
Self-Reconfigurable Control - Part II: 

Executing Based on Model Checking 
 

 

He-xuan Hu 
1,2

 

Agricultural and Animal Husbandry College of Tibet University 
1
 

Lin-zhi, Tibet, P.R. China 

College of Energy and Electrical Engineering 

Hohai University 
2
 

Nanjing, Jiangsu Province, P.R. China 

hexuan_hu@hhu.edu.cn 

 
Abstract—This paper presents a formal framework for 

reconfigurable control, based on model checking. This 

framework first generates a flexible model (i.e., an execution 

structure) according to the diagnosis, then defines a 

temporal specification language to deal with the problems 

due to infinite execution cycles and non-determinism, and 

finally provides the algorithms that will automatically verify 

whether the updated model satisfies the desired specification. 

Our entire procedure of reconfigurable control is as follows: 

for a given series of observations and diagnoses, if there are 

faults in system, then a revised system model is constructed 

flexibly, according to the diagnoses, observations and 

available system descriptions. Next, model checking is 

applied to verify whether or not the current system model 

satisfies the desired objectives. This automatic 

reconfigurability calculation is one of the most important 

steps in our framework. If the given control objectives are 

achievable, the system will run according to the observations 

and current system model. Otherwise, the reconfiguration is 

considered as failed. 

Keywords-STRIPS; Model checking; Automated Planning; 

Reconfigurable Control; Cause-effect 

I. INTRODUCTION 

In this paper, we continue to present the part II of 
reconfigurable control. Dynamic reconfigurable control is 
a field of fault tolerant control that has emerged over the 
past decade [1].  Reconfigurability — the possibility of 
ensuring system functions despite the occurrence of faults 
— is a key notion in many classes of reconfigurable 
systems [2], [3] and [4]. This problem has been addressed 
generally by many authors ([2], [4] and [5]) and from a 
functional point of view by Staroswiecki and Bayart [6]. 
However, the reconfigurability in the articles [2], [4] and 
[5] cannot be calculated qualitatively by the system itself. 

In this paper, we propose a formal framework to 
automatically calculate reconfigurability qualitatively. This 
framework is divided into three parts: (1) a formal 
framework for modeling the system, already presented in 
its sister paper – part I; (2) a formal specification language 
for describing the desired goals, and 3) a verification 
method for establishing whether the system description 
satisfies the specification. 

Using propositional logic formulae to formalize a 
system is not new in the field of diagnosis [7], [8], [9] and 
[10]. These propositional formulae include the control 

commands and the sensor readings. In diagnosis, they are 
used to infer the current system conditions. But they 
cannot be used for reconfiguration because they are too 
simple; they only indicate that a system event has occurred, 
but do not provide information about the event's pre-
conditions and effects. These pre-conditions and effects 
constitute the knowledge necessary to infer a sequence of 
control commands that will lead the system to the desired 
goals. In order to provide these pre-conditions and effects, 
we propose a framework based on STRIPS (STanford 
Research Institute Problem Solver) [11] as a system 
modeling reference. 

STRIPS can be used to find an operator configuration 
that will transform a given initial model into one that 
satisfies a specific goal condition. Moreover, STRIPS can 
easily be extended for use with the non-deterministic 
systems [12] and [13]. However, the STRIPS framework 
does put a limit on the description of temporal systems, in 
which the desired goals are defined as a fixed set of states, 
but the system is not always designed to terminate. For 
example, the regulation goal always maintains a water 
level at a set-point in tank. These temporal goals must be 
achieved at various states during the execution of a control 
command sequence, not just in the final states. 
Computation Tree Logic (CTL*) —used in [14], [15] and 
[16] — is introduced here as a formal specification 
language for describing the potentially cyclic execution 
sequences, such as maintaining a property, achieving a 
goal periodically or within a number of steps after the 
request was made, and achieving several goals in sequence. 

In diagnosis, verification is a proof-based approach 
[17], in which the system description is a set of formulae Γ 
and the specification is another formula ξ. The verification 
method consists of trying to find a proof that Γ ├ ξ. 
Because this method requires a lot of guidance and 
expertise from the user [7], a model-based approach, called 
model checking [17], is introduced in this paper. The 
system is represented by a model M for an appropriate 
logic. The specification is represented by a formula ξ, and 
the verification method calculates whether the model M 
satisfies ξ (M |= ξ). For finite models, this calculation is 
usually automatic. 

As the mentioned above, an automated method can be 
provided for calculating reconfigurability without relying 
on pre-specified functional policies, such as function-

International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015)

© 2015. The authors - Published by Atlantis Press 1470



component graphs or descriptions of the relationships 
between the desired functions and the components needed 
to accomplish them [2], [6]. These graphs and descriptions 
constitute functional analysis methods, and they have 
powerful descriptive capabilities but poor qualitative 
computation capabilities.  

Figure 1 shows the architecture of our method for 
reconfigurable control. For a given series of observations 
and diagnoses, if there are faults in system, then a revised 
system model is constructed flexibly, according to the 
diagnoses, observations and available system descriptions. 
Next, model checking is applied to verify whether or not 
the current system model satisfies the desired objectives. 
This automatic reconfigurability calculation is one of the 
most important steps in our framework. If the given 
control objectives are achievable, the system will run 
according to the observations and current system model. 
Otherwise, the reconfiguration is considered as failed. 

 
The rest of this paper is organized as follows. In 

section II, a benchmark example is used to illustrate the 
modeling notions presented in its sister paper – part I. The 
temporal logic used for describing extended goals is 
introduced in section III. The model checking method used 
to automatically calculate reconfigurability is presented in 
section IV. Section V summarizes the work done and 
discusses directions for future research. 

II. THE BENCHMARK EXAMPLE 

The chosen example comprises a level regulation 
process involving two identical connected tanks (Fig .2). 
The inflow Qp is provided by pump P1. The flow Qv 
between the two tanks is controlled by valve V1, with V2 
as a backup valve that should always be closed during 
normal behaviour. The connecting pipe is at a level of 30 
cm (resp. 0 cm). The valve Vo, which is always open, is an 
outlet valve, located at the bottom of tank T2. In this 
example, it is assumed that all the valves are on/off valves, 
all the pipes have the same diameter, and the flow rate 
delivered by P1 is equal to the flow rate through V1 as the 
water level of tank T1 is 45 cm. 

The model generated from Fig.1 is shown in Fig .3. 
The fault scenario is that the valve V1 is blocked in the 
closed position. According to the system priorities and the 
system descriptions, the Goal (L1) will be changed to 

25~30 cm and the control commands associated with 
valve V1, such as Open(V1) and Close(V1), will be 
removed and be made unavailable for generating the 
revised model. An illustration, shown in Fig .4, explains 
the first step of the model generation. 

 

 

 
The acceptable commands are Close (P1) and Open 

(V2). Applying the acceptable commands (i.e., Close (P1) 

Observations Diagnoses 

Revised 

System Model 

Have faults? 

If satisfied? 

Model Checking 

Run as the updated model 

Objectives / 

Revised Objectives 

Domain Priorities 

N 

Y 

Y 

N 

Figure 1. The reconfigurable control architecture 

Failed 

Descriptions 

Pump P 

Figure 2. The two-tanks system 

Tank_2 

2
5

~
3
0

 c
m

 

Valve 2 

Valve out 

Pump  
Controller 

C1 
Tank_1 

3
0
 c

m
 

Valve 1 

4
5

~
5
0

 c
m

 

Valve  
Controller C2 

30~50 

30 

25~30 

L1 

30~50 

L2 

0~9 

9 

9 

9 

25 

30 

9~11 

9~11 

25 

25~30 

11 

11 

30 

30~50 

11 

11 

Figure 3. The model generated using the knowledge contained in Fig.1 

1 

3 

6 

7 

4 

V2on V2on V2off V2off 

P1off P1on 

2 

8 

9 

10 

12 

13 

11 

14 

5 

30~50 

P1off P1on 

L1 L2 

0~9 

25~30 11 

30 

30~50 

11 

11 

Figure 4. An illustration of the first step of model generation 

25 11 

1 

3 

4 

V2on V2on V2off V2off 

5 

The acceptable commands: 

Close (P1) and Open (V2) 

The reachable states 

2 

1471



and Open (V2)), the reachable states from initial state 1 are 
states 2, 3, 4 and 5. The effects of these two commands are 
Rise (L2) and Fall (L1). Rise (L2) brings the level 2 to 11 
cm and triggers other commands in a new state. Fall (L1) 
decreases level 1 to make it equal to the increase in level 2 
triggered by Rise (L2). According to the current L1 and its 
decrease, the new level 1 could now possibly belong to 
four different zones (i.e., 25, 25~30, 30 and 30~50). 

III. TEMPORALLY EXTENDED GOALS 

As mentioned in the introduction, many systems are 
designed not to terminate. Temporal logic provides a 
formal framework for qualitatively describing how the 
truth values of desired goals can be changed over time. In 
temporal logic, time is discrete, and the present moment 
corresponds to the current state and next moment 
corresponds to the state following immediately after.  

A. Definition of Computation Tree Logic (CTL*) 

In accordance with the works of [14] and [15], we 
adopt the computation tree logic (CTL*) because it is able 
to take the non-determinism of the domain into account. 
The CTL* formulae are composed of ‗path quantifiers‘ 
and ‗temporal operators‘. 

 Path quantifiers are used in a given state to 
specify that all or some of the paths starting at that state 
have certain properties. Here, a path is an infinite sequence 
of states. Two types of path quantifiers, ‘A’ and ‘E’, are 
possible: 

 (1) ‗A’ is a universal path quantifier, meaning that 
certain properties hold true on all paths starting from a 
given state.  

 (2) ‗E’ is an existential path quantifier, meaning that 
certain properties hold true on some paths starting from a 
given state. 

 Temporal operators describe path properties. 
There are five basic types of operators: 

 (1) ‗X’ (next time) requires that a property hold true in 
the path's second state. 

(2) ‘F’ (eventually or in the future) is used to affirm 
that a property will hold true at some state on the path. 

(3) ‘G’ (always or globally) specifies that a property 
holds true at every state on the path. 

(4) ‘U’ (until) holds true if there is a state on the path in 
which the second property holds true, and if the first 
property holds true at every previous state on the path. 

(5) ‘R’ (release) requires that the second property holds 
true along the path, up to and including the first state 
where the first property holds, although the first property is 
not required to hold true in the future. 

Definition 2 (CTL*): There are two types of formulae 
in CTL*: state formulae, which are true in a specific state, 
and path formulae, which are true along a specific path. 
Let AP be the set of atomic propositions. The goal 
language CTL* is defined by the following rules: 

(1) If pAP, then p is a state formula. 
(2) If f and g are state formulae, then ¬f, f   g and f   

g are state formulae. 
(3) If f is a state formula, then f is also a path formula. 
(4) If f is a path formula, then E (f) and A (f) are state 

formulae. 
(5) If f and g are path formulae, then ¬f, f  g, f  g,   

X (f), F (f), G (f), f U g and f R g are path formulae. 

B. CTL* Semantics  

The notion of the execution structure M [13] is 
introduced to specify the semantics of CTL*. An execution 
structure is the extension of the automaton — the model 
generated automatically in section III — created by adding 
a finite set of logical atoms L. It is also a quadruple (S, L, T, 
s0), in which the element A is replaced by L. Each state is 
labelled with a set of atomic propositions L(s), which 
contains all atoms true in that state. This means that if p is 
an atomic proposition, then p is true at a state s if and only 
if p labels s (i.e., p is an element of L(s)). A path in M is an 
infinite state sequence, π = s0, s1,… such that for every i ≥ 
0, (si, si+1)T. 

In this semantic, π
i
 is used to denote the suffix of π 

starting at si. If f is a state formula, the notation M, s |= f 
means that f holds true at state s in M. Similarly, if f is a 
path formula, the notation M, π |= f means that f holds true 
along path π in M. The relation |= is defined inductively as 
follows (assuming that f1 and f2 are state formulae and g1 
and g2 are path formulae): 

(1) M, s |= p  pL(s). 
(2) M, s |= ¬f1 M, s |≠ f1. 
(3) M, s |= f1  f2  M, s |= f1 or M, s |= f2. 
(4) M, s |= f1 f2  M, s |= f1 and M, s |= f2. 
(5) M, s |= E (g1)  there is a path π from s,  
          M, π |= g1. 
(6) M, s |= A (g1)  for every path π from s,  
            M, π |= g1. 
(7) M, π |= f1  s is the 1

st
 state of π and M, s |= f1. 

(8) M, π |= X (g1)  M, π
1
 |= g1. 

(9) M, π |= F (g1)  there exists a k≥0 such that  
            M, π

k
 |= g1. 

(10) M, π |= G (g1)  for all i ≥ 0, M, π
i
 |= g1. 

(11) M, π |= g1 U g2  there exists a k≥0 such that M, 
π

k
 |= g2 and for all 0 ≤ j < k, M, π

j
 |= g1. 

(12) M, π |= g1 R g2   for all j ≥ 0, if for every i < j M, 
π

i
 |≠ g1 then M, π

j
 |= g2. 

CTL* formulae can be built using the modal operators, 
AX | EX, AF | EF, AG | EG, AU | EU and AR | ER, where 
A and E are path quantifiers, and X and U are state 
quantifiers. With these operators, it is possible to define 
goals that specify the desired behaviours starting from a 
given state. 

Goals expressed as CTL* formulae allow different 
classes of system requirements to be specified, for example: 
(1) reachability goals, such as EF (g), which requires that 
the system may be able to reach desired states where f 
holds true and AF(g), which requires that the system will 
be guaranteed to reach those desired states; (2) safety goals, 
such as AG (¬g), which means g must absolutely be 
avoided and EG (¬g), which means that an attempt must 
be made to avoid g; and (3) maintainability goals, such as 
AG (g), which means g must be maintained and AF (AG 
(g)), which means that the system will always reach some 
future state from which g can be permanently maintained. 

C. CTL* Semantics in Non-deterministic 

Reconfiguration 

As noted in section II, a particular form of uncertainty 
is used to model non-deterministic systems: control 
commands are modelled for different outcomes that cannot 
be predicted at the time of execution (i.e., it is impossible 
for the system to know a priori which of the different 

1472



possible outcomes will actually take place).  However, 
there is a conceptual difficulty in non-deterministic 
reconfiguration because, from the conceptual point of view, 
different reconfiguration results may be obtained.  For 
instance, a reconfiguration might guarantee that a goal be 
accomplished, or might just provide the possibility of 
success. 

The temporal logic presented above allows the 
differences in these results to be described and defined. For 
example, AF (g) -- a strong goal -- means that the 
reconfiguration guarantees the accomplishment of the 
desired goals, while EF (g) -- a weak goal -- means that the 
reconfiguration only has a chance of success. As shown in 
figure 1, automatic reconfiguration is a complex procedure 
during which the goals can be changed at the moment that 
the fault report is received. For a desired property g, the 
temporal goal should be AG (g) (i.e., g always holds true) 
in the normal operating mode. If there is a fault that causes 
g to deviate from its desired value, then the reconfiguration 
will correct this deviation and will keep g within its desired 
value range. But in a non-deterministic system, a control 
command sent by the reconfiguration procedure cannot be 
guaranteed to produce the desired effects (i.e., the original 
goal cannot be guaranteed). This situation can be described 
as EF (AG (g)), which means that g will eventually be 
accomplished at some future state from which g will be 
permanently maintained. However, this does not satisfy the 
requirements of some high security system. Thus, EF (AG 
(g)) must be changed into a strong solution, such as AF 
(AG (g)). If the execution structure satisfies the goal AF 
(AG (g)), then the reconfiguration will be successful in 
spite of non-determinism. All that remains to be done is to 
verify whether an execution structure satisfies the temporal 
goal, and section IV explains how this can be done. 

Example 4.1 is a continuation of Fig .3. The goal of 
the normal operating mode is to maintain the level of tank 
T2 between 9 cm and 11 cm and to try to maintain the 
level of tank T1 between 45 cm and 50 cm. This temporal 
goal can be described as AG (9 ≤ L2 ≤11)  EG (45 ≤ L1 ≤ 
50). The fault scenario is that the valve V1 is blocked in 
the closed position, thus L1 will be below 9 cm and the 
goal of tank T1 will be changed into EG (25 ≤ L1 ≤ 30) 
according to the system priorities. The goal of the 
reconfiguration can be expressed as AF (AG (9 ≤ L2 
≤11)   EG (25 ≤ L1 ≤ 30)). 

IV. THE MODEL CHECKING 

A.  The equivalent formulae in CTL* 

Some equivalent relationships exist among the CTL* 
formulae. For example, there are ten basic operators -- AX | 
EX, AF | EF, AG | EG, AU | EU and AR | ER -- Each of 
these ten operators can be expressed in terms of the three 
operators EX, EG, and EU, as following: 

(1) AX (f) = ¬ EX (¬ f)     (2) EF (f) = E (True U f) 
(3) AG (f) = ¬ EF (¬ f)   (4) AF (f) = ¬ EG (¬ f) 
(5) A [f U g] ≡ ¬E [¬g U (¬f ¬g)] ¬EG (¬g) 
(6) A [f R g] ≡ ¬E [¬f U ¬g]   
(7) E [f R g] ≡ ¬A [¬f U ¬g] 

B. The labelling algorithm 

Let M = (S, L, T, s0) be an execution structure. Our task 
is to determine which states in S satisfy the goal formula ψ. 
The algorithm labels each state s with the set label(s) of 

the sub-formulae of ψ, which are all true in s. The 
algorithm need not handle every CTL* connective 
explicitly, since the connectives ¬,  ,  , EX, EG, and 
EU can represent all the other temporal connectives. First, 
the goal formula ψ is pre-treated, or in other words, ψ is 
written in terms of the connectives ¬,  ,  , EX, EG, and 
EU using the equivalences given above. Second, the states 
of M are labelled with the sub-formulae of ψ, starting with 
the smallest sub-formulae and working recursively towards 
ψ. 

Initially, label (s) is just L(s). The algorithm then 
processes the sub-formulae with nested CTL* operators. 
When the algorithm terminates, the result is the set of 
states of the model that satisfy the formula.  A case 
analysis is used below to describe how states are labelled. 

If ψ is: 
(1) : then no states are labelled with ; 
(2) p: then label s with p if pL(s); 
(3) ψ1 ψ2: label s with ψ1 ψ2 if s is already labelled 

both with ψ1 and with ψ2; 
(4) ¬ψ1: label s with ¬ψ1 if s is not already labelled 

with ψ1; 
(5) EG (ψ1):  

— Label all the states with EG (ψ1); 
— If any state s is not labelled with ψ1, delete the label 

EG(ψ1); 
— Repeat: delete the label EG (ψ1) from any state if none 

of its successors is labelled with EG (ψ1); until there is 
no change. 

(6) E [ψ1 U ψ2]: 
— If any state s is labelled with ψ2, label it with E[ψ1U 

ψ2]; 
— Repeat: label any state with E [ψ1 U ψ2] if it is 

labelled with ψ1 and at least one of its successors is 
labelled with E [ψ1 U ψ2], until there is no change. 

(7) EX (ψ1): label any state with EX (ψ1) if one of its    
successors is labelled with ψ1. 

As AF (ψ1) is often used in practice, the following 
algorithm to deal with it directly. 

(8) AF (ψ1): 
— If any state s is labelled with ψ1, label it with AF (ψ1). 
— Repeat: label any state with AF (ψ1) if all successor 

states are labelled with AF (ψ1), until there is no 
change. 

These eight sub-algorithms can be combined to deal 
recursively with the different formula. 

C. An application 

Example 5.1 illustrates the model checking using the 
benchmark example described in section II. Fig .3 shows 
the execution structure, which is the revised system model 
following the malfunctioning of valve V1. Each state is 
labelled with the atomic propositions that are true in the 
state. 

The verified goal formula AF (AG (9 ≤ L2 ≤11)   EG 
(25 ≤ L1 ≤ 30)) (here, f is used as the abbreviation for 9 ≤ 
L2 ≤11, and g for 25 ≤ L1 ≤ 30) is written in terms of the 
basic connectives (i.e.,  ¬ EG (EF (¬ f) ¬ EG (g))). First, 
the set of states that satisfy the atomic formulae are 
calculated, followed by those for the more complicated 
sub-formulae. Let S (ψ) denote the set of all states labelled 
with the sub-formula ψ. 

(1) S (¬ f) = {1} 

1473



(2) S (g) = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14} 
(3) S (EF (¬ f)) = {1} 
In order to calculate S (EG (g)), first, the states of S (g) 

are labelled with EG (g) and then the label EG (g) is 
deleted from any state if none of its successors is labelled 
with EG (g). This deletion procedure is repeated until there 
is no change. Thus the calculation terminates with: 

(4) S (EG (g)) = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14} 
(5) S (¬ EG (g)) = {1, 5, 8} 
(6) S (EF (¬ f)  ¬ EG (g)) = {1} 
When computing S (EG (EF (¬ f)  ¬ EG (g))), only 

state 1 is labelled with EG (EF (¬ f)  ¬ EG (g)) as was 
done in the last step (6). Clearly, state 1 has no successor 
labelled with EG (EF (¬ f)  ¬ EG (g)). So, the model 
verification continues: 

 (7) S (EG (EF (¬ f)  ¬ EG (g))) = {} 
Finally, the converse of the transition relation is used to 

label all states in S (EG (EF (¬ f)  ¬ EG (g))). Step (7) 
produces a result of Ø, thus implying that 

(8) S (¬ EG (EF (¬ f)  ¬ EG (g))) = {1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14} 

This result is very strong because it means that the 
checked goal holds true along every path from any state in 
the execution structure. For example, since the initial state 
1 is contained in this set, it can be concluded  that, in this 
generated execution structure, the reconfigurable control 
started at that initial moment and is guaranteed to achieve 
the original goal (AG (9 ≤ L2 ≤11)  EG (25 ≤ L1 ≤ 30)) 
at some later time. 

V.   CONCLUSION 

In this paper, we proposed a formal framework for 
reconfigurable control, based on model checking. This 
framework first generates a flexible model (i.e., an 
execution structure) according to the diagnosis, then 
defines a temporal specification language to deal with the 
problems due to infinite execution cycles and non-
determinism, and finally provides the algorithms that will 
automatically verify whether the updated model satisfies 
the desired specification. A benchmark example is used to 
illustrate the entire reconfiguration procedure. The results 
of this illustration show that our framework is able to 
express reconfiguration requirements very well and 
provides powerful qualitative computation capabilities.  

In future research, it would be interesting to attempt to 
reduce the impact of the state explosion problem. There 
have been several noteworthy works [18], [19], [20], [21] 
and [22] which could inspire us to deal with this problem, 
including attempts to exploit abstractions, symmetries and 
compositionalities.  

ACKNOWLEDGMENT 

This work is supported by ―The Nature Science 

Foundation of Tibet：13-38‖, ―A Project Funded by the 

Priority Academic Program Development of Jiangsu 
Higher Education Institutions ( Coastal Development 
Conservancy )‖. 

 

 

REFERENCES 

[1] R. J. Patton, ―Fault – Tolerant Control Systems: the 1997 
Situation,‖ IFAC Symposium on Fault Detection Supervision and 
Safety for Technical Processes, Vol. 3, Kingston Upon Hull, UK, 
26-28 August 1997, pp. 1033-1054. 

[2] H.-X. Hu, A.-L. Gehin and M. Bayart, ―Model Aggregation for 
Reconfigurable Control Based on Generic Component Model,‖ in 
ICSSSM‘06, Troys, France, 2006. 

[3] N. Eva Wu, K. Zhou and G. Salomon, ―Control reconfigurability of 
linear time-invariant systems,‖ Automatica, Vol. 36, Issue 11, 
November 2000, pp.1767-1771. 

[4] M. Staroswiecki and A.-L. Gehin, ―Analysis of System 
Reconfigurability using Generic Component Models,‖ in 
Control'98, Swansea, UK, 1998. 

[5] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis 
and Fault-Tolerant Control, Springer, 2003. 

[6] M. Staroswiecki and M. Bayart, ―Models and Languages for the 
Interoperability of Smart Instruments,‖ Automatica, Vol. 32, no. 6, 
1996, pp. 859-873. 

[7] I. Mozetic, ―Hierarchical Model-based Diagnosis,‖ In Readings in 
Model-based Diagnosis, Morgan Kaufmann, San Mateo, CA, 1992, 
pp. 354-372. 

[8] L. Chittaro and R. Ranon, ―Hierarchical model-based diagnosis 
based on structural abstraction,‖ Artificial Intelligence, Vol. 155, 
Issues 1-2, 2004, pp. 147-182. 

[9] R. Davis, ―Diagnostic reasoning based on structure and behavior,‖ 
Artificial Intelligence, Vol. 24, Issues 1-3, 1984, pp. 347-410. 

[10] R. Reiter, ―A Theory of Diagnosis from First Principles,‖ Artificial 
Intelligence, Vol. 32, Issues 1, 1987, pp. 57-95. 

[11] R. E. Fikes and N. J. Nilsson, ―STRIPS: A new approach to the 
application of theorem proving to problem solving,‖ Artificial 
Intelligence, Vol. 2, Issues 3-4, Winter, 1971, pp. 189-208. 

[12] M. Ghallab, D. Nau and P. Traverso, Automated Planning: Theory 
and Practice, Morgan Kaufmann Publishers, 2004. 

[13] M. Pistore and P. Traverso, ―Planning as model checking for 
Extended goals in Non-deterministic Domains,‖ in Proc. IJCAI 
2001, AAAI Press, 2001, pp. 479-486. 

[14] E. A. Emerson, ―Temporal and Modal Logic,‖ Handbook of 
theoretical computer science (vol. B): formal models and semantics,   
The MIT Press, 1991, pp. 995 – 1072. 

[15] E. M. Clarke, Jr. O. Grumberg, and D. A. Peled, Model Checking,   
The MIT Press, 2000. 

[16] F. Kabanza and S. Thiébaux, ―Search Control in planning for 
Temporally Extended Goals,‖ in Proc. of 15th International 
Conference on Automated Planning and Scheduling (ICAPS-05), 
2005, pp. 130–139. 

[17] M. Huth and M. Ryan, Logic in Computer Science: Modeling and 
Reasoning about Systems (Second Edition), Cambridge University 
Press, 2004. 

[18] D. E. Long, ―Model Checking, Abstraction, and Compositional 
Verification,‖ PhD thesis, School of Computer Science, Carnegie 
Mellon University, July 1983. 

[19] D. R. Dams, ―Abstract Interpretation and Partition Refinement for 
Model Checking,‖ PhD thesis, Institute for Programming Research 
and Algorithmics. Eindhoven University of Techonology, July, 
1996. 

[20] E. M. Clarke, O. Grumberg, and D.E. Long, ―Model Checking and 
Abstraction,‖ ACM Transactions on Programming Languages and 
Systems, Vol. 16, no. 5, September 1994, pp. 1512-1542. 

[21] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. 
Hwang, ―Symbolic Model Checking: 1020 States and Beyond,‖ 
Information and Computation (Special issue for the best papers 
from LICS‘90), Vol. 98, no. 2, June, 1992, pp. 142-170. 

[22] A.-L. Gehin, H.-X. Hu, and M. Bayart, "A self-updating model for 
analysing system reconfigurability," Engineering Applications of 
Artificial Intelligence, Vol.25, Issue 1, 2012, pp.20-30. 

 

1474




