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Abstract. Compartmental network is a specific type of dynamical multi-agent system, which is 
comprised of special vertices called compartments, interconnected through a network, and each 
vertex contains some substance or information. Compartmental network has been extensively 
studied in various fields, especially engineering systems. The stability of multi-agent systems is 
very important, and has been noticed by more scholars. The technique of solving descriptor 
compartmental networks can be considered as a class of complex DAEs. According to the 
difficulties in simulation of singular dynamic multi-agent systems, this paper describes a specific 
type of dynamical multi-agent system, establishes the model of the system, analysis the DAEs, and 
proposes a method to solve the problems, and then a numerical instance has been exhibited in the 
paper, the results of the simulation with MATLAB. 

Introduction 
Compartmental network [1] can be regarded as a specific type of dynamical multi-agent system, 

which is comprised of special vertices called compartments, inter-connected through a network, and 
each vertex contains some substance or information. The neighbouring compartments in the 
network can dynamically exchange the substance or information with each other. Many systems 
that have been extensively studied in various fields such as biology, chemistry, economics, and 
engineering can be treated as compartmental systems. For instance, in engineering, some of the 
artificial neuron networks [2] and sensor networks belong to compartmental networks [3].  

In recent years, scholars start to notice the stability problems for descriptor multi-agent systems. 
Descriptor systems are also called singular systems. A descriptor model is more general and precise 
than a normal model to depict a dynamical physical system, especially as certain algebraic 
constraints exist among the state variables [4] or as the system dynamics include components with 
different temporal scales [5]. Xi et al. [6-7] early paid attention to the consensus problems of 
descriptor multi-agent systems, mostly with LMI methods. Yang et al. [8] analysed the consensus 
conditions for singular multi-agent systems with output feedback protocols. Zhou et al. [9] 
concerned the stability of a class of switching descriptor systems.  

Based on the scholars’ study, there are still three problems when singular dynamic multi-agent 
systems are simulated: 1) Numerical simulation of DAEs is very difficult. The initial-values need to 
be matched, because not all initial-values are suitable for DAEs. When initial values are not suitable 
for DAEs, the solver will guess initial-values automatically. 2) There is a technical limitation for 
Matlab to dispose a DAE, witch be solved by index 1. Index is a notion used in the theory of DAEs. 
3) The numerical simulation of complex network is dif-ficult, because the dimensions of complex 
networks are usually very large. So when the simulation of singular complex networks is to be dealt 
by scholars, they often transform a singular complex network into a series of equivalent ordinary 
systems and simulate the system with conventional techniques [10]. Usually, it is troublesome to 
perform such a transformation. 

In order to break the dilemmas, this paper offered a simple method to solve the above-mentioned 
problems and break the limitation of index 1. Consequently, this paper should have referential 
significance for solving DAEs numerically. 

Ode15s is a specific command of Matlab which can resolve initial value problems for ordinary 
differential equations. It solves the equations form y'=f(t,y) or problems that involve a mass matrix, 
M(t,y) y'=f(t,y). Ode15s can settle problems with a mass matrix that is singular, i.e., differential-
algebraic equations (DAEs). 
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This paper focuses on the application of ode15s in computing the numerical solution of 
descriptor compartmental networks. In this paper the technique of solving descriptor compartmental 
networks as a class of complex DAEs is detailed described, and a numerical simulation is offered to 
verify the effectiveness. 

The organization of the remaining part of this paper is as follows. Section 2 will describe the 
descriptor compartmental network model. Section 3 will analyse DAEs. Section 4 will show 
numerical examples. Finally, Section 5 will be the conclusion. 

Model formulation 
A compartmental network being of nth order implies that each vertex may contain n different 

types of substance or information, where any type can be transformed into other types. The 
network’s being undirected implicates that if some substance flows from vertex i to j, then both the 
quantities of substance in the two vertices will simultaneously alter. When there exist certain 
internal algebraic constrains among various quantities, the compartmental network should be 
depicted by a descriptor model:  

A compartmental network can be regarded as a specific type of dynamical multi-agent system. It 
is supposed to be composed of m vertices indexed from 1 to m, each of mth order. The state of 
vertex i is denoted by 1 2[ , , , ]T n

i i i inx x x x R= ∈  which represents the quantity of substance or information 
on the vertex. The communication network among vertices is represented by a graph topology G of 
order m. The arc weight of G between vertex i and j is denoted by 0ijw ≥ , which can be regarded as 
the strength of communication link. If 0ijw ≥ , then vertex j is vertex i’s neighbor. The graph can be 
denoted by its adjacency matrix W: 
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The dynamics of the LTI descriptor compartmental network that will be concerned is described 
by： 
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The dynamics of the overall compartmental network (1) can be described by the matrix state 
equation below: 

   TEX FXL= −                                                (2) 
where ( )L L G=  is the Laplacian matrix of the graph topology G . 

Let 1 2[ ]T T T T
mx x x x=  be the stack state vector of the system, and the dynamics is depicted by  

( ) ( )NI E x L F x⊗ = − ⊗                                            (3) 
which is the vector form counterpart of (2). 

Lemma 1 
The Laplacian matrix L of a directed graph G has exactly a single zero eigenvalue 1 =0λ if G 

has a spanning tree, with the corresponding eigenvector [1 1 1]Tφ =  . Meanwhile, all the other 
eigenvalues 2 , , Nλ λ  locate in the open right half plane. 

Lemma 2 
For two given matrices A and B, let ( )Aλ  be an eigenvalue of A with corresponding eigenvector 

411



 

( )Aγ   and ( )Bλ  be an eigenvalue of B with eigenvector ( )Bγ , then ( ) ( )A Bλ λ  is an eigenvalue of A B⊗  
with corresponding eigenvector ( ) ( )A Bγ γ⊗ . 

Simulating a dynamic compartmental network means solving a high-dimensional DAE. When 
processing a DAE, scholars may encounter some problems, such as initial-value matching and 
limitation of index 1. For initial-value matching, DAEs have solutions only when the initial value of 
state variable 0y  and the initial value of first order derivative of state variable 0py  are consistent, and 

0py need satisfy the condition of 0 0 0 0 0( , ) ( , )pM t y y f t y= . If  and  are not consistent, the solver treats them 
as guesses, and continues to handle the problem. Another problem is the limitation of index 1. 
When disposing a DAE, scholars may get the error message as follows: “This DAE appears to be of 
index greater than 1”. Index can be used for measuring the distance from a DAE to its related ODE. 
The index is a nonnegative integer that provides useful information about the mathematical 
structure and potential complications in the analysis and the numerical solution of the DAE. In 
general, the higher the index of a DAE, the more difficulties one can expect for its numerical 
solution. So if a DAE is to be dealt, usually it must be of index 1. Therefore, those problems need to 
be handled. 

Analysis of differential algebraic equations index 1 problem 
Differential-algebraic Equations and Matlab Commands 

Differential-Algebraic Equations is a system which is composed of differential equations and 
algebraic equations without derivative. It is hard to find exact solutions for DAEs. This situation is 
similar to partial differential equation. But approximate solution can be obtained by using Matlab 
solvers, such as ode15s and ode23t. ode15s and ode23t can directly resolve ODEs with a mass 
matrix that is singular, i.e., differential-algebraic equations (DAEs). 

T[T,Y] = solver (odefun, tspan, y_0, options): handles as above with default integration 
parameters replaced by property values specified in options, an argument created with the odeset 
function. Commonly used properties include a scalar relative error tolerance RelTol( 1e-3 by default) 
and a vector of absolute error tolerances AbsTol (all components are 1e-6 by default). If certain 
components of the solution must be nonnegative, use the odeset function to set the Non-Negative 
property to the indices of these components. Where the solver is one of ode45, ode23, ode113, 
ode15s, ode23s, ode23t, or ode23tb. 

The solvers of the ODE suite can solve problems of the form ( , ) ( , )M t y y f t y′ =  with time and 
state-dependent mass matrix M . 

If a problem has a mass matrix, create a function ( , )M MASS t y= , that returns the value of the mass 
matrix, and use odeset to set the Mass property to @MASS. If the mass matrix is constant, the 
matrix should be used as the value of the Mass property. 

If the mass matrix M is singular, then ( , ) ( , )M t y y f t y′ =  is a system of differential algebraic 
equations. ode15s and ode23t solvers can solve DAEs of index 1 provided that 0y  is sufficiently 
close to being consistent. If there is a mass matrix, odeset can be used to set the MassSingular 
property to 'yes', 'no', or 'maybe'. The default value of 'maybe' causes the solver to test whether the 
problem is a DAE. The initial value of first order derivative of state variable 0py  can be provided as 
the value of the InitialSlope property. The default is the zero vector. If a problem is a DAE, and 0y  
and 0py are not consistent, the solver treats them as guesses, attempts to compute consistent values 
that are close to the guesses, and continues to solve the problem. When solving DAEs, it is very 
advantageous to formulate the problem so that M is a diagonal matrix. 
Analysis of index 1 problem 
It is hard for some DAEs to satisfy the condition of index 1, especially for higher order DAEs. 
When settling DAEs, ode15s and ode23t solvers can solve DAEs of the form ( , ) ( , )M t y y f t y′ = , 
where ( , )M t y   is singular. A singular  ( , )M t y  implies that a DAE is dealt. If so, the DAE is required 
to be of index 1.The index 1 condition is satisfied when the matrix 
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( )M f yλ+ ∂ ∂                                                    (4) 
is nonsingular, for all non-zero λ  [13]. In this paper, the model is (3). According to matrix (4) and 
model (3), the matrix can be showed as follow:  

( ) ( )NI E L Fλ⊗ − ⊗                                             (5) 
Proposition 1 
When the zero eigenvector of is the same E as the zero eigenvector of F , matrix (5) is singular. 
Proof: Suppose 1( ) 0NI E α⊗ =  and 2( ) 0L F α⊗ = , with  as the zero eigenvector of ( )NI E⊗  and 2α  

as the zero eigenvector of . α  is one of the eigenvector of NI . β  is the zero eigenvector of E . γ  is 
the zero eigenvector of L .  δ is the zero eigenvector of F .  

According to Lemma 2, 1α α β= ⊗ , 2α γ δ= ⊗ .Since matrix E  and matrix L  are singular, and  are 
singular, 1 2,α α∴∃  are nonzero. Because α  can be arbitrary, let α γ= . When 1 2,β δ α α= = , 
let 1 2 0α α α= = ≠ , 

 [( ) ( )] 0, 0NI E L F a aλ∴ ⊗ − ⊗ = ≠ ⇒ ( ) ( )NI E L Fλ⊗ − ⊗                     (6) 
is singular. The proposition is proved.  

Arbitrary tests and trials show that in most cases matrix (5) is singular. If matrix (5) is mounted a 
surplus numerically small nonsingular matrix, it will take the following form: 

( ) ( )N NI E L F Iλ ε⊗ − ⊗ + ⋅                                            (7)  
where ε  is a small value.  

Since matrix (5) is mounted to be a nonsingular matrix, the matrix (7) would be nonsingular. For 
final results, the influence of this change can be ignored, because the numerical solution of DAE is 
relative to the stability of equation parameters. Meanwhile, ε  is arbitrarily small. The change of 
equation parameters is actually small when ε  is small enough. In addition, for numerical solution is 
approximate solution itself, the impact of this change is negligible. So the limitation of index 1 can 
be solved in this way. 

Computational examples and numerical solutions 
In order to illustrate the feasibility and effectiveness of the algorithm, a numerical instance will 

be exhibited to illustrate the application of ode15s in this section. 
This system contains five subsystems; the order of each subsystem is three. In order to obtain the 

odefun, this system will be extended to fifteen subsystems. The network topologies are shown in 
Fig.1 with,  
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It has spanning trees. 

 
Fig.1:  Network topologies. 1 is default weight of arc. 

And then the Laplacian matrix is ( [1 1 1 1 1] )L diag W W′= ∗ − . 
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Next, work out mass matrix M , (( 5), )M kron eye E= . Since matrix E  is singular, matrix M  is 
singular.  

2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
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The coefficient  matrix ( , )A kron L F= − . Matrix A   is singular.  
2 2 2 0 0 0 0 0 0 0 0 0 2 2 2
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Setting (' ', ' ', ' ', ' ')option odeset Mass M MassSingular yes= , then ode15s can be used to solve this system. 
The simulation result is shown in Fig. 2 with thick dots as starting points and  
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Fig.2:  Trajectories of a Compartmental Network 

Conclusions 
This paper describes a specific type of dynamical multiagent system, and proposes a method to 

solve the problems of this system with Matlab. Since the model is described by DAEs, the ode15s 
command should be used to solve it. Many problems might be encountered when handling a DAE. 
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A method is provided to solve the problem of dealing a DAE that may not be of index 1. The 
limitation of index 1 can be removed by mounting a surplus numerically small nonsingular matrix. 
The influence of such a surplus small nonsingular matrix can be ignored in final results. The 
numerical example reflects the effectiveness of our method when dealing DAEs.. 
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