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Abstract—With the capacity of integrated wind farm 
increasing, the reliability issues of power systems could not be 
ignored. This paper proposes an evaluation method for power 
system operation state based on elastic back-propagation 
neural network through the data of the phasor measurement 
unit. The effectiveness of the proposed method is verified by 
the IEEE 14-bus system, it has overcome the slow convergence 
rate problem and the prediction accuracy is acceptable. 
Condition assessment of power systems operation state is an 
important approach to improving the operation reliability of 
power systems. 
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I.   INTRODUCTION 
With the continuous development of wind power, the 

proportion of integrated wind power capacity is increasingly 
growing. Many large-scale wind farms have already been 
integrated in the power networks. In many countries, the 
average wind power penetration is 20% or higher [1]. Till 
2010, England has already installed a large amount of 
renewable energy generation, which is up to 10 GW and the 
wind power takes up nearly 60% [2].  

As the increasing penetration of wind power, the impact 
on operation reliability of power system becomes more 
significant. The influence on grid stability increases due to 
the randomness and fluctuation of wind power. Under high 
penetration conditions, a massive wind farms disconnection 
can lead power system to collapse [3]. At present, variety 
evaluation methods for power system operation state have 
been proposed. The probabilistic state evaluation model is 
built by the Monte Carlo method; the operating states can be 
analyzed by the state criterion which is made according to 
load importance and accepted security in Ref. [4]. An 
operation condition evaluation model for power transformer, 
which can evaluate the state of every grade and gives a 
comprehensive assessment, is established on the base of the 
fuzzy neural network [5]. In order to overcome the Monte 
Carlo’s disadvantage of slow convergence rate and the huge 
computational resources, the steady state probability of 
power system can be rapidly analyzed by a Markov state 
transition probability matrix in Ref. [6]. However, there is 
seldom research about the evaluation state method for wind 

power integrated system. This paper uses PMU to collect 
data at crucial nodes, builds the forecasting model by using 
the elastic back-propagation algorithm. To predict and 
evaluate the operation states of wind integrated power 
system based on the trained neural network. The 
effectiveness of the proposed method is proved by the 
simulation results by using an actual example for the wind 
power system. 

The paper is organized as follows. In the next section, 
the phasor measurement unit structure and optimal 
placement strategy are given. In Section 3, the BP neural 
network based on the elastic back propagation algorithm is 
presented. Section 4 describes the detailed program process. 
Section 5 discusses the simulation results. Finally, Section 6 
presents the conclusion.  

II.   PHASOR MEASUREMENT UNIT 
PMU is the key distinction between WAMS (Wide Area 

Measurement System) and SCADA (Supervisory Control 
And Data Acquisition) system which is based on the remote 
terminal unit. PMU can utilize the GPS (Global Positioning 
System) to obtain high precision clock signal at the same 
time around the world, and its precision can reach up to 1 

. If the rated frequency is 50 Hz, the angle error of each 
node is only 0.018 , it can meet the various application 
demands of power systems [7, 8]. 

A. PMU structure  
PMU can be divided into six modules according to the 

function [9], shown in Figure 1. Power module provides 
power supply for each module. Through extensive 
transformation processes, the A/D sampling module can 
acquisition analog signals of voltage, frequency, current, etc. 
Central processing module calculates the corresponding 
synchronous phasor with the data provided by the A/D 
sampling module. GPS module is the standard time source 
of data acquisition and phasor calculation, it will send the 
sampling pulse signal based on Pulse per second and 
universal time coordinated respectively into the A/D 
sampling module and the central processing module. 
Communication module is connected to the phasor data 
concentrator or control center. Man–machine interface 
module includes keyboard, display, etc.  
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Figure 1. The structure of PMU function modules. 

B. PMU placement scheme 
Optimal PMU placement problem mainly focuses on 

how to use the minimum number of PMU to make sure the 
observability requirements of system with a big redundancy 
of data. The optimal strategy can be defined as: 

{ }min max ( , ( ))
. . 0

R n S n
s t U
⎧
⎨

=⎩

 (1) 
Where n is the number of PMU, ( )S n is the location set 

of PMU, R is the measurement redundancy of system, U is 
the number of unobservable bus. 

For a power system with n nodes, the power flow 
equations can be solved by the sparse structure of system. 
Firstly, the minimum dimension node is taken as initial 
configuration node. As a starting point, to solve the node 
power equation with the least unknown node voltage phasor 
in order. If the equations cannot obtain the new voltage of 
unknown node, a new PMU should be placed in the node 
with least number of unknown node voltages [10, 11]. 

III.   BP NEURAL NETWORK 

A. BP neural network modeling 
Artificial neural network is a massive information 

processing system which consists of a large amount of 
parallel processing units. ANN can extract rules from the 
data and present the stable network in the form of weights, 
obtain the required data by the associative memory and 
generalization ability. At present, the Back-propagation 
neural network is used widely because of its strong current 
processing capability, fault-tolerance ability and capability 
to quickly and effectively deal with nonlinear system. 

BP network is a kind of feed-forward neural network, 
including the input layer, hidden layer and output layer [12]. 
In this paper, a three-layered BP network is presented to 
construct the predict model. The neuron node number of 
input layer is So, i=1,2,…,S0; the number of hidden layer 
S1, the neuron node number of output layer S2. The neuron 
activation function is as follows: 
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B. Elastic back propagation algorithm 
The conventional BP neural network is easily affected 

by the initial values of network structure, it will slow down 
the convergent rate and fall into local minima and saturation 
region of the activation function. The improved elastic back 
propagation algorithm is utilized to accelerate the 
convergence velocity and solve the saturation problem. 

The updating value of each weight ( )t
ijΔ  can be 

independently determined by the elastic back propagation 
algorithm. According to the error function E, the local 
gradient value could adaptive learning with the rule as 
follows [13]: 
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In this formula, t stands for the training times, E is the 

square sum of error, 
( )t

ij

E
w

∂
∂

is the summing gradient data of 

all learning modes, W is the weight vector. 
Considering the balance between relative error and 

absolute error, the error function is expressed as: 
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Where A is the expected output of the whole sampling 

data, y is the actual output and d stands for the expected 
output. 

IV.   PROGRAM PROCESS 
The training of the BP neural network includes the 

following steps: 
(i) Acquire necessary information from the PMU at 

key nodes; 
(ii) Input the required parameters, the neuron node 

number of each layer are set. 
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(iii) Initializations for weights and thresholds, the 
gradient of W, b are set to be zero matrixes. 

(iv) To determine whether it meets the defined goals, if 
ME ε< , stop the learning cycle and expert the outputs. 
Otherwise, adjust W and b for next time training and update 
the weights and thresholds. 

(v) The loop will stop, if either of those conditions is 

fulfilled: the training time _t MAX N>  or ME ε< . 
(vi) If ME ε< , the trained neural network is 

successful with acceptable forecasting error. The weights 
and threshold value matrixes can be exported as outputs. 

The prediction results can be calculated by the trained 
neural network with the weights and threshold value 
matrixes W, b. 

V.   CASE STUDY 
In order to validate the effectiveness of the proposed 

method, the IEEE-14 bus system is considered as shown in 
Figure 2. The wind farm is connected to the system by a 
110 kV line at node 14, which is consist of 30 fixed speed 
wind turbines. Each of the wind turbine is of 2 MW 
capacity. To study the effect of wind power penetration on 
the power system stability, it is assumed that loads of all 
nodes remain constant. This study used the active power 
and reactive power as the training input vector variables and 
selected the frequency and voltage as the output vector 
variables which can be used to assess the security state of 
the integrated system. The PMU is placed according to the 
principle of optimal allocation which is discussed before. 
Table I shows the detailed learning parameters of the 
training network.  

The frequency of wind power integrated system mainly 
influenced by the random output power of wind farm, 
without consideration for load fluctuation. The intermittent 
and random fluctuation of wind speed can cause tremendous 
stress on the stability of power system frequency, which 
will bring fluctuation of the wind farm output. Figure 3 
describes the frequency response of integrated power 
system. The system frequency increases when the output 
power of wind farm increases, when the wind is weak, the 
frequency decreases with the decrease of output power of 
wind farm. The trained BP neural network can accurately 
reflect actual situation of frequency, the predict frequency 
curve can track the variation trend of target value in time. 

 
Figure 2. IEEE-14 bus system integrated with wind farm. 

TABLE I. LEARNING PARAMETERS. 

Learning Parameters Value
Terminal goal error ε  0.001

Maximum iterations MAX_N 10000

Initial value of weight update 0Δ  
0.1

Maximum value of weight update maxΔ  
50.0 

The increscent multiple of the value of weight update η+
 

1.2

The decrescent multiple of the value of weight update η−
 

0.5 
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Figure 3. Frequency deviation of wind power integrated system. 
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Figure 4. Voltage deviation of wind power integrated system. 

TABLE II. ANALYSIS ON FORECAST RESULTS ERRORS. 

Forecast Result MAE RMSE 

Frequency 0.0491 5.93% 

Node 1 0.0377 4.7162% 

Node 6 0.0429 5.1975% 

Node 8 0.0719 8.6496% 

Node 14 0.0647 7.9392% 

 
Figure 4 shows the voltage curves of key nodes. The 

black curves stand for the actual value of voltage and the 
red curves are the forecasting curve. In this paper, all wind 
turbines are squirrel-cage asynchronous motor which will 
absorb the reactive power from grid. The compensating 
capacitor is connected to the system to prevent voltage 
collapse. As shown in Figure 4, the voltage of integrated 
power system would be no significant downturn with the 
help of compensating capacitor. When the wind velocity 
increases, more wind turbines operate in parallel to the grid. 
Although the active power of wind farm increases, more 
reactive power is absorbed from the grid side which leads to 
a decline in voltage. On the other hand, when the wind 
turbines are cut off, the voltage climbs up once again. From 
Figure 4, the voltage fluctuations of all nodes are acceptable, 
the results meet the requirement of voltage stability, the 
integrated power system can maintain its reliability under 
this operate condition. In particular, because of the position 
closer to the wind farm, the voltage volatility of node 14 is 
more obvious than the other nodes. 

The root mean square error (RMSE) and mean absolute 
error (MAE) corresponding to each forecast result are 
shown in Table II. RMSEs of each forecast result are 
significantly less than 10%. The largest RMSE is only 
8.6496%, it can indicate that elastic-BP neural network is 
suitable for evaluating operation state of wind power 
integrated system, and the prediction neural network 
utilized in this paper is effective. 

VI.   CONCLUSIONS 
A new method for forecasting operation states of wind 

farm integrated power system has been proposed in this 
paper. The output power fluctuation of wind farm will cause 

frequency and voltage deviation, which brings a number of 
challenges to the grid operator. The presented BP neural 
network can accurately reflect the deviation of frequency 
and voltage with reliable precision. This  
method can provide helpful data support for grid operators 
to evaluate the stability of wind power integrated power 
systems. 
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