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Abstract—This paper presents a new formal modeling 

framework for reconfigurable control. The main idea is to 

use the STRIPS (STanford Research Institute Problem 

Solver), a formal language for automated planning which 

can integrate the cause-effect knowledge and the automated 

reasoning mechanism into one model. A qualitative model 

based on a graph of states is chosen. Transitions between 

states are determined from the possible actions (as defined as 

controls to the actuators). Each action is modeled in terms of 

preconditions and effects. The STRIPS can qualitatively 

define the fault models without requiring detail and precise 

knowledge of faulty components. Automated planning is an 

interesting tool for reconfigurable control. Since the process 

may end up in any one of a very large number of states after 

a break-down, it is not realistic to have recovery plans 

designed in advance for all such states. It is, thus, desirable 

to invoke a planner in the case of break-downs, which finds a 

plan that brings the process back into normal operation 

again, and that is the nature of reconfigurable control. 

Keywords-STRIPS; Automated Planning; Reconfigurable 

Control; Cause-effect; Qualitative Model 

I. INTRODUCTION 

The notion of "reconfiguration" has been widely used 
among the various domains, for example, Autonomous 
UAV (unmanned aerial vehicle) [1], Multi-robot System 
[2], deep space missions [3], [4], and flexible and 
reconfigurable manufacturing systems [5], [6], and [7]. A 
reconfigurable system can be defined as a system with an 
architecture consisting of the components of the system 
and a configuration that specifies how these entities are 
used to meet a goal, and it has a mechanism to choose a 
new configuration and set it up in the process by itself. As 
indicated in [8], "Autonomous systems" have appeared 
largely in space exploration, elderly care and domestic 
service; they are particularly attractive for such 
applications because their advanced decisional 
mechanisms allow them to execute complex missions in 
uncertain environments. In [9], Williams and Nayak have 
proposed an idea that is "Immobile Robots" similar to the 
notion of total autonomous system. Immobile Robots need 
the sophisticated regulatory and immune systems that 
accurately and robustly control their complex internal 
functions. They will use these models to dramatically 
reconfigure themselves in order to survive decades of 

autonomous operations. Achieving these large scale 
modelling and configuration tasks will require a tight 
coupling between the higher level coordination function 
provided by symbolic reasoning, and the lower level 
autonomic processes of adaptive estimation and control. 
Self-modelling and self-configuration, coordinating 
autonomic functions through symbolic reasoning, and 
compositional, model-based programming are the three 
key elements of model-based autonomous systems 
architecture. That is the reason why, we propose in this 
paper, a qualitative self-modelling algorithm which reflects 
the real system possibilities (updated itself in presence of 
faults) and which allows the search of an adequate control 
strategy for reconfiguration. 

The faults considered in this paper are faults which 
totally change the system‟s physical structure, such as the 
complete loss of an actuator or the complete loss of a 
system component. The system model is no longer valid in 
this case. This is the reason why, we propose a flexible 
system modelling mechanism to automatically update the 
system model when faults occur. The mechanism rests on 
two parts: a database containing basic knowledge about the 
system, and an algorithm for constructing a system model 
based on that knowledge.  

There are different modeling requirements in different 
domains. In the context of fault diagnosis and fault tolerant 
control, the modeling is expected to satisfy the following 
requirements as mentioned in chapter 1, [23]: 

(1) gaining experience and understanding of the 
physical process to be controlled, including the constraints 
set by nature and circumstances surrounding the job; 

(2) setting goals that are attainable, or objectives along 
with tradeoffs, that the computer can "understand" 
sufficiently well to give proper advice or make control 
decisions; 

(3) formulating a strategy for going from the initial 
state to the goal state; 

(4) translating goals and strategy into detailed 
instructions to the computer such that it can perform the 
task automatically; 

(5) monitoring the behavior of process; 
(6) detecting the presence and location of faults, or 

conflicts between actions and goals, and the anticipation 
that either of these is about to occur; 
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(7) making the correct decisions after the presence of 
faults. 

To achieve the challenge in reconfigurable control, we 
propose a qualitative model based on the automated 
planning (STRIPS) and a self-verification mechanism 
based on model checking. The automated planning offers 
the reasoning ability to formulate the physical process, 
goals and strategy for going from the initial state to the 
goal state. The model checking offers the verification 
ability to make control decisions which will be presented 
in the sister paper: Part II. 

This paper is organized as follows. In section II, we 
propose to use a state transition representation STRIPS 
(Stanford Research Institute Problem Solver) to formalize 
the system‟s knowledge. In section III,  we present the 
system modeling algorithm. In section IV, we summarize 
the work done and discusses directions for future research. 

II. SYSTEM KNOWLEDGE FOR SYSTEM MODELING 

The basic system knowledge of the system corresponds 
to the observations, diagnoses, and description. These 
elements refer to three different kinds of knowledge [10]: 
variable knowledge, semi-variable knowledge, and fixed 
knowledge. The first includes such information as 
observations, which vary according to the execution of 
control commands and environmental changes; the second 
includes such information as diagnoses, which only change 
if the system moves from the normal to faulty operation 
mode and vice versa, and the last includes such 
information as system descriptions and domain priorities, 
the non-changing information that expresses the intrinsic 
system properties as intended by the designers. Domain 
priorities allow expressing the possibility to achieve 
“degraded” or non-nominal objectives in faulty modes. For 
example, the rotation speed of a motor can be reduced of 
10% if the overload of motor is inferior to 20%.  

To formalize the system‟s knowledge, we propose to 
use a state transition representation STRIPS (Stanford 
Research Institute Problem Solver) [11] where the system 
knowledge is represented as logical atoms derived from 
first-order logic. Each state corresponds then to a set of 
logical atoms (e.g., observations, diagnoses and system 
descriptions) that are either true or false within a certain 
degree of interpretation, the transitions are the control 
actions that change the truth values of these atoms. 

In artificial intelligence, STRIPS (Stanford Research 
Institute Problem Solver) is an automated planner 
developed by Richard Fikes and Nils Nilsson in 1971. The 
same name was later used to refer to the formal language 
of the inputs to this planner. This language is the base for 
most of the languages for expressing automated planning 
problem instances in use today. It is important to 
distinguish between the original STRIPS planner and the 
STRIPS representation language. Here, the STRIPS means 
the formal language. The STRIPS suggests a 
representation of planning problems, such as states, actions, 
and goals. The key is that STRIPS is expressive enough to 
describe a wide variety of problems, but restrictive enough 
to allow efficient algorithms to operate over it. In this 
selection, we first outline the basic representation language 
of classical planners, known as the STRIPS language. 

For the convenience of the reader, we briefly review 
the relevant terminologies of propositional logic and first-

order logic. Propositional Logic is the most basic branch of 
Mathematical Logic. The propositional logic is based on 
“propositions” which one can argue as being true or false. 
The propositions can be formed by combining atomic 
propositions using logical connectives. First-order logic is 
its extension by adding the notion of “predicate” which is a 
verb phrase template that describes a property of objects, 
or a relationship among objects represented by the 
variables. 

A literal is a symbol used to represent a Boolean 
statement in logic that can take the value either true or 
false. The positive literals just take the value true. Ground 
and function-free literal means the simplest literal which is 
indivisible and not composite. 

Representation of states: Planners decompose the 
world into logical conditions and represent a state as a 
conjunction of positive literals. The propositional literals 
and first-order literals can be used; for example, at(Plane1, 
A) and at(Plane2, B) might represent plane 1 is at the 
airport A and another plane 2 is at airport B. Literals in 
first-order state descriptions must be ground and function-
free. Literals such as at(f(x), y) are not allowed. The 
closed-world assumption is used, meaning that any 
conditions that are not mentioned in a state are assumed 
false. 

Representation of goals: A goal is a partially specified 
state, represented as a conjunction of positive ground 
literals. A propositional state “s” satisfies a goal “g” if “s” 
contains all the atoms in “g ” (and possibly others).  

Representation of actions: An action is specified in 
terms of the preconditions that must hold before it can be 
executed and the effects that ensue when it is executed. For 
example, an action for flying a plane p from one location A 
to another B is: 
Action (Fly (p, A, B) 

Precond: at(p, A)  Plane(p)  Airport(A) Airport(B) 
Effect: ¬at(p, A) at(p, B) 

at(p, A) means that the plane p is at the location A; Plane(p) 
means that the plane exists; Airport(A) and Airport(B) 
mean that the airport A and B are available. 

This action schema consists of three parts:  
(1). The action name and parameter list - for 

example,   Fly(p, A, B) - serves to identify the action. 
(2). The precondition is a conjunction of function-

free positive literals stating what must be true in a state 
before the action can be executed. 

(3). The effect is a conjunction of function-free 
literals describing how the state changes when the 
action is executed. A positive literal P in the effect is 
asserted to be true in the state resulting from the action, 
whereas a negative literal ¬P is asserted to be false. 
Definition 1 (The system model): Let L = {P1, P2, … 

Pn} be a finite set of logical atoms. With this set, a system 
can be represented as a state-transition system. Formally, it 
is a 3-tuple Σ = (S, A, γ), where: 

(1) S = {s1, s2…} 2
L
 is a finite or recursively 

enumerable set of states. Each state s is a subset of L. 
Intuitively, s tells us which logical atoms currently hold 
true. If p s, then p holds true in the state represented by s, 
and if p  s, then p does not hold true in the state 

represented by s. 
(2) A = {a1, a2…} is a finite or recursively enumerable 

set of control actions. Each control action a  A is a 
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multiple of subsets of L, which can be expressed as a = 
(preconditions, determin-effects, nondetermin-effects). As 
the term suggests, the set of preconditions is called the 
preconditions of a, and the set of determin-effects 
(nondetermin-effects) represents the deterministic (resp. 
non-deterministic) effects of a. Non-deterministic effects 
represent an unknown, since it is not known which of them 
will actually take place. We assume that for any a, any 
nondeterministic effect is consistent with the deterministic 
effects (i.e., no single atom and its negation exist 
simultaneously in the effect sets of a). 

(3) γ: S × A → 2
S
 is a state-transition function. γ(s, a) = 

determin-effects(a)  nondetermin-effects(a) if a  A is 

applicable to sS, otherwise, γ(s, a) is undefined. In other 
words, whenever an action is applied to a state, it produces 
another state. This is useful information because once A is 
known; S can be specified by giving just a few of its states. 

It should be noted that γ is defined for one action but 
the action is defined non-deterministically as above. In 
other words, when an action is applied to a state, it 
produces one or several follow-up states. That is the reason 
why γ(s, a) is introduced as a set in the definition of the 
model. In the procedure of reconfiguration, the actions 
defined by these logical atoms are used to generate the 
system model and then this model is checked state by state 
by model checking. The phase of generating system model 
is based on actions and the phase of model checking is 
based on states. A same set of logical atoms is used in 
these two different phases. 

It also should be noted that an action a is always 
associated to an elementary component of the system. 
Elementary components are components directly 
connected to the process such as sensors and actuators. 
The action of sensor, “reading”, is a special kind of action 
which is activated automatically and runs continuously. 
Actions are then combined to achieve system‟s functions 
or system‟s goals [12]. 

This model allows describing actions in terms of their 
preconditions and effects and describes the states as 
conjunctions of positive literals. The precondition states 
what must be true in a state before an action can be 
executed. The effect describes how the state changes when 
the action is executed. An action is „applicable‟ in any 
state that satisfies the precondition; otherwise, the action 
has no effect.  

The list of the possible states can be generated from the 
Cartesian product of the diagnosis atoms, the control-
command atoms and the observation atoms.  The initial 
state is one of these possible states and is captured by the 
diagnoser and the observer at the moment that the fault 
report is received. The interesting succeeding states are 
generated automatically by the algorithm presented in the 
next section. 

III. THE ALGORITHM OF MODELING 

The system modeling algorithm is given in Algorithm 
2.1. It performs a procedure close to iterative deepening, 
at each time of iteration discovering a new part of the state 
space. The algorithm returns an automaton (S, A, T, s0) as 
the updated model, where  “S” is the set of states, “A” is 
the set of available control actions, “T” is the automata's 
transition set, and “s0” is the initial state directly identified 
from observations and diagnoses. The operator „-‟ (resp. 

„+‟) expresses that an element is subtracted from (resp. 
added to) a set of elements.  

In the algorithm, “t” is an element of “T”; “Old” is the 
set of states that are checked at the current iteration, while 
“New” is the state set for next iteration; “Com” is the set 
of applicable control actions whose pre-conditions belong 
to the current checked state “sold” (line 8).The notation 
“║S║” means the cardinality of set S, i.e., the number of 
elements of the set S.  “sold” means one state of set “Old” 
(the set of states that are checked at the current iteration); 
“snew” means a new state created by the transition γ(sold, 
arun).  “atest” means one action of set “A” (the set of 
available control actions). “arun” means one action of set 
“Com” (the set of applicable control actions). “sreach” 
means one state of set “Reach” (the set of states that can 
be reached from the state “sold”). 

A set of states that can be reached from the state “sold” 
is found (line 12) by applying the control actions “Com”. 
Then, each of these reachable states is checked to see 
whether or not it is new to this automaton (line 15). If it is, 
then it will be added to the set “New” for next iteration 
(line 16-18). If there is no new state (line 2, 23), then the 
algorithm terminates. 
 

 
This algorithm of generating system model is based on 

actions and its objective is to provide a flexible method of 
generating system model. Firstly, the basic system 
knowledge is divided into three different kinds of 
knowledge which complement each other. Secondly, all of 
the system knowledge can be represented by the first order 
logic which can be operated and handled easily and 
efficiently. Thirdly, the cause-effect information is 
integrated into the action schema by the representations of 
pre-conditions and effects. Therefore, the model possesses 

Algorithm 1: Expand (S, A, T, s0) 

1 S ← s0; Old ← s0; T ← Ø; j = 0; 

2 While Old ≠ Ø do 

3     { New = Ø; 

4       For x=1 to ║Old║ do  

5             sold = Old[x];  

/* Select a state of set Old in sequence */ 

6             For k=1 to ║A║ do 

7                    atest = A[k];  

/* Select an action of set A in sequence */ 

8                    If (preconditon (atest)   sold) then Com=Com+ atest; 

9       End For 

10         For i=1 to ║Com║ do  

11                   arun = Com[i];  

/* Select an action of set Com in sequence */ 

12                   If snew  γ(sold, arun) then Reach = Reach+snew; 

13               For r=1 to ║Reach║ do 

14                         sreach = Reach[r];  

/* Select a state of set Reach in sequence */ 

15              If sreach S then 

16                     { sj+1 = sreach; S = S+ sj+1; 

17                       tj+1 = (sold, arun, sj+1); T = T+ tj+1; 

18                       New = New + sj+1; j= j+1;} 

19                 End for 

20                 Reach = Ø; 

21         End for 

22      End for 

23      Old = New; Com = Ø; 

24 End While 
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the ability of automated reasoning which is the core of 
reconfiguration and automated generation of model.  

As the limitations of the space, we ignore the example 
of application and some details. 

IV. CONCLUSION 

In this paper, there are two main advantages by using 
STRIPS to construct the system model. The first one is its 
powerful description. Although the first order logic is 
used in the classic STRIPS, using other powerful logics 
can make the STRIPS expressive enough to describe a 
wide variety of dynamic systems, such as the ones for 
maintaining a property, achieving a goal periodically or 
within a number of steps after the request was made, and 
achieving several goals in sequence. The second one is its 
powerful automated reasoning. The STRIPS can integrate 
the cause-effect knowledge and the automated reasoning 
mechanism into one model.  

With these two advantages, the STRIPS model can 
achieve self-updating when the system condition has 
changed. For example, the STRIPS find an operator 
configuration that will transform a given initial model into 
one that satisfies a specific goal condition. Moreover, it 
allows building the model gradually with the information 
received instead of fully in one time. 

Furthermore, a new area of study called process 
planning has emerged from the application of automated 
planning techniques to machining procedures ([13], [14], 
[15]). There are many representations for a control 
program for a manufacturing system like, for example, 
GRAFCET, Ladder or Petri nets. 

Using automated planners to generate the plan for 
normal operations may not be so interesting, since this 
plan is rarely changed and a lot of time and effort may 
thus be spent on designing and optimizing this plan by 
human experts. However, automated planning is an 
interesting tool for error recovery. Since the process may 
end up in any one of a very large number of states after a 
break-down, it is not realistic to have recovery plans 
designed in advance for all such states. It is, thus, 
desirable to invoke a planner in the case of break-downs, 
which finds a plan that brings the process back into 
normal operation again. Such a plan must be correct, in 
order not to jam or even destroy the plant, and it must also 
be found within a reasonable time, since large-scale 
processes typically have very high stand still costs [16].  

Finally, as the reconfiguration for autonomous systems 
fuses together researches from such diverse areas of AI as 
model-based reasoning, qualitative reasoning, planning 
and scheduling, execution, propositional satisfiability, 
concurrent reactive languages, Markov processes, model-
based learning, and adaptive systems, the representation 
of the system model, a transition system, can be very 
easily extended by adding several variables to integrate 
these diverse researches above, as like [17], [18], [19], 

[20]，[21] and [22] did.  
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