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Abstract. Kernel learning has been a focus of machine learning domain recently. Kernel partial least 
squares (KPLS) algorithm can construct nonlinear model using extract latent variables from the input 
and output data space simultaneously. However, generalization performance of KPLS model relies 
mostly on kernel types and kernel parameters, which are difference to modeling of different 
applicable background. Intelligent optimization algorithm can be used to search these parameters. 
Thus, a new multi-kernel partial least squares regression approach based on linear multi-kernel 
construction method and adaptive genetic algorithm (AGA) is proposed in this paper. Normally used 
global and local kernels are weighed to obtain the mixed multi-kernel of KPLS algorithm. These 
kernel’s parameters and weighting coefficients are selected using AGA optimization algorithm. The 
experimental results based on Benchmark data set show that the proposed approach has better 
prediction performance than that of single kernel based modeling method. 

Introduction 

Kernel learning method has been successfully applied to data-driven based soft sensor problems. 
However, how to select effective kernel types, kernel parameters for different modeling data sets with 
different background is still an open issue. Recently, many methods have been proposed to obtain 
multi-kernel instead of using a single one. They are called multi-kernel learning (MKL) approaches 
[1]. MKL method has been applied successful in biology information domain [2]. Recent applications 
have shown that using multi-kernel instead of a single one can enhance interpretability of the decision 
function and improve performances of the prediction model [3,4]. But MKL formulation is actually a 
convex but non-smooth minimization problem [5]. Thus, many research works have been focused on 
MKL optimization problem [6]. 

For most of the modeling data, there is co-linearity among input variables, especially for high 
dimensional spectral data, such as NIR and frequency spectral data. The popularly used feature 
extraction method is principal component analysis (PCA). However, PCA don’t take into account 
correlation between inputs and outputs variables. Partial least squares (PLS) have been used widely 
on modeling such data due to its special characteristic. Namely, it can extract information from input 
and output data using less latent variables simultaneously [7]. In order to build more effective 
non-linear PLS model, kernel learning theory has been applied to PLS. Thus, kernel PLS (KPLS) was 
proposed in [8]. The idea of KPLS is based on a nonlinear mapping of the original data to a 
high-dimensional feature space, where a linear PLS model is constructed in that feature space. For 
solving optimal kernel parameters and features selection problem jointly for high dimensional data, 
adaptive genetic algorithm-kernel partial least squares (AGA-KPLS) based feature selection 
approach is proposed in [9]. However, how to selected effective kernel type cannot be solved, which 
is an open issue.  

Therefore, multi-kernel partial least squares (MKPLS) regression modeling based on adaptive 
genetic algorithm (AGA) is proposed in this paper to address above problems.  
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Partial Least Squares 
 Partial Least Squares (PLS) can capture maximal covariance between the input and output variables 
using less latent variables (LVs). It is realized by decompose the input and output data simultaneously. 
At first, the predictor variables X  and response variables Y  are normalized as 0E and 0F  wit zero 
mean and one variance. Let 1t  be the first latent score vector of 0E , 101 wEt = , and 1w  be the first axis 
of the 0E , 1|||| 1 =w . Similarly, let 1u  be the first latent score vector of 0F , 101 cFu = , and 1c  be the first 
axis of the 0F , 1|||| 1 =c . Then, we want to maximize the covariance between 1t  and 1u  with PLS 
algorithm. Thus, PLS algorithm needs to solve the following problem: 
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The above problem can be solved with traditional Lagrange approach. At last, we obtain that 
1w and 1c  are the maximum eigenvector of matrix 0000 EFFE TT  and 0

T
00

T
0 FEEF . Then, latent features 1t  

and 1u are obtained, which capture most of the information in X  and Y . Deflate 0E and 0F with 1t  and 
1u  and their loading to obtain residual matrixes 1E  and 1F . Using the same method to 1E  and 1F , and 

repeat until the final residual matrixes 0== FE .  At last, the PLS outside model and inside model can 
be written as a multiple regression model: 

GYTU)XXU(TXXY 1 += − TTTT                                                                                                           (2) 
where, ][ h21 t,...,t,tT = and ],...,,[ 21 huuuU =  are score matrices; h  is number of the latent variable (LV), 
and G is residual matrix. 

Kernel Partial Least Squares 

Kernel partial least squares (KPLS) constructs nonlinear modeling by extend nonlinear item to input 
matrix X . At first, input data k

ll 1}){( =X  is nonlinear mapping to the high dimension features space, 
))(()(: ll XX Φ→Φ . Then, linear PLS algorithm is performed in this high dimension feature space. At last, 

nonlinear model in the original input space is obtained.  
Kernel trick is used to realize the mapping from the original input space into the high dimensional 

feature space. Kernel matrix is calculated with: 
 kmlml ,2,1,),,())(())(( T =′=Φ= XXKXXK                                                                                             (3) 

The kernel matrix K  is meaned as: 
)111()111(~ TT

kkkk kk
−−= IKIK                                                                                                               (4) 

where, I is unite matrix of k  dimension; k1  is a vector with value 1 and length k . 
Prediction output of KPLS for the training samples can be represented as: 

YTUKTUKY T1T )~(~ˆ −=                                                                                                                       (5) 
For the testing samples t

1t }){( k
ll =X , it must be scaled as: 

)111()111(~ TT
ttt, kkkk kk

−−= IKIKK                                                                                                         (6) 

where, tK is kernel matrix of the testing samples, ))(,)(( t mlt XXKK = ; tk  is number of the testing 
sample; t1k  is a vector with value 1 and length tk .  

Prediction output of KPLS for the testing samples can be represented as:  
YTUKTUK T1T

tt )~(~ˆ −=y                                                                                                                     (7) 
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Linear Multi-Kernel Learning 
The main idea of linear MKL is to create a weighted linear combination kernel of different types. 
Moreover, it was shown that more effective soft sensor modeling can be obtained by using multiple 
kernels instead of one. In this paper, the following mix-kernel is constructed for KPLS model: 

),()1(),(),( polyrbfmix XXKXXKXXK ′−+′=′ ll                                                                                 (8) 
where, 
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Ndd ,,2,1,)1(),(poly =+′⋅=′ XXXXK                                                                                                (10) 
where rbfK and polyK are polynomial and Gaussian kernel function respectively; )10( ≤≤ λλ  is 
weighing coefficient which used to adjust the local kernel rbfK and global kernel polyK . 

Adaptive Genetic Algorithm based Multi-Kernel Partial Least Squares 
For MKPLS modeling algorithm, there are three parameters should be selected, which are denoted as 

},,{ λσ d . We use adaptive genetic algorithm (AGA) to select them together, and normally used binary 
encoding system is used to encode and decode them. AGA can adjust probabilities of crossover and 
mutation according to fitness function automatically [10]. 

Objective of AGA algorithm is to minimize error between KPLS model’s output and real value by 
select optimized parameters set },,{ λσ d . The following fitness function is used: 
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where, k  and (l)ŷ  are numbers and prediction value of the validating sample.  

Experiments 

Concrete Compressive Strength data set from UCI platform [11] is used to build MKPLS based soft 
sensor models. Studies show that concrete compressive strength is a highly nonlinear function of age 
and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, 
coarse aggregate, and fine aggregate. 

In our experiments, the original data sets are parted into two parts with equal interval. AGA based 
optimization method is applied to select the optimal MKPLS model’s parameters. Leave-one-out 
cross validating method is used to obtain the final model. The parameters of AGA algorithm are: 
Population size 80, Maximum generations 20, Percent at convergence 98 and Percent initial terms 40.  

Root mean square error (RMSE) of testing samples is used to evaluate the model’s prediction 
performance. The proposed method is compared with principal component analysis-support vector 
machines (PCA-SVM) and KPLS approach in [12].  

Prediction curves and statistical results with the optimal modeling parameters are shown in Fig.3. 
Statistical results of different approaches are shown in Table .1. 
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Fig. 1. Prediction curves of the proposed approach 
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Table. 1. Statistical results of different approaches 
 Parameters Weights Testing error 

 C,PCs/LVs RBF Poly RBF Poly RMSE 
PCA-SVM 21,5 1 --- 1 0 9.597 

KPLS 12 1 --- 1 0 12.83 
MKPLS 5 2.525 0 0.6359 0.3641 8.637 

 
The result shows that the proposed method selects different kernel parameters and weighting 

coefficients for different kernel functions with the best prediction accuracy. However, only two kinds 
of kernels with linear combination method are used in this paper. Only one Benchmark data set is 
used to estimate the prediction performance of the proposed method. Therefore, more kernel types, 
more multi-kernel construction approaches and more Benchmark data sets would be addressed for the 
MKPLS algorithms in the future research. 

Conclusions 
This paper presents a novel multi-kernel partial squares modeling approach based on adaptive genetic 
algorithm. Popular poly kernel and radius basis function kernel are used to construct a multi-kernel 
function for kernel partial least squares algorithm. In order to solve the model learning parameters 
optimized selection problem, adaptive genetic algorithm is used. Namely, the linear combined 
multi-kernel’s parameters and weighting coefficients are optimized select jointly. Data sets from UCI 
platform are used to validate the proposed modeling method. How to use more kernel types and more 
multi-kernel construction methods to improve the modeling performance would be research further. 
Moreover, how to reduce the training time and use more effective optimization algorithm would be 
addressed in the future study. 
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