Research on the Performance Evaluation of Small and Micro Businesses Microfinance of Commercial Bank based on Balanced Scorecard and Principal Components Analysis

Qiguang Zhang¹ ¹School of Management, Harbin Institute of Technology, Haerbin, China

Abstract—According to the principals of Balanced Scorecard (BSC), we designed the performance evaluation system from five dimensions and evaluated the performance of small and micro businesses microfinance of 8 branches of HARBIN BANK by using Principal Components Analysis (PCA). The effectiveness and practicability of our method were verified by the empirical results and suggestions were recommended to improve the performance of microfinance.

Keywords-performance evaluation; balanced scorecard; principal components analysis; microfinance

I. INTRODUCTION

In China, the banking industry has an intense competition because of the establishment of many small and medium sized banks. The large-scale commercial banks have advantages in capital, big clients and other aspects, so it is difficult to challenge them. What's more, small and medium-sized banks have no differences in customers, business features, so the competition between them are very intense. How to become the winner in the competition becomes the main point of banks' strategy development.

Microfinance becomes one of the most important businesses and the strategy center of many Chinese small and medium-sized joint-stock banks. Effective performance evaluation can help banks to evaluate the current situation and provide useful information for future development. Therefore, it is an important research subject for many small and medium-sized joint-stock banks.

II. LITERATURE REVIEW

Many performance evaluation systems can be used to evaluate banks' performance, such as "CAMEL" rating system, the standard & poor's bank rating system, EVA and BSC. Evaluation method like Factor analysis, Data Envelopment Analysis (DEA) and PCA are widely used. Xiong Weiping, Zhu Shuhong [1] pointed that all indicator convert to positive indicators before PCA can get more scientific and effective results. Qin Wanshun, Ouyang Jun [2] evaluated Chinese banks' efficiency using DEA and found that Chinese banks' efficiency is poor and stateowned banks are the poorest. Tan Zhongming [3] used Wei Guo² ²School of Management, Huazhong University of Science and Technology, Wuhan, China

factor analysis to evaluate 12 banks' performance of 1992. Serpil Canbas, Altan Cabuk, Suleyman Bilgin Kilic [4] evaluated more than 40 Turkey's banks by using PCA and built a risks warning system. Chen Zonghua [5] built a performance evaluation model based on profitability, security and liquidity and used PCA to analyzed Chinese banks and found that state-owned banks' performance are lower than average. Guo Linyan [6] used Factor analysis to evaluate performance of Chinese commercial banks of 2011. Thagunna, Poudel [7] used DEA to evaluate the performance of Nepal Bank from 2007 to 2011 and found that its performance has improved these years. Peng Wanlu, Huang Jun [8] used PCA to evaluate 20 banks' competiveness and found that Chinese banks are better than foreign banks in operating performance and comprehensive competitiveness and foreign banks are much better in risk management and business innovation.

We can conclude that BSC can build a comprehensive and effective performance evaluation system, which is used enterprise value maximization as the target and evaluates the performance from finance, customer, internal process and learning and growth dimension. What's more, it can be adjusted according to bank's own situation. PCA is widely used in performance evaluation, which dimension reduction technology to convert all indicators into several comprehensive indicators and make the evaluation more objective and comparable. Therefore, we use the principal of BSC to build the evaluation performance system of small and micro businesses microfinance of Chinese small and medium-sized banks and use PCA to analyze and rank the performance results.

III. CONSTRUCTION OF PERFORMANCE EVALUATION MODEL

BSC often evaluates the performance of companies or banks from 4 dimensions which are finance, customer, internal process and learning and growth. However, it does not mean that it only has four dimensions. According to the industry condition and strategy of the company, it is necessary to add one or more new dimensions. Small and micro businesses microfinance is one of the important source of profit of small and medium-sized banks and it is also the social responsibility of banks to support small and micro businesses. Many small and micro businesses are high-tech, clean energy or companies in emerging industry supported by government. It also reflects banks social responsibility by supporting them with financing. Therefore, we designed a BSC performance evaluation model with five dimensions which are finance, customer, internal process, learning and growth and social responsibility. "Table I" is the performance evaluation model.

TABLE I. PERFORMANCE EVALUATION MODEL.

G 1 G1

 $\Gamma' \rightarrow O$

Indicator	Indicator	Third Class Indicator
Finance	Security	RAROC x ₁
	-	The impairment loss x ₂
		Asset quality x ₃
		Non-performing loan ratio x ₄
	Development	Profit growth rate x ₅
		EVA x ₆
		Percentage of revenue in total
		Importance of microfinance x ₈
		Growth rate of loan x_9
		Loan concentration x_{10}
	Profitability	Return on total assets of microfin-
	-	ance x ₁₁
		Return on equity of microfinance x ₁₂
		Net interest rate x ₁₃
		Net profit rate x ₁₄
	Efficiency	Before tax profit per person x_{15}
		Cost to revenue x_{16}
		Net profit to cost x ₁₇
		Amount of lending per person x ₁₈
		Amount of lending per Sub-branch x_{19}
Customer	Satisfaction	Growth rate of customers x_{20}
		Percentage of the regular customers
		Retention rate x ₂₂
	Coverage	Share of the stock market v
	coverage	Share of the new market x_{23}
		Business success rate x_{24}
	Improvement	Customer income growth rate x_{25}
	I · · · · ·	Customer accession rate x ₂₇
Internal		Percentage of professionals x28
process		Growth rate of professionals x29
		Customers to staff x ₃₀
		Approval time x ₃₁
		Efficiency of process improvement
		Corrective rate x ₃₃
Learning and		Training investment rate x ₃₄
growth		Average training hour x ₃₅
		Knowledge level of staff x ₃₆
		Staff turnover rate x ₃₇
		Staff induction rate x_{38}

	Quantity of service innovation x ₃₉
	Products utilization rate x ₄₀
Social responsibility	Percentage of customer supported by government x ₄₁
	Percentage of industries supported by government x ₄₂
	Tax contribution of customers x_{43}
	Growth rate of tax contribution x_{44}
	Percentage of innovative companies x45
	Employment contribution x46

IV. EMPIRICAL ANALYSIS OF PERFORMANCE EVALUATION OF SMALL AND MICRO BUSINESSES MICROFINANCE

Our research object is HARBIN Bank. Microfinance is the most important business and the strategy center. Loan balance of microfinance takes 69.1% of total loan. Interest income from microfinance is 67.9% of total customer interest income. Microfinance becomes HARBIN Bank's core business and the number of small and micro businesses microfinance is over 33,000. Our purpose is to establish effective performance evaluation model to evaluate the development of banks' microfinance by empirical analysis of HARBIN Bank and provide information for future development and improvement.

A. Eigenvalue, percentage of variance, and cumulative variance

After applying dimensionless method, we get standardized indicators and use the factor analysis function of SPSS17.0 to obtain eigenvalue, variance and cumulative variance. "Table II" is the total variance explained.

According to the result in "Table II," the percentage of cumulative variance reaches to 87.401% which is greater than 80%, when there are 5 condition satisfied eigenvalues. It means that extracting these 5 components from 46 indicators can explain the performance of 8 branches efficiently and the target of dimension reduction is met.

B. Analysis of component score coefficient matrix

"Table III" is the component score coefficient matrix. We can get the formula of each component by multiplication of coefficient and corresponding indicator and add all together. This formula can be used to evaluate all samples.

Compo- nent	Initial Eigenvalues			Extraction Sums of Squared Loadings			
	Total	% of	Cumula-	Total	% of	Cumula-	
		Variance	tive %		Variance	tive %	
1	10.37	22.554	22.554	10.37	22.554	22.554	
	5			5			
2	9.561	20.784	43.338	9.561	20.784	43.338	
3	7.842	17.047	60.385	7.842	17.047	60.385	
4	6.561	14.264	74.649	6.561	14.264	74.649	
5	5.866	12.753	87.401	5.866	12.753	87.401	
6	3.601	7.828	95.23	3.601	7.828	95.23	
7	2.194	4.77	100	2.194	4.77	100	

TABLE II. TOTAL VARIANCE EXPLAINED.

	Component				
	1	2	3	4	5
Zscore(X ₁)	0.053	-0.057	-0.061	-0.019	0.063
Zscore(X ₂)	-0.003	0.01	0	0.151	0.012
Zscore(X ₃)	0.032	-0.021	-0.049	0.046	-0.017
Zscore(X ₄)	-0.004	0.003	-0.054	0.134	0.03
Zscore(X ₅)	-0.069	-0.003	0.033	0.03	0.1
Zscore(X ₆)	0.061	0.008	0.084	0.048	0.037
Zscore(X ₇)	-0.078	0.04	0.013	0.025	-0.042
Zscore(X ₈)	0.057	0.081	-0.012	0.005	0.019
Zscore(X ₉)	0.013	0.09	-0.026	0.03	0.035
Zscore(X ₁₀)	0.05	-0.004	0.101	0.043	0.025
Zscore(X ₁₁)	0.072	0.024	0.002	-0.052	-0.01
Zscore(X ₁₂)	0.051	-0.011	0.099	0.029	0.025
Zscore(X ₁₃)	0.083	0.028	-0.033	-0.033	-0.042
Zscore(X ₁₄)	0.087	-0.01	0.003	0.042	0.015
Zscore(X ₁₅)	0.067	0.056	0.028	0.041	0.028
Zscore(X ₁₆)	-0.046	0.032	-0.075	-0.066	0.058
Zscore(X ₁₇)	0.011	0.049	-0.057	-0.101	0.008
Zscore(X ₁₈)	0.05	0.079	-0.037	0.031	0.022
Zscore(X ₁₉)	0.032	0.069	-0.033	0.032	0.003
Zscore(X ₂₀)	-0.013	0.099	-0.008	-0.019	0.036
Zscore(X ₂₁)	0.002	0.062	0.04	-0.068	0.097
Zscore(X ₂₂)	0.004	0.079	-0.04	-0.061	0.052
Zscore(X ₂₃)	0.052	-0.023	0.088	-0.003	0.058
Zscore(X ₂₄)	0.017	-0.046	-0.002	-0.059	-0.044
Zscore(X ₂₅)	-0.04	0.061	0.036	0.085	-0.048
Zscore(X ₂₆)	0.001	0.003	-0.06	0.075	-0.016
Zscore(X ₂₇)	0.037	-0.033	-0.09	0.029	0.044
Zscore(X ₂₈)	-0.077	0.03	0.022	-0.045	0.006
Zscore(X ₂₉)	-0.04	0.052	-0.089	0.007	-0.04
Zscore(X ₃₀)	0.001	0.009	0.09	0.073	0.068
Zscore(X ₃₁)	-0.064	0.028	0.007	0.042	-0.099
Zscore(X ₃₂)	0.004	-0.011	0.011	0.009	-0.165
Zscore(X ₃₃)	-0.036	0.061	0.071	0.02	-0.065
Zscore(X ₃₄)	0.018	-0.065	-0.059	-0.029	0.094
Zscore(X ₃₅)	-0.016	-0.061	-0.012	0.001	-0.127
Zscore(X ₃₆)	-0.014	-0.067	0.055	-0.033	-0.029
Zscore(X ₃₇)	0.055	0.024	-0.015	-0.045	-0.104
Zscore(X ₃₈)	0.013	-0.033	-0.015	-0.086	-0.008
Zscore(X ₃₉)	-0.028	-0.007	-0.101	0.077	0
$Zscore(X_{40})$	0.015	0.004	0.076	-0.114	-0.031
Zscore(X ₄₁)	0.011	0.047	0.061	0.004	-0.111
Zscore(X ₄₂)	-0.051	0.069	0.034	-0.058	-0.013
$Zscore(X_{43})$	-0.066	0.005	0.037	0.036	0.097

 $TABLE\,III.\,COMPONENT\,SCORE\,COEFFICIENT\,MATRIX.$

Zscore(X ₄₄)	0.068	0.052	-0.002	0.011	-0.041
Zscore(X ₄₅)	0.025	0.074	-0.013	-0.049	-0.013
Zscore(X ₄₆)	-0.057	0	0.033	-0.066	0.102

 $\begin{array}{l} \mbox{According to the component score coefficient matrix,} \\ \mbox{we can get the expressions of the 5 components.} \\ f_1 = 0.053 \times Zscore(X_1) + ... + (-0.057) \times Zscore(X_{46}) \ (1) \\ f_2 = (-0.057) \times Zscore(X_1) + ... + 0.000 \times Zscore(X_{46}) \ (2) \\ f_3 = (-0.061) \times Zscore(X_1) + ... + 0.033 \times Zscore(X_{46}) \ (3) \\ f_4 = (-0.019) \times Zscore(X_1) + ... + (-0.066) \times Zscore(X_{46}) \ (4) \\ f_5 = 0.063 \times Zscore(X_1) + ... + 0.102 \times Zscore(X_{46}) \ (5) \\ \end{array}$

TABLE IV. THE FACTOR SCORE OF FIVE COMPONENTS.

Branch	C1	C 2	C 3	C4	C5
Mudanjiang	-0.3067	0.3474	0.59848	-2.2888	-0.4479
	8			9	2
Shuangya-	-0.3330	-1.1077	0.0429	0.5329	-1.9568
shan	6	6			2
Suihua	-0.2436	0.80285	-0.7221	0.44902	-0.0951
	4		3		7
Dalian	0.73753	1.62392	-0.5897	0.17261	0.01111
			9		
Harbin	1.2342	-0.1352	1.95864	0.65401	0.44266
		5			
Hegang	-1.9093	-0.2278	0.43373	0.3742	1.27786
	4	3			
Jixi	0.99608	-1.5034	-1.2241	-0.5266	1.03107
		2	6	5	
Shenyang	-0.1749	0.20009	-0.4976	0.63282	-0.2628
	9		7		

TABLE V. THE RANKING OF PERFORMANCE EVALUATION.

Branch	C1	Ranking	C2	Ranking	C3	Ranking
Mudanjiang	-0.3067	6	0.3474	3	0.59848	2
Shuangyashan	-0.3330	7	-1.1077	7	0.0429	4
Suihua	-0.2436	5	0.8028	2	-0.7221	7
Dalian	0.7375	3	1.6239	1	-0.5897	6
Harbin	1.2342	1	-0.1352	5	1.9586	1
Hegang	-1.9093	8	-0.2278	6	0.4337	3
Jixi	0.9960	2	-1.5034	8	-1.2241	8
Shenyang	-0.1749	4	0.2000	4	-0.4976	5
Branch	C4	Ranking	C5	Ranking	Total score	Ranking
Branch Mudanjiang	C4 -2.2888	Ranking 8	C5 -0.4479	Ranking 7	Total score -0.2785	Ranking 7
Branch Mudanjiang Shuangyashan	C4 -2.2888 0.5329	Ranking 8 3	C5 -0.4479 -1.9568	Ranking 7 8	Total score -0.2785 -0.4715	Ranking 7 8
Branch Mudanjiang Shuangyashan Suihua	C4 -2.2888 0.5329 0.4490	Ranking 8 3 4	C5 -0.4479 -1.9568 -0.0951	Ranking 7 8 5	Total score -0.2785 -0.4715 0.0407	Ranking 7 8 3
Branch Mudanjiang Shuangyashan Suihua Dalian	C4 -2.2888 0.5329 0.4490 0.1726	Ranking 8 3 4 6	C5 -0.4479 -1.9568 -0.0951 0.0111	Ranking 7 8 5 4	Total score -0.2785 -0.4715 0.0407 0.4293	Ranking 7 8 3 2
Branch Mudanjiang Shuangyashan Suihua Dalian Harbin	C4 -2.2888 0.5329 0.4490 0.1726 0.6540	Ranking 8 3 4 6 1	C5 -0.4479 -1.9568 -0.0951 0.0111 0.4426	Ranking 7 8 5 4 3	Total score -0.2785 -0.4715 0.0407 0.4293 0.7338	Ranking 7 8 3 2 1
Branch Mudanjiang Shuangyashan Suihua Dalian Harbin Hegang	C4 -2.2888 0.5329 0.4490 0.1726 0.6540 0.3742	Ranking 8 3 4 6 1 5	C5 -0.4479 -1.9568 -0.0951 0.01111 0.4426 1.2778	Ranking 7 8 5 4 3 1	Total score -0.2785 -0.4715 0.0407 0.4293 0.7338 -0.1877	Ranking 7 8 3 2 1 5
Branch Mudanjiang Shuangyashan Suihua Dalian Harbin Hegang Jixi	C4 -2.2888 0.5329 0.4490 0.1726 0.6540 0.3742 -0.5266	Ranking 8 3 4 6 1 5 7	C5 -0.4479 -1.9568 -0.0951 0.0111 0.4426 1.2778 1.0310	Ranking 7 8 5 4 3 1 2	Total score -0.2785 -0.4715 0.0407 0.4293 0.7338 -0.1877 -0.2401	Ranking 7 8 3 2 1 5 6

C. The factor score of five components

To analyze the performance of 8 branches, the standardized indicators should be substituted into the expression (5) to (9) and the factor score of each component can be calculated. "Table IV" is the score of five components of each branch.

To eliminate the influence of subjective factors, we choose objective weight method to calculate the comprehensive score. From "Table II," we can get the weight of Component 1 is 22.55%, Component 2 is 20.75%, Component 3 is 17.05%, Component 4 is 14.26%, Component 5 is 12.38%.

We assume that f1, f2, f3, f4, f5 is the score of each component and F is the expression of the comprehensive score. The expression is:

$$F = 225\% \times f_1 + 207\% \times f_2 + 170\% \times f_3 + 142\% \times f_4 + 123\% \times f_5$$
(6)

The comprehensive score can be calculated by expression (10) and the ranking of the performance evaluation can be also obtained. "Table V" is the ranking of performance evaluation.

From the "Table V," Harbin branch has the greatest comprehensive score, so its performance evaluation is best. The second to fifth is Dalian, Suihua, Shenyang, Hegang, Jixi, and Mudanjiang. Shuangyashan is the last.

V. CONCLUSIONS

This article built the performance evaluation model of small and micro businesses microfinance based on BSC for small and medium-sized commercial banks and used PCA to evaluate the performance of small and micro businesses microfinance of 8 branches of HARBIN Bank in 2013. Finally, analyzed the empirical results from 5 components.

We made suggestions, such as developing new customers, increase the loan to promising and innovative companies, improving the efficiency of business process and increasing the investment in staff training, to the branches who performed worst in each component based on the analysis results. Our search method and conclusions can provide useful suggestions to improve the performance of small and micro businesses microfinance for Chinese commercial banks.

ACKNOWLEDGMENTS

The work described in this paper is supported by a grant from Soft science fund of Department of science and technology, Hubei province (2013BDF009) and Huazhong University of Science and Technology Fundamental Research Funds for the Central Universities ("A research of performance evaluation of microfinance of small and medium sized commercial banks in the perspective of inclusive financial system").

REFERENCES

- Xiong Weiping, Zhu Shuhong, Comprehensive evaluation and classification of commercial bank. Journal of Central South University, 4, pp. 328–332, 2001.
- [2] Qin Wanshun, Ouyang Jun, The structure, efficiency and performance of Chinese commercial banking sector. Economic Science, 4, pp. 34–45, 2001.
- [3] Tan Zhongming, An analysis on the efficiency of Chinese commercial banks. China Soft Science, 3, pp. 35–37, 2002.
- [4] Serpil Canbas, Altan Cabuk, Suleyman Bilgin Kilic, Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research, 2, pp. 528–546, 2005.
- [5] Chen Zonghua, Research on the performance evaluation of Chinese listed commercial banks based on principal component analysis. Assets and Finances in Administration and Institution, 2, pp. 1–3, 2011.
- [6] Guo Linyan, Performance appraisal on commercial banks based on factor analysis. Shanxi Science and Technology, 5, pp. 7–9, 2012.
- [7] Thagunna Karan Singh, Poudel Shashank, Measuring bank performance of Nepali banks: A data envelopment analysis (DEA) perspective. International Journal of Economics and Financial Issues, 1, pp. 54–65, 2013.
- [8] Peng Wanlu, Huang Jun, A comparative study on competitiveness between domestic and foreign banks based on principal component analysis. Accounting and Finance, **2**, pp. 13–19, 2014.