
 

TOA Estimation Based on Forward and Backward Smoothing MUSIC in 
Frequency Domain 

Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu 
Zhengzhou Institute of Information Science and Technology, Zhengzhou, 450002, China 

Keywords: smoothing, MUSIC, TOA. 

Abstract. Under the condition of single snapshot, multiple signal classification (MUSIC) time of 
arrival (TOA) estimation algorithm improves its performance by forward and backward smoothing 
in frequency domain. Its ability to distinguish multipath is strong. However, this method is 
introduced from smoothing in spatial smoothing. And the derivation and the performance analysis 
are not given. For this problem, the derivation and performance analysis of MUSIC TOA estimation 
based on forward and backward smoothing in frequency domain is introduced in this paper. The 
full-rank conditions of autocorrelation matrix of multipath component fading coefficient are 
deduced. At the same time, estimation precision of noise subspace is higher after data is pre-
processed by forward and backward smoothing. Simulation results show that the algorithm has 
better ability to distinguish multipath under situations of single snapshot. The algorithm has strong 
robustness and its performance is better than MUSIC TOA estimation algorithm of forward 
smoothing in frequency domain. 

Introduction 
With the rapid development of location services and the next generation of location-aware 

wireless network, location technology becomes more and more important. The demand of military, 
commercial and emergency service has improved the positioning accuracy of wireless positioning 
system greatly. On the other hand, the location information is helpful for the performance of 
wireless communication system. Mobile communications operators can provide different services 
for the users according to the position of users. The technology of orthogonal frequency division 
multiplexing (OFDM) with its advantages of high band efficiency, has been widely used in wireless 
communication system. Therefore, the location technology of OFDM wireless communication has 
been widely concerned. 

Time of arrival (TOA) estimation in OFDM wireless communication system is one of the 
important contents of the high precision positioning. In the indoor and city environment, the 
condition of multipath and the complexity of wireless communication affect the precision of TOA 
estimation. Super resolution technology with high precision is applied to the TOA estimation, such 
as multiple signal classification (MUSIC) algorithm [1-3], the estimation of signal parameters via 
rotational invariance technique (ESPRIT) [4], Root-MUSIC [5], propagator method (PM) [6] and so 
on, which has high precision of TOA estimation in a large number of snapshots. 

In this paper, autocorrelation matrix of multipath component fading coefficient is fully ranked by 
forward and backward smoothing in frequency domain. Limiting conditions are given. At the same 
time, forward and backward smoothing is equivalent to increasing the samples of channel frequency 
response and improves the estimation accuracy of autocorrelation matrix of channel frequency 
response. Then, it improves the estimation accuracy and the robustness of the MUSIC algorithm. 

Signal model and MUSIC algorithm for TOA 
Signal model 

In the OFDM wireless communication system, the impulse response of wireless multipath 
channel is 
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where PL  is the number of multipath components. Let = ij
i i e θα α  represent the fading coefficients of 

i th multipath component and iτ  represent Propagation delay of i th multipath component. 
Propagation delay is ordered according to the ascending order. 0τ  is the propagation delay of sight 
pathway, namely parameters of TOA estimation. δ  represents impulse function. 

The channel frequency domain response estimation can be written as matrix form 
 ˆ = + = +H H n D nα , (2) 
where D  is the matrix composed by the steering vector. 
MUSIC algorithm for TOA 
Make eigenvalue decomposition of the autocorrelation matrix in (2) 
 H 2ˆ ˆE σH  R = HH = DR D + Iα . (3) 
where H= E   Rα αα  is the autocorrelation matrix of multipath component fading coefficient. Because 
α  is a constant and its phase satisfies uniform distribution ( )0,2π . P PL L×  dimensional matrix 

( ) Prank L=Ra  is a non-singular matrix. The rank of Vandermonde matrix D  is ( ) Prank L=D . So 
( ) Prank LΗ =DR Da . I  is a identity matrix. 

Making spectral decomposition of R , we can obtain 
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It is easy to find that eigenvalues of R  satisfies the following distribution, 
 2

0 1 1 1 1P P PL L L Kλ λ λ λ λ λ σ− + −≥ ≥ ≥ ≥ = = = =  . (5) 
Diagonal matrix 0 1 1, , ,

PS Ldiag λ λ λ − =  L , diagonal matrix 1 1, , ,
P PN L L Kdiag λ λ λ+ − =  L . The liner subspace 

( )Sspan U  formed by 0 1 1, , ,
PS L − =  U u u u  which is called signal subspace and the subspace ( )Nspan U  

formed by 1 1, , ,
P PN L L K+ − =  U u u u  is called noise subspace. 

According to the literature 
 ( )H = 0 1i N Pi Lτ ≤ ≤ −0，d U , (6) 

Pseudo-spectrum of MUSIC algorithm can be expressed as  
 ( )

( ) 2H

1
MUSIC

N

P τ
τ

=
d U

. (7) 

Because ( )H =i Nτ 0d U , ( )MUSIC iP τ  is the pseudo-spectral of MUSIC algorithm. 

TOA estimation 
TOA estimation based on MUSIC algorithm has good estimation accuracy and robustness under 

condition of multi-snapshots. In a single snapshot, the accuracy of TOA estimation can be increased 
by pre-processing the sampling points in frequency domain. 

In a single snapshot, autocorrelation matrix of the fading coefficients of multipath component 
H=Rα αα  and ( ) 1rank =Ra , then 

 H 2 2σ σH H�R = D D + I bb + Iαα , (8) 
where b = Dα , 2

1 2 -1= = = =Kλ λ λ σ , therefore 
 [ ]H

1 2 1, , , =K − 0b u u u . (9) 
b  is linear combination of ( ) ( ) ( ){ }0 1 1PLτττ   −d d d . The music algorithm can’t estimate TOA 

correctly through (9). In order to estimate TOA correctly, Rα  must be a non-singular matrix. So 
make forward and backward smoothing in frequency domain, as is shown in Fig1. 
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Fig.1: Forward and backward smoothing in frequency domain. 
Forward frequency smoothing 

Divide Ĥ  with the length of K  into L  forward subvector with the length of M  
 1 1

ˆ ˆ ˆ ˆ , 0 1
Tf l

l l l l M lH H H l L+ + −
  ≤ ≤ − � H = DB + nα , (10) 

where sliding cycle number 1L K M= − + . Autocorrelation matrix of the forward subvector can be 
divided into signal subspace and noise subspace, and the dimension of noise subspace is at least 1 
(that is 1PM L≥ + ). lB  represents the l th P PL L×  diagonal matrix and 

 { }0 1 1
2, , , , exp , 0 1

PL i i Pdiag v v v v j i L
T
p τ−

 = − ≤ ≤ − 
 

B = . (11) 

The autocorrelation matrix of ˆ f
lH  is 

 ( ) ( ) 2ˆ ˆf f f l l
l l lE σ

Η Η Η  = +  
R = ΗΗ  DB R B D Iα . (12) 

The autocorrelation matrix of forward frequency smoothing is 
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The autocorrelation matrix fRα  of the fading coefficients of forward frequency smoothing multipath 
component is 
 ( )
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where 
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. (15) 

When PL L≥ , from formula (14) and (15), the rank of Vandermonde matrix is ( ) Prank L=V . 

Because ( ) Prank L=G , then ( ) Prank L=C . Therefore, ( ) 1 =
2

f
Prank rank L

L
Η =  

 
R CCa  ( fRα  is fully ranked). 

1L K M= − +  can be concluded by smoothing in frequency domain. 1PM L≥ +  can be get by (10). 
From the three formulas, we deduce 

 1 2
1

P

P

P

L L
L K M K L

M L

≥
 = − + ⇒ ≥
 ≥ +

. (16) 

Therefore, fRα  is fully ranked when the minimum of K  is 2 PL . 
Backward frequency smoothing 

As Fig 1 shows, make L  backward subvectors with the length of M , 
 ( )1

1 2
ˆ ˆ ˆ ˆ, , , , 0 1

Tb l K
l K l K l K l M lH H H l L

∗∗ ∗ ∗ − ∗
− − − − − −

  = ≤ ≤ − � H DB B + nα . (17) 
The autocorrelation matrix of l th L backward sub vector is 

 ( ) ( ) 2ˆ ˆb b b l l
l l lE σ

Η Η Η  = +   R = ΗΗ  DB R B D Iα , (18) 

where 
 ( ) ( )( ) ( ) ( )( )1 1 1 1=K K K KTE

ΗΗ − − − − − − − −∗ ∗   �R B B B R Bα αα α . (19) 
The autocorrelation matrix of backward frequency smoothing is 
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Rα  is  
 Η

R = qqα , (21) 
where 
 ( )1

0 1 1, , , , , 0 1
P

K
L i i i Pv i Lβ β β β α

Τ − −∗
−  = ≤ ≤ − β = . (22) 

The autocorrelation matrix bRα  of the fading coefficients of backward frequency smoothing 
multipath component is 
 ( )

1

0

1 1L
b l l

lL L

− Η Η

=

=∑ �R B R B EEα α , (23) 

where 
 2 1, , , , L−   �E = B B B FVβ β β β , (24) 
 { }0 1 1diag , , ,

PLβ β β −F = . (25) 
Forward and backward smoothing 

The autocorrelation matrix R of forward and backward frequency smoothing is 
 ( ) 21

2 2

f b

I
L

σΗΗΗΗ   +  = + +  
 R RR = = DR D D CC EE Dα , (26) 

where 
 ( )1 1

2 2L L
ΗΗΗ  + =R = CC EE QQα , (27) 
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 { }0 1 1diag , , , , , 0,1, , 1
PL i i i Pi Lg g g g β a− = = − H = . (29) 

Assume that 2 PL L L≥ ≥ , = ij
i ia a e θ , 2expi iv j

T
p τ = − 

 
 and ( )1N

i i ia vδ − −∗=  are fed into i i iε δ α= , then 

 ( ) ( )1 2= =exp 1 2 , 0 1K
i i i i i i i i Pv j K i L

T
pγ β α α α τ θ− −∗  = − − ≤ ≤ −  

. (30) 

Because iτ  is related with signal propagation environment, iθ  satisfies uniform distribution 
in ( )0,2π . Then 
 ; 0,1, , 1; , 1, , 1i j Pi L j L L Lγγ ≠ = − = + −  . (31) 

0G  is a Vandermonde matrix whose columns are not equal. Because 2 PL L≥ , then ( )0 Prank L=G . 

Due to ( ) Prank L=G , then ( ) Prank L=Q . So ( ) 1 =
2 Prank rank L

L
Η =  

 
R QQa  ( Rα  is fully ranked). 

1PM L≥ +  can be concluded from (14). From the three formulas, we deduce 
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1 3 2
1

P

P
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L L
L K M K L

M L

≥
 = − + ⇒ ≥
 ≥ +

. (32) 

Performance analysis 

Through the above derivation ，The full-rank conditions of autocorrelation matrix of modified 
multipath component fading coefficient were deduced. When Rα  is fully ranked, the dimension of 
Ĥ  is at least 3 2PL . When 

fRα  is fully ranked, the dimension of Ĥ  is at least 2 PL 3 2PL . When the 
dimension of Ĥ  is certain, the statistical sample of fR is L , the statistical sample of R  is 2L . 
Because the precision of autocorrelation matrix of frequency smoothing is limited to the statistical 
sample, the statistical performance of R is better than fR , and the corresponding MUSIC algorithm 
is more stable. 

Besides, the resolution of MUSIC algorithm is affected by bandwidth. Thus, M  decides the 
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bandwidth. Therefore, the value of M  is a compromise of resolution and stability. Under the same 
conditions, because the statistical performance of R  is better, the performance of the MUSIC 
algorithm of forward and backward frequency smoothing is better. 

Simulation results 
The good resolution of TOA is embodied on the pseudo spectrum where there is sharp peak on 

the arrival time of multipath whose two multipath components is close, but the amplitude of curve 
should be as low as possible on the arrival time of non-multipath, especially the middle of two 
multipath components’ arrival time. So define two multipath components whose arrival time is 0τ , 

1τ . In an experiment, if there are two “effective peak” whose estimation time is 0τ̂ , 1̂τ  in normalized 
pseudo spectrum and the estimate time meets 0 0 1 1 0 1ˆ ˆ ˆ ˆττττττ     − + − < − , the multipath is distinguished 
successfully. In this paper, the “effective peak” is the peak whose top is taller than the bottom 
beside the peak at least 3dB in the normalized pseudo spectrum. 

Assume that the snapshot is 1. The arrival time of two multipath is 50ns and 60ns. SNR=10dB, 
40M = .  
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Fig.2: Resolution capability comparison of the Forward MUSIC and Forward Backward 

MUSIC. 
From Fig 2, forward and backward frequency smoothing MUSIC algorithm has better ability to 

distinguish multipath. Compared with forward and backward smoothing pre-processing, forward 
and backward smoothing pre-processing has twice of the samplings. Therefore, autocorrelation 
matrix of forward and backward frequency smoothing MUSIC algorithm has better ability to 
distinguish multipath. 

Conclusions 
Single-snapshot MUSIC algorithm could effectively improve the estimation accuracy of MUSIC 

time delay estimation algorithm by forward frequency smoothing. But there are no full-rank 
conditions of autocorrelation matrix of multipath component fading coefficient in the existing 
literature. For the situation, the full-rank conditions（ 2 PK L≥ ）of data pre-processing by forward 
frequency smoothing and the full-rank conditions（ 3 2PK L≥ ）of data pre-processing by forward 
and backward frequency smoothing in this paper. Data pre-processing by forward and backward 
frequency smoothing has more samples and improves the estimation accuracy of the noise subspace, 
so it improves the estimation accuracy of TOA. 

References 
[1] Li X., & Pahlavan K., Super-resolution TOA estimation with diversity for indoor geolocation. 

IEEE Trans. Wireless Commun., 3(1), pp.224-234, 2004. 

2322

javascript:showjdsw('showjd_0','j_0')
javascript:showjdsw('showjd_0','j_0')


 

[2] Li X., Ma X., Yan S., & Hou C., Super-resolution time delay estimation for narrowband signal. 
IET Radar Sonar & Navigation, 6(8), pp.781-787, 2012. 

[3] Zhang X., Feng G., & Xu D., Blind direction of angle and time delay estimation algorithm for 
uniform linear array employing multi-invariance music. Progress In Electromagnetics 
Research Letters, 13, pp.11-20, 2010. 

[4] Oh D., Kim S., Yoon S. H., & Chong J. W., Two-dimensional ESPRIT-like shift-invariant 
TOA estimation algorithm using multi-band chirp signals robust to carrier frequency offset. 
IEEE Trans. Wireless Commun., 12(7), pp.3130-3139, 2013. 

[5] Wang F. Q., Zhang X. F., & Wang F., Root-MUSIC-based joint TOA and DOA estimation in 
IR-UWB. Journal on Communications, 35(2), pp.137-145, 2014. 

[6] Wang F. Q., & Zhang X. F., Improved propagator method-based joint TOA and DOA 
estimation in impulse radio ultra wideband. Journal of Electronics & Information Technology, 
35(12), pp.2954-2959, 2013. 

2323


	Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu
	Zhengzhou Institute of Information Science and Technology, Zhengzhou, 450002, China
	Keywords: smoothing, MUSIC, TOA.
	Abstract. Under the condition of single snapshot, multiple signal classification (MUSIC) time of arrival (TOA) estimation algorithm improves its performance by forward and backward smoothing in frequency domain. Its ability to distinguish multipath is...
	Signal model

	MUSIC algorithm for TOA
	Forward frequency smoothing
	Backward frequency smoothing
	Forward and backward smoothing



