true in the state resulting from the action,
whereas a negative literal ¬P is asserted to be false.
Definition 1 (The system model): Let L = {P1, P2, …

Pn} be a finite set of logical atoms. With this set, a system
can be represented as a state-transition system. Formally, it
is a 3-tuple Σ = (S, A, γ), where:

(1) S = {s1, s2…} 2
L
 is a finite or recursively

enumerable set of states. Each state s is a subset of L.
Intuitively, s tells us which logical atoms currently hold
true. If p s, then p holds true in the state represented by s,
and if p  s, then p does not hold true in the state

represented by s.
(2) A = {a1, a2…} is a finite or recursively enumerable

set of control actions. Each control action a  A is a

1466

multiple of subsets of L, which can be expressed as a =
(preconditions, determin-effects, nondetermin-effects). As
the term suggests, the set of preconditions is called the
preconditions of a, and the set of determin-effects
(nondetermin-effects) represents the deterministic (resp.
non-deterministic) effects of a. Non-deterministic effects
represent an unknown, since it is not known which of them
will actually take place. We assume that for any a, any
nondeterministic effect is consistent with the deterministic
effects (i.e., no single atom and its negation exist
simultaneously in the effect sets of a).

(3) γ: S × A → 2
S
 is a state-transition function. γ(s, a) =

determin-effects(a)  nondetermin-effects(a) if a  A is

applicable to sS, otherwise, γ(s, a) is undefined. In other
words, whenever an action is applied to a state, it produces
another state. This is useful information because once A is
known; S can be specified by giving just a few of its states.

It should be noted that γ is defined for one action but
the action is defined non-deterministically as above. In
other words, when an action is applied to a state, it
produces one or several follow-up states. That is the reason
why γ(s, a) is introduced as a set in the definition of the
model. In the procedure of reconfiguration, the actions
defined by these logical atoms are used to generate the
system model and then this model is checked state by state
by model checking. The phase of generating system model
is based on actions and the phase of model checking is
based on states. A same set of logical atoms is used in
these two different phases.

It also should be noted that an action a is always
associated to an elementary component of the system.
Elementary components are components directly
connected to the process such as sensors and actuators.
The action of sensor, “reading”, is a special kind of action
which is activated automatically and runs continuously.
Actions are then combined to achieve system‟s functions
or system‟s goals [12].

This model allows describing actions in terms of their
preconditions and effects and describes the states as
conjunctions of positive literals. The precondition states
what must be true in a state before an action can be
executed. The effect describes how the state changes when
the action is executed. An action is „applicable‟ in any
state that satisfies the precondition; otherwise, the action
has no effect.

The list of the possible states can be generated from the
Cartesian product of the diagnosis atoms, the control-
command atoms and the observation atoms. The initial
state is one of these possible states and is captured by the
diagnoser and the observer at the moment that the fault
report is received. The interesting succeeding states are
generated automatically by the algorithm presented in the
next section.

III. THE ALGORITHM OF MODELING

The system modeling algorithm is given in Algorithm
2.1. It performs a procedure close to iterative deepening,
at each time of iteration discovering a new part of the state
space. The algorithm returns an automaton (S, A, T, s0) as
the updated model, where “S” is the set of states, “A” is
the set of available control actions, “T” is the automata's
transition set, and “s0” is the initial state directly identified
from observations and diagnoses. The operator „-‟ (resp.

„+‟) expresses that an element is subtracted from (resp.
added to) a set of elements.

In the algorithm, “t” is an element of “T”; “Old” is the
set of states that are checked at the current iteration, while
“New” is the state set for next iteration; “Com” is the set
of applicable control actions whose pre-conditions belong
to the current checked state “sold” (line 8).The notation
“║S║” means the cardinality of set S, i.e., the number of
elements of the set S. “sold” means one state of set “Old”
(the set of states that are checked at the current iteration);
“snew” means a new state created by the transition γ(sold,
arun). “atest” means one action of set “A” (the set of
available control actions). “arun” means one action of set
“Com” (the set of applicable control actions). “sreach”
means one state of set “Reach” (the set of states that can
be reached from the state “sold”).

A set of states that can be reached from the state “sold”
is found (line 12) by applying the control actions “Com”.
Then, each of these reachable states is checked to see
whether or not it is new to this automaton (line 15). If it is,
then it will be added to the set “New” for next iteration
(line 16-18). If there is no new state (line 2, 23), then the
algorithm terminates.

This algorithm of generating system model is based on

actions and its objective is to provide a flexible method of
generating system model. Firstly, the basic system
knowledge is divided into three different kinds of
knowledge which complement each other. Secondly, all of
the system knowledge can be represented by the first order
logic which can be operated and handled easily and
efficiently. Thirdly, the cause-effect information is
integrated into the action schema by the representations of
pre-conditions and effects. Therefore, the model possesses

Algorithm 1: Expand (S, A, T, s0)

1 S ← s0; Old ← s0; T ← Ø; j = 0;

2 While Old ≠ Ø do

3 { New = Ø;

4 For x=1 to ║Old║ do

5 sold = Old[x];

/* Select a state of set Old in sequence */

6 For k=1 to ║A║ do

7 atest = A[k];

/* Select an action of set A in sequence */

8 If (preconditon (atest)  sold) then Com=Com+ atest;

9 End For

10 For i=1 to ║Com║ do

11 arun = Com[i];

/* Select an action of set Com in sequence */

12 If snew γ(sold, arun) then Reach = Reach+snew;

13 For r=1 to ║Reach║ do

14 sreach = Reach[r];

/* Select a state of set Reach in sequence */

15 If sreach S then

16 { sj+1 = sreach; S = S+ sj+1;

17 tj+1 = (sold, arun, sj+1); T = T+ tj+1;

18 New = New + sj+1; j= j+1;}

19 End for

20 Reach = Ø;

21 End for

22 End for

23 Old = New; Com = Ø;

24 End While

1467

the ability of automated reasoning which is the core of
reconfiguration and automated generation of model.

As the limitations of the space, we ignore the example
of application and some details.

IV. CONCLUSION

In this paper, there are two main advantages by using
STRIPS to construct the system model. The first one is its
powerful description. Although the first order logic is
used in the classic STRIPS, using other powerful logics
can make the STRIPS expressive enough to describe a
wide variety of dynamic systems, such as the ones for
maintaining a property, achieving a goal periodically or
within a number of steps after the request was made, and
achieving several goals in sequence. The second one is its
powerful automated reasoning. The STRIPS can integrate
the cause-effect knowledge and the automated reasoning
mechanism into one model.

With these two advantages, the STRIPS model can
achieve self-updating when the system condition has
changed. For example, the STRIPS find an operator
configuration that will transform a given initial model into
one that satisfies a specific goal condition. Moreover, it
allows building the model gradually with the information
received instead of fully in one time.

Furthermore, a new area of study called process
planning has emerged from the application of automated
planning techniques to machining procedures ([13], [14],
[15]). There are many representations for a control
program for a manufacturing system like, for example,
GRAFCET, Ladder or Petri nets.

Using automated planners to generate the plan for
normal operations may not be so interesting, since this
plan is rarely changed and a lot of time and effort may
thus be spent on designing and optimizing this plan by
human experts. However, automated planning is an
interesting tool for error recovery. Since the process may
end up in any one of a very large number of states after a
break-down, it is not realistic to have recovery plans
designed in advance for all such states. It is, thus,
desirable to invoke a planner in the case of break-downs,
which finds a plan that brings the process back into
normal operation again. Such a plan must be correct, in
order not to jam or even destroy the plant, and it must also
be found within a reasonable time, since large-scale
processes typically have very high stand still costs [16].

Finally, as the reconfiguration for autonomous systems
fuses together researches from such diverse areas of AI as
model-based reasoning, qualitative reasoning, planning
and scheduling, execution, propositional satisfiability,
concurrent reactive languages, Markov processes, model-
based learning, and adaptive systems, the representation
of the system model, a transition system, can be very
easily extended by adding several variables to integrate
these diverse researches above, as like [17], [18], [19],

[20]，[21] and [22] did.

ACKNOWLEDGMENT

This work is supported by “The Nature Science

Foundation of Tibet：13-38”, “A Project Funded by the

Priority Academic Program Development of Jiangsu
Higher Education Institutions (Coastal Development
Conservancy)”, “Technology Foundation for Selected

Overseas Chinese Scholar, Ministry of Personnel of
China”, “the Fundamental Research Funds for the Central
Universities”, and “he Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education
Ministry”.

REFERENCES

[1] C. Ippolito, "Polymorphic Control Reconfiguration in an

Autonomous UAV with UGV Collaboration," IEEE Aerospace.
Conference, Big Sky, Montana USA, March 2008.

[2] R. O‟Grady, A.L. Christensen, and M. Dorigo, "Autonomous
Reconfiguration in a Self-assembling Multi-robot System," Lecture
Notes in Computer Science, Ant Colony Optimization and Swarm
Intelligence, Volume 5217, Springer, 2008.

[3] B. C. Williams, and P. Pandurang Nayak, "A Model-based
Approach to Reactive Self-Configuring Systems," In Proceedings
of the National Conference on Artificial Intelligence, 1996.

[4] D. Watson,"Model-based autonomy in deep space missions, "
IEEE Intelligent Systems, Vol.18(3), 2003, pp.8-11.

[5] M.-G. Mehrabi, A.-G. Ulsoy, Y. Koren, and P. Heytler, "Trends
and perspectives in flexible and reconfigurable manufacturing
systems," Journal of Intelligent Manufacturing, Vol.13, 2002,
pp.135–146.

[6] S. Saad, "The reconfiguration issues in manufacturing systems,"
Journal of Materials Processing Technology, Vol. 138(1,3), 2003,
pp.277–283.

[7] F. Lamotte, P. Berruet, and J.-L. Philippe, "A model for the
reconfiguration of manufacturing systems," In Proceedings of the
16th IFAC World Congress, Prague, 2005.

[8] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F. Ingrand, M.-O.
Killijian, and D. Powell, "Fault Tolerance in Autonomous Systems
How and How Much?," in 4th IARP - IEEE/RAS - EURON Joint
Workshop on Technical Challenges for Dependable Robots in
Human Environments, (Nagoya, Japan), 2005.

[9] B. C. Williams and P. Pandurang Nayak, "Immobile Robots:
Artificial Intelligence in the New Millenium," Cover article of AI
Magazine, Vol.17(3), 1996, pp.16-35.

[10] H.-X. Hu, A.-L. Gehin, M. Bayart, "A Formal Framework of
Reconfigurable Control Based on Model Checking," in American
Control Conference, Seattle, Washington, USA, 2008.

[11] Richard E. Fikes, and Nils J. Nilsson, “STRIPS: A new approach
to the application of theorem proving to problem solving,”
Artificial Intelligence, Vol. 2, Issues 3-4, Winter, 1971, pp. 189-
208.

[12] H.-X. Hu, A.-L. Gehin, M. Bayart, "Model Aggregation for
Reconfigurable Control Based on Generic Component Model," in
ICSSSM‟06, Troyes, France, 2006.

[13] Ayletta, R.S., Soutter, J., Petley, G.J., Chungc, P.W.H., and
Edwards, D., "Planning plant operating procedures for chemical
plant," Engineering Applications of Artificial Intelligence, Vol. 14,
2001, pp. 341–356.

[14] G. Stephanopoulos and C. Han, "Intelligent Systems in Process
Engineering: A Review," Computers chem. Engng., Vol. 20, No.
6/7, 1996, pp. 143-191.

[15] A. Benveniste and Karl J. Astrom, "Meeting the Challenge of
Computer Science in the Industrial Applications of Control: An
Introductory Discussion to the Special Issue," IEEE Transactions
On Automatic Control, Vol. 38, No. 7, JULY, 1993.

[16] I. Klein, P. Jonsson and C. Backstrom, "Efficient planning for a
miniature assembly line," Artificial Intelligence in Engineering,
Vol. 13, 1999, pp. 69-81.

[17] B. C. Williams, and V. Gupta, "Unifying Model-based and
Reactive Programming within a Model-based Executive," In
Proceedings of the International Workshop on Principles of
Diagnosis (DX99) , Loch Awe, Scotland, 1999.

[18] B. C. Williams, S. Chung, V. Gupta, "Mode Estimation of Model-
based Programs: Monitoring Systems with Complex Behavior,"
Proceedings of the International Joint Conference on Artificial
Intelligence, Seattle, USA, 2001.

1468

http://www.springerlink.com/content/105633/?p=913d436e243241828f00f3e4daa04050&pi=0
http://www.springerlink.com/content/105633/?p=913d436e243241828f00f3e4daa04050&pi=0
http://www.springerlink.com/content/w2487120u233/?p=913d436e243241828f00f3e4daa04050&pi=0
http://www.springerlink.com/content/w2487120u233/?p=913d436e243241828f00f3e4daa04050&pi=0

[19] P. Kim, B. C. Williams and M. Abramson, "Executing Reactive,
Model-based Programs through Graph-based Temporal Planning,"
Proceedings of the International Joint Conference on Artificial
Intelligence, Seattle, USA, 2001.

[20] M.Ingham, B.C. Williams, T. Lockhart, A. Oyake, M. Clarke and
A. Aljabri, "Autonomous Sequencing and Model-based Fault
Protection for Space Interferometry," International Symposium on
Artificial Intelligence, Robotics and Automation in Space,
Montreal, Canada, June, 2001.

[21] M. Hofbaur, and B.C. Williams, "Mode estimation of probabilistic
hybrid systems," Hybrid Systems: Computation and Control,
Lecture Notes in Computer Science (HSCC 2002), 2289, 2002,
pp.253–266.

[22] A.-L. Gehin, H.-X. Hu, and M. Bayart, "A self-updating model for
analysing system reconfigurability," Engineering Applications of
Artificial Intelligence, Vol.25, Issue 1, 2012, pp.20-30.

[23] T. B. Sheridan, "Telerobotics, automation, and human supervisory
control," MIT Press, 1992.

1469

