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Abstract. The projective approach is a kind of classic, efficient and well-developed method to solve 
nonlinear evolution equations, the remarkable characteristic of which is that we can have many 
different ansatzs and therefore, a large number of solutions. In this paper, with the help of the 
improved projective approach and a linear variable separation approach, some new variable 
separation solutions of the (2+1)-dimensional Generalized Calogero-Bogoyavlenskii-Schiff system 
(GCBS) is derived. 

Introduction 
Modern soliton theory is widely applied in many natural sciences such as chemistry, biology, 

mathematics, communication, and in particular in almost all branches of physics like fluid dynamics, 
plasma physics, field theory, optics, and condensed matter physics [1]. The exact solutions of 
nonlinear partial differential equations(NPDE) are interesting and popular topic in nonlinear 
physicists and mathematicians, and various methods for obtaining exact solutions of nonlinear 
system have been proposed, for example, the bilinear method, the standard Painlevé truncated 
expansion, the method of “coalescence of eigenvalue” or “wavenumbers”, the homogenous balance 
method, and the mapping method [2-5]etc. In the past, Mei and Zhang have obtained exact traveling 
wave solutions for a nonlinear evolution equation with the Riccari equation 

(
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' ξξξ aaa ++= )projective method [6].In this paper, by using the Riccari equation projective 

method, we construct non-traveling wave solutions with ),,( tyxRntmylxq +++=  in the (2+1)-
dimensional Generalized Calogero-Bogoyavlenskii-Schiff (GCBS) system [7] .                                                               
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where,α  and β  are two constants. 

As is well known, to search for the solitary wave solutions for a nonlinear physical model, we 
can apply different approaches. One of the most efficient methods of finding soliton excitations of a 
physical model is the so-called mapping approach with variable coefficients. The basic ideal of the 
algorithm is as follows. For a given nonlinear partial differential equation (NPDE) with the 

independent variables ),...,,( 210 mxxxtxx == ,and the dependent variableu , in the form 
                        0),,,,( =…

jii yxxt uuuuP                                                                                                 
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where P is in general a polynomial function of its arguments, and the subscripts denote the partial 
derivatives, the solution can be assumed to be in the form, 
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and   
                        ),,( tyxRntmylxq +++=                                  (5) 
where 0a  1a , 2a , l , m , n   are constants, ),,( tyxRR ≡  is arbitrary function of (x,y,t) .Substitute (3), 
(4) and (5) into the given NPDE and collect coefficients of polynomials of ξ , then eliminate each 
coefficient to derive a set of equations of  A, iB and q, and solve these equations to obtain A, iB  and 
q. Finally, as (4) is known to possess the solutions[16], one obtains the complex solutions tothe 
given NPDE. 
 

New Exact Solutions of the GCBS System 
Now we apply the Riccati equation projective approach to (1). By the balancing procedure, 

ansatz (3) becomes 
                      )),,((),,(),,( tyxqtyxBtyxAV φ+=                               (6) 
where A, B, and  q  are functions of  (x,y,t)  to be determined.Substituting(6) and (4) into (1) and 
collecting coefficients of polynomials of φ , then setting each coefficient to zero, we have 
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Based on the solutions of (4), we can derive the following complex wave solutions of (1): 
Case 1 when 0a =1, 1a =0, 2a =-1, 
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Case 2 when 0a =1, 1a =0, 2a =1, 
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(11) 
Case 3 when 0a =-1, 1a =0, 2a =-1, 
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Case 4.when 0a = 2
1

, 1a =0, 2a = 2
1

, 

)),sec()(tan(4

244
2
1

2

2

42
11

4
20

2

5

qqqa

dx
qq

qqqqqqqaqqqaqqaaqq
V

x

yx

yxxxxxyxyxxxyxyxtx

+−

+−−−+−
∫=

β

a
β

     (13) 

)),sec()(tan(4

244
2
1

2

2

42
11

4
20

2

6

qqqa

dx
qq

qqqqqqqaqqqaqqaaqq
V

x

yx

yxxxxxyxyxxxyxyxtx

−−

+−−−+−
∫=

β

a
β

（14） 

)),cot()(csc(4

244
2
1

2

2

42
11

4
20

2

7

qqqa

dx
qq

qqqqqqqaqqqaqqaaqq
V

x

yx

yxxxxxyxyxxxyxyxtx

−−

+−−−+−
∫=

β

a
β

（15） 

Case 5 when 0a = 2
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Case 6.w hen 0a = 2
1

, 1a =0, 2a = - 2
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(28) 
Case 7. when 0a =1, 1a =0, 2a = -4, 
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Case 8. when 0a =1, 1a =0, 2a = 4, 
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Case 9. when 0a =-1, 1a =0, 2a = -4, 
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Case 10. when 0a =1, 1a =2, 2a = 2,  
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Case 11. when 0a =1, 1a =-2, 2a = 2, 

,
)tan(1

)tan(4

244
2
1

2

2

42
11

4
20

2

25

q
qqa

dx
qq

qqqqqqqaqqqaqqaaqq
V

x

yx

yxxxxxyxyxxxyxyxtx

+
−

+−−−+−
∫=

β

a
β

          (33) 

Case 12. when 0a =-1, 1a =2, 2a = -2 
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Case 13. when 0a =-1, 1a =-2, 2a =- 2, 
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Case 14. when 0a =0, 1a = 0, 2a =a,       
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(36) 
with Rntmylxq +++= , )()( ctyxR −+= ϕc .Here, ac,,,βa and k are constants. 

Conclusions 
The projective equation method is a kind of classic, efficient and well-developed method to solve 

nonlinear evolution equations. In the past, Mei and Zhang have obtained the exact traveling wave 
solutions for the nonlinear evolution equations such as Gross-Pitavskii equation with the Riccari 
equation projective approach. In this paper, we extend this approach and construct the variable 
separation solutions of the (2+1)-dimensional Generalized Calogero-Bogoyavlenskii-Schiff system, 
which are different from the ones of the previous work. Since the wide applications of the soliton 
theory, to learn more about the localized excitations and their applications in reality is worthy of 
study further. 
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