
Design and Test Based on Stream Processor Programmable Cluster
Architecture

Xu Wen1, Wu Dongyan1, Qi Lijun1, Wang Mingge2, Xiao Jingxin1
1Aviation University of Air Force, Jilin, Changchun130022, China

2Jilin University, Jilin, Changchun130012, China
huner2011@foxmail.com

Keywords: stream processor, GPU programming model, CUDA technique, stream processor
cluster

Abstract. As the representative of common programmable stream processor, the performance of
GPU develops rapidly, which has broken Moore's law which is obeyed by CPU. GPU applies the
performance of programmability and functional expansibility to support complicated computation
and process, and the feature has been acknowledged in the industry. The paper deeply researches
programmable model CUDA based on NVIDIA GPU, and analyzes CUDA technique. And the
paper applies MPI+CUDA hybrid programming model and common stream processor to load the
model, which not only separates the control of stream processor cluster from computation, and
optimizes multi-data stream processing strategy, but also promotes the performance of stream
processor cluster system compared with traditional x86 cluster system.

Introduction
With the maturity of stream system structure such as dedicated stream system structure

represented by Imagine, common stream system structure represented by TRIP and RAW, and more
complicated dedicated stream system structure represented by well-known CELL processor, and the
development of stream process and stream computation, the common stream processor represented
by GPU has attracted the attention of people with the characteristics of high popularity, popularized
prices and great computation capacity. The computing technology based on GPU may replace
clustering computing technology to become the mainstream technology with high-performance
computation. It fully uses large-scale thread parallel processing capacity of GPU, and GPU can be
used as common computation platform based on CPU to provide supplement for high-performance
computation capability, which implements cost-effective and high-performance computation HPC
solution based on the existing common computing platform.

Key to Making GPU Become high-performance Programmable Stream Processor
The development of GPGPU represented by NVIDIA GPU, and the emergence of Tesla system

structure [8] makes GPU develop towards high-performance computation field. The present
hardware architecture of GPU inherits traditional stream system structure, and the hardware
architecture uses the design idea of stream system structure. Compared with the early GPU, the
hardware architecture of new GPU changes greatly.

The first step to establish a high-performance GPU is to map the nucleus in graphics pipeline
into independent function unit of single chip. So each nuclear which is implemented in different
areas of chip is called task parallelism in the organization. Not only task parallelism allows
parallelism of task level (because all nucleus are executed at the same time), but also functional
units make hardware specialization on the given nucleus. The organization of task parallelism
allows effective communication between nucleus, the reason for which is that the adjacent nucleus
implemented by functional unit in graphics stream pipeline adjoin the chip, and they can effectively
communicate under the condition without requiring global memory access. ‘

In each stage of graphics pipeline of processing units mapping to the chip, GPU applies the

International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015)

© 2015. The authors - Published by Atlantis Press 358

independence of flow elements by processing several data elements in parallel. The synchronous
combination of task level and data level allows GPU to effectively use many function units at the
same time.

The input of graphics pipeline must be processed by each nuclear orderly. It may require
thousands of cycles to process an element. If a high-latency memory reference is required in
processing elements, processing unit only needs to work for other elements when data is achieved.
Therefore, the depth pipeline of GPU effectively tolerates high-latency operation.

MPI+CUDA Hybrid Programming Technique
Message passing interface, MPI. MPI is the standard specification of message passing function

library. MPI is developed by MPI forum which is an alliance consisting of paralleled computer
provider, library author and application specialist [26] [27]. MPI achieves the objective of
portability by providing a standard method of non-patented message passing library which is
independent of platform. MPI explains the library with the form without relation to language. And it
provides the binding of Fortran and C. The standard doesn’t include any features of suppliers,
operation system or hardware. For the above reasons, MPI is widely accepted in computation filed.
Meanwhile, MPI provides more than two hundreds of routines. The provided powerful functionality
is based on four orthogonal notions, message data type, communication subsystem, communication
operation and virtual topology. MPI indicates the combination can obey well defined
semantic pattern.

Execution process of typical CUDA application. The program execution of CUDA has certain
flow. The following is the implementation step of typical CUDA. (1) Distributing the occupation
time of data in device. (2) Transmitting the data from Host to Device. (3) If there is need, the
memory of Device is initialized. (4) Determining execution configuration according to the
processed data. (5) Executing Kernel, storing the results on Device. (6) Outputting the result data
from Device to Host.

MPI+CUDA hybrid programming model. The task objects of MPI are transferred to be
controlled by program, and the computation task is delivered to CUDA. Figure 1 shows hybrid
programming collaboration flow of single-node MPI and CUDA.

MPICPU

CUDAGPU

MuLti-threaded
Computing

Single Process
Control

Host
Memory

NIC

①
④

②

②

③

③

Level #1

Level #2

GPU
Memory

Figure 1 Single-node MPI+CUDA hybrid programming collaboration flow

 The number of processes launched by MPI on each node is determined by the number of GPU
carried on nodes. If a node carries a GPU, the number of processes launched by MPI on each node
is 1. The number in Figure 1 means four processes.

Data collection.
(1)The data of Host Memory is restored into GPU Memory to execute computation.
(2)After computing the data, the data is recycled to Host from GPU.
(3)Node communication, data distribution and broadcast.
Although hierarchical mode independents control from computation, layer 1 is not completely

independent of layer 2. On layer 2, the nodes are independent, and they independently compute the

359

data which is distributed and collected by layer 1 on GPU. Then, the data results are returned to the
main memory by GPU. The control process of GPU of layer 1 accepts the data, and makes
collection and broadcast. The design owes to great computation capability of GPU.

Establishment of Stream Processor Cluster
Hardware environment. Three PC carrying NVIDIA GPU are used to compose a stream

processor clustering system. Each PC is equipped with CPU of Intel Core2 E8400 3.0GHz, host
memory 2GB, 800MHz, hard disk 500GB, NVIDIA GTX280 display card, and GT200 architecture.
The computation capability of the device is version 1.3. It supports IEEE754 double-precision
standard, and has 30 multinulear processor units, and 240 stream processors. Internet uses DLink
16-port switcher to compose a group of Gigabit LAN.

Software environment. The paralleled programming environment of MPI and CUDA is used, as
shown in Table 2.

Table 2 Programming environment configuration information of nodes
OS Windows XP 32-bit SP2

Programming Platform
MPICH2 1.8.0 release

CUDA 2.0 release

Cluster performance test. LINPACK is the most internationally popular benchmark to test the
floating-point performance of high-performance computer system. LINPACK is the linear
algebra package which is written by Jack Dongarra in Tennessee University. The high-performance
computer uses Gaussian elimination method to solve the test of unitary N dense linear algebraic
equation set, to evaluate floating-point performance of high-performance computer. LINPACK test
is divided into LINPACK100, LINPACK1000 and HPL, in which HPL（High Performance Linpack)
is the important basis of TOP500 ranking. And the version of LINPACK in CUDA is not given
officially. So the testing program which is written by ourselves has replaced HPL test. It is CUDA
multi-machine program solving N-Body celestial body problem. N-Body problem involves many
fields of science and engineer. The main characteristic is the calculated amount of O (N2). Applying
paralleled computation method of stream processor cluster is one of ways solving huge computation
amount of N-Body problem.

N-Body program is based on ADA(Atom Decomposition Algorithm)[28]. ADA averagely
distributes all atoms to each processor. Before computation, each processor distributes atoms
randomly, and there is no any relationship in space. Each processor only computes the stress of
atoms in its N/P (N is the total number of atoms, and P is the number of processors), and it is used
to update the displacement and speed information.

Table 3 Linear distribution of each node processor

n Kernel #1 Kernel #2
Grid Block Grid Block

1024 （24，64） （16，16） 1 384
2048 （48，128） （16，16） 3 256
4096 （96，256） （16，16） 6 256
8192 （192，512） （16，16） 12 256
16384 （384，1024） （16，16） 24 256

By setting Grid dimension and Block dimension, Figure 2 shows linear distribution of each node
stream processor. Kernel #1 means Kernel computing stress, and the computation formula of
two-dimensional Grid is

3.
2 (1) _

nGridDim x
numprocs BLOCK SIZE

= ×
+ ×

 (1)

360

.
_

nGridDim y
BLOCK SIZE

= (2)

In the formula, n is the size of problem scale, and numproc is the process of MPI, or node
number, which is 3. BLOCK_SIZE is a constant, 16. The dimension value of Block is
（BLOCK_SIZE,BLOCK_SIZE）. Kernel #2 means Kernel computing displacement, and the
computation formula of one-dimensional Grid is

3.
2 (1) 256

nGridDim x
numprocs

= ×
+ ×

 (3)

. 1GridDim y = (4)

 For the variable Kernel #1, except for n=1024, the dimension of Block of the other scales is fixed
value, 256. When n=1024, the above formula is not applicable. Block dimension is 384. And the
data in Table 2 is achieved by computing formula (1)-(4).

When the scale of the problem is n, the times of operating floating points should meet the
following formulas.
 Computing stress：20n2 (5)

 Computing speed and displacement：2n2+14n (6)
In the computation process, it is iterative for 1000 times, so the total floating point operation

times is
1000 (22n2+14n) (7)

Therefore, the problem scale n is given, the system operation time T is measured,
peak=floating-point operation times /computation time I, and the testing result is Flops.

0

1

2

3

4

5

6

7

8

0 1024 2048 4096 8192 16384 32768
matrix size/N

R
m

ax
/G

Fl
op

s

3P Traditional Cluster

6P Traditional Cluster

Stream Processor Cluster

Figure 2 Testing results of N-Body on cluster

Figure 2 is the testing result of N-Body on cluster. 3-thread and 6-thread experiment is done on
traditional cluster. From Figure 2, we can see that compared with traditional clustering system, with
the increase of problem scale, the performance of cluster increases, and the maximum execution
times of stream processor cluster is more evident. The performance of traditional cluster 6-thread is
worse than that of 3-thread. Compared with stream processor, it is 7.8 times better than three-thread,
and it is 4.2 times higher than 6-thread.

Conclusions
GPGPU depends on graphics API interface, which restricts the great parallel processing

capability of GPU. CUDA technique provides direct access interface of hardware, which avoids the
implementation of indirect GPGPU using API interface to access GPU.

The paper analyzes the design of MKSD stream processor cluster system, proposes hybrid
scheme of MPI+CUDA programming model, and establishes a cluster example and traditional
cluster to compare the performance. The experiment indicates that the performance of stream
processor cluster is better than traditional cluster clustering system, and applying GPU as
computation co-processor will become high-performance computation solution.

361

References
[1]NVIDIA Corporation. Whitepaper"NVIDIA's Next Generation CUDA Compute
Architecture:Fermi"[EB/OL]. http://www.nvidia.com. 2009-11-1.
[2] Jing Du, Xuejun Yang, Guibin Wang. Scientific Computing Applications on the Imagine Stream
Processor[C]. Proc. of the 11th ACSAC. Shanghai, China, Sep. 2006.
[3] David Luebke. CUDA: Scalable Parallel Programming for High-performance Scientific
Computing[C]. Proc. of the 5th IEEE Int’l Symp. on Biomedical Imaging: From Nano to Macro.
Paris, France, 2008, :836-838.
[4] Jayanth Gummaraju, Mendel Rosenblum, "Stream Programming on General-Purpose
Processors,"[C] . Proc. of the 38th annual IEEE/ACM MICRO, Barcelona, Spain, Nov. 2005.

[5] Xiong Sheng-wu, Wang Lu, Yang Jie, “ Key Technologies Used For Construct
High-performance Computer Cluster System,”[J]. Micro-computer Information, vol. 26, no. 13, pp.
86-88, 2006.
[6] The MPI Forum, "MPI: A message passing interface,"[C]. in Proc. of Supercomputing '93,
Portland Oregon, November 1993.

[7] Message Passing Interface Forum Document for a Standard, “Message Passing Interface,”[J].
TechRep:CS-94-230, University of Tennessee, 1994.

[8] WANG Xiao-Wei, GUO Li, YAN Zhang-Yuan, “N-body algorithms and parallelization of
them,”[J]. Computers and Applied Chemistry, vol.20, no.2, pp. 195-200, 2003.

[9] Xiong Sheng-wu, Wang Lu, Yang Jie. Key Technologies Used For Construct High-performance
Computer Cluster System[J]. Micro-computer Information, 2006, 26(13):86-88.

362

