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Abstract—Empirical studies show that the most successful 

continuous-time models of the short term rate in capturing 

the dynamics are those that allow the volatility of interest 

changes to be highly sensitive to the level of the rate. The 

mean-reverting constant elasticity of variance (CEV) process 

with regime switching is a stochastic differential equation 

that has found considerable use as a model for interest rate, 

volatility, and other financial quantities. Since the 

coefficients of CEV process do not satisfy the linear growth 

condition, we can not examine its properties by traditional 

techniques. This paper overcomes the mathematical 

difficulties due to the nonlinear growth of the mean-

reverting CEV process with regime switching, and provides 

a detailed proof that there is a unique positive global 

solution for such SDE.  

Keywords-CEV process; global solution; Gronwall's 

inequality; Lipschitz condition; regime switching 

I. INTRODUCTION 

Option pricing is one of the most important research 
fields in financial economics from both practical and 
theoretical point of view. The work of Black and Scholes 
[1] and Merton [2] laid the foundations of the research 
field and motivated important research in option pricing 
theory, its mathematical models and its computational 
techniques. The Black-Scholes-Merton formula is one of 
the important products of economic research of the last 
century and it has been widely adopted by traders, 
analysts , investors and other finance researcher.  

Despite its popularity, the Black-Scholes-Merton 
formula is not without flaws. It has been documented in 
many studies in empirical finance that the Geometric 
Brownian Motion (GBM) assumed in the Black-Scholes- 
Merton model does not provide a realistic description for 
the behavior of asset price dynamics. One of substitutes is 
the CEV model, which is originally introduced by Cox [3] 
and Cox and Ross [4]. The main advantages of using the 
CEV model are that it can account for the implied 
volatility smile and smirk and that it can also capture the 
leverage effect associated with asset price. Many empirical 
studies have been conducted in the literature to justify the 
use of the CEV model, for instance, Mendoza-Arriaga and 

Linetsky [5], Ruas, Dias and Nunes [6], Larguinho, Dias 
and Braumann [7], Thakoor, Tangman and Bhuruth [8]. 

Markovian regime-switching models have drawn a 
significant amount of attention in recent years due to their 
ability to include the influence of macroeconomic factors 
on individual asset price dynamics

[9-13]
. There are 

substantial empirical evidences in support of the existence 
of regime switching effects on stock market returns and 
default probabilities. Using the CRSP stock market returns 
over the period 1929-1989, Schaller and Norden [14] 
demonstrate that there is compelling evidence of regime 
switching in US stock market returns and the evidence for 
switching is robust to different specifications such as 
switching in means, switching in variances, and switching 
in both means and variances. Ang and Timmermann [15] 
show that regime-switching models can capture the 
stylized behavior of many asset returns such as fat tails, 
heteroskedasticity, and skewness. 

In this paper, we investigate the global positive 
solution of a stochastic differential equation, where we 
generalize the mean-reverting CEV process by replacing 
the constant parameters with the corresponding parameters 
modulated by a continuous-time, finite-state, Markov 
chain. Since the coefficients of mean-reverting CEV 
process with regime switching do not satisfy the linear 
growth condition, so we can not examine its properties by 
traditional techniques. This paper overcomes the 
mathematical difficulties due to the nonlinear growth of 
the mean-reverting CEV process with regime switching, 
and provides a detailed proof that there is a unique positive 
global solution for such SDE. 

This paper is organized as follows. In Section II, we 
develop a mean-reverting CEV process with regime 
switching. Since the proof of our main result is rather 
technical basic preliminaries and several lemmas are 
provided in Section III. In Section IV, we give our main 
result and show the detailed proof of the result. Conclusion 
is given in Section V. 

II. MEAN-REVERTING CEV PROCESSES WITH REGIME 

SWITCHING 

Since the pioneer work of Hamilton [16], it has been 
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usually accepted that an unobserved Markov-switching 
process can be used to appropriately model the Gross 
Domestic Product (GDP). According to the GDP data 
(logarithms of postwar quarterly US real GDP from 1947.1 
to 2009.4) that is downloaded from Federal Reserve Bank 
of St. Louis, although the output growth fluctuates around 
its sample mean, there are episodes of lower and even 
negative growth that coincide with NBER recessions as 

show in Fig .1. Thus it is necessary to react the effects of 
regime switching in modelling asset price. 

Throughout this paper, we let 0( { } )tF F P    be a 

complete probability space with a filtration { 0}tF   

 

 

Figure 1. (growth rate) US Gross Domestic Product 1947.1-2009.4 

 
satisfying the usual conditions (i.e., it is increasing and 

right continuous while 0F  contains all P -null sets), upon 

which all stochastic processes are defined. Let ( )X t  be a 

finite-state continuous-time Markov chain taking values 
among G  different states, where G  is the total number of 
states considered in the economy. Each state represents a 
particular regime and is labeled by an integer i  between 1 

and G . Hence the state space of ( )X t  is given by 

{1 2 }M G   L  which can be used to model factors of 

the economy such as GDP and stock price indices. One 

might interpret the states of ( )X t  as different stages of a 

business cycle. In economics, business cycles refer to the 
recurring and fluctuating levels of economical activities 
that an economic system undergoes over a long time 
period. For instance, there are usually five stages of a 
business cycle, namely, expansion, peak, recession, trough, 
and recovery. By interpreting the states of the Markov 

chain ( )X t  as different stages of a business cycle, one 

could suppose that 5G   and that state 1, state 2, L , and 
state 5 represent expansion, peak, L , and recovery, 
respectively.  

To obtain the transition probabilities of the Markov 

chain ( )X t , we need to specify its generator matrix Q . 

For easy exposition, we assume that a constant generator 

( )ij G GQ q   is given. Clearly it is straightforward to 

extend the framework to the case of time varying generator. 
From Markov chain theory (see for example, Yin and 

Zhang [17]), the elements ( )ij G Gq   in the matrix Q satisfy:  

(1). 0ijq   if i j ;  

(2). 0iiq   and ii ijj i
q q


   for each 1i G  L .  

Assume that the Markov chain ( )X t  at any time 0t   

is in a regime i M . Then after a period of time t , the 

Markov chain t tX   may stay in regime i  with probability 

( )XP i i  or jump to any other regime j M  with 

probability ( )XP i j , where the one-step transition 

probabilities ( )XP i j  of the Markov chain ( )X t  are given 

by   

{ }
(1 )

ii

ijii

ii

q t

X

i j t t t qq t

q

e j i
p P X j X i

e j i



  



   
     

   

. 

Let ( )W t  be a standard Brownian motion defined on 

the probability space 0( { } )tF F P   . We consider the 

following regime-switching mean-reverting CEV process  

( ) ( ) ( )( ) ( ( )) ( ) ( ) 0X t X t X tdY t a b Y t dt Y t dW t t       (1) 

wi th  in i t i a l  va lues  0 0Y y  and  0 0X x .  ( )Y t  

represents an underlying variable (for example, the 

stochastic interest rate or default intensity), ( )X ta  denotes 

the speed of mean reversion, ( )X tb  denotes the long term  

mean of the variable, and ( )X t  is the volatility coefficient. 

The model parameters ( )X ta , ( )X tb  and ( )X t  depend on 

the Markov chain ( )X t , indicating that they can take 

different values in different regimes, where ia , ib  and i  

a r e  a s s u m e d  t o  b e  p o s i t i v e  f o r  e a c h  i M .  

III. PRELIMINARIES AND SOME LEMMAS 

Since the underlying variable ( )Y t  is mainly used to 

model stochastic volatility or interest rate or an asset price, 
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it is critical that ( )Y t  will never become negative. Mao et 

al. [17] discuss its analytical properties when 1
2

1   

and show that for given any initial data 0 0 0Y y   and 

0 0X x M  , the solution ( )Y t  of (1) will remain positive 

with probability 1, namely ( ) 0Y t   for all 0t   almost 

surely, if one of the following two conditions holds:  

(1). 1
2

1  ;  

(2). 1
2

   and 
2 2i i ia b   for all i M .  

When 1  , the diffusion coefficient of (1) does not 

satisfy the linear growth condition, though it is locally 
Lipschitz continuous. We wonder if there exists a unique 
positive global solution and if the solution may explode at 
a finite time. Furthermore, since (1) is used to model 
interest rate and other quantities, it is critical that the 

solution ( )Y t  will never become negative. To prove there 

exists a unique positive global solution, we first establish 
the following lemmas that can be found in Mao et al. [18].  

The integral inequalities of Gronwall-type have been 
widely applied in the theory of ordinary differential 
equations and stochastic differential equations to prove the 
results on existence, uniqueness, boundedness, comparison, 
continuous dependence, perturbation and stability etc. We 
establish the well-known inequalities of this type as 
follows. 

Lemma 1 (Gronwall's inequality) Let 0T   and 

0c  . Let ( )u   be a Borel measurable bounded non-

negative function on [0, ]T , and let ( )v   be a non-negative 

integrable function on [0, ]T , 

 
0

( ) ( ) ( )
t

u t c v s u s ds   , for all 0 t T  , 

then 

 
0

( ) exp( ( ) )
t

u t c v s ds  , for all 0 t T  . 

Proof. Without loss of generality we may assume that 
0c  . Set 

 
0

( ) ( ) ( )
t

z t c v s u s ds    , for all 0 t T  , 

Then (t) (t).u z  Moreover, by the chain rule of classical 

calculus, we have 

0 0

(s) (s)
log( ( )) log( ) log(c) (s) .

(s)

t tv u
z t c ds v ds

z
      

This implies  

0
( ) exp( ( ) )

t

z t c v s ds  , for all 0 t T  . 

Thus the required inequality follows since (t) (t).u z  

Lemma 2.  The coefficients of (1) satisfy the local 

Lipschitz condition for given initial value 0 0 0Y y  , i.e., 

for every integer 1k  , there exists a positive constant kL  

such that for all i M , and those x , y  with [0 ]x k   

and [0 ]y k  ,  

( ) ( )i i i i k i i ka b x a b y L x y x y L x y                 

And thus there exists a unique local solution to (1).  

IV. POSITIVE AND GLOBAL SOLUTION 

Theorem 2. for any given initial value 0 0 0Y y  , ia , 

ib  and 0i   for all i M , there exists a unique positive 

global solution ( )Y t  to (1) on 0t  .  

Proof. According to (1), the local Lipschitz condition 

guarantees the existence of the unique local solution ( )Y t , 

[0 )et   , where e  is the stopping time of the explosion 

or first zero time. To prove our theorem, we need to show 

that e    a.s. If this is not true, then we can find a pair 

of positive constants   and T  such that  

( )eP T     

For each integer 1k  , define the stopping time  

inf{ 0 | ( ) }k t Y t k      

Since k e   almost surely, we can find a sufficiently 

large integer 0k  for  

0( )
2

kP T k k


       

For i , 0i  , i M , let us define a function 
2 ( )V C R M R     as  

2( )i i iV Y Y Y                    (2) 

which is continuously twice differentiable in Y . It is easy 

to see that ( )iV Y   as Y   or 0Y  . For any 

0 t T  , i M , by the Itô formula,  

1
2 3

( ( )) ( ( ))

1
                   ( ) ( ( ) 2 ( ) ) ( )

2

i i

i i i

dV Y t LV Y t dt

Y t Y t Y t dW t  
 



  
 

where ( ( ))iLV Y t  is defined by  

1
2

2
3

3

2 2 4

1

1
( ( )) ( ( ))( ( ) 2 ( ) )

2

1 1
      ( ) ( ( ) 6 ( ) ) ( ( ))

2 4

i i i i i

G

i i i ij j

j

LV Y t a b Y t Y t Y t

Y t Y t Y t q V Y t

 

  

 

 



  

    

By boundedness of polynomial, it is easy to see that there 
exists a constant K  such that 

1
2

2
3

3

2 2 4

1
( ( ))( ( ) 2 ( ) )

2

1 1
               ( ) ( ( ) 6 ( ) )

2 4

i i i i

i i i

a b Y t Y t Y t

Y t Y t Y t K

 

  

 

 

 

    

 

and  

1

( ( )) ( ( ))
G

ij j i

j

q V Y t KV Y t


   

Therefore, for any [0 ]t T  ,  

{ } 0

0 { }

{ } 0 ( )
0

0 { }
0

( ) ( ) ( ( ))

 ( ) ( )

k

t kk

s kk

t

X t x X s

t

x X s

EV Y V y E LV Y s ds

V y KT KE EV Y ds





















 

  




, 

The Gronwall inequality implies  

{ } 0{ } 0( ) [ ( ) ]
T kk

KT

X T xEV Y V y KT e
       

So  

0{ } 0[ ( ) [ ( ) ]
k kk

KT

T X xE I V Y V y KT e
      

On the other hand, if we define  

inf{ ( ( )) | ( ) [0 ] }k iM V Y t Y t k t T i M         

then kM  . It now follows from (3.40) and (3.41) that  

0 0

1
[ ( ) ] { }

2

KT

x k k kV y KT e M P T M       
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Letting k   yields a contradiction so we must have 

e    a.s.  

Thus there exists a unique positive global solution 
( )Y t  to (1) on 0t  .  

V. CONCLUSION 

In this paper, we propose a mean-reverting CEV 
process that has switching dynamics governed by a 
continuous-time finite state Markov chain. We investigate 
the global positive solution of a stochastic differential 
equation, Since the coefficients of mean-reverting CEV 
process with regime switching do not satisfy the linear 
growth condition, This paper overcomes the mathematical 
difficulties due to the nonlinear growth of the mean-
reverting CEV process with regime switching, and 
provides a detailed proof that there is a unique positive 
global solution for such SDE. 

For further research it would be worth considering 
convergence of Monte Carlo simulations based on natural 
Euler-Maruyama discretization involving the mean-
reverting CEV process with regime switching. 
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