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Abstract 

This paper presents a novel Intelligent Inference System (IIS) for the determination of an optimum preshape for 
multifingered robot hand grasping, given object under a manipulation task.   The IIS is formed as hybrid agent 
architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, low-
level kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN 
structure for incremental learning.  The IIS is implemented in software with a robot hand simulation. 
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1. Introduction 

Robot grasping is one of the major research areas of 
robotics since it is required for many applications, from 
handling hazardous material to surgical operations. A 
review of robot grasping is given by Bicchi and Kumar.1 
One of the main problems in robot grasping is the 
dexterous manipulation of a multifingered robot hand.  
An overview of dexterous manipulation is given by 
Okamura and Cutkosky.2   

Dexterous Manipulation (DM) can be decomposed 
into individual phases such as preshaping (grasp 
planning and approach), grasping and manipulation.1, 2 
However, a human like dexterous manipulation requires 
phases of grasp planning, approach and grasping to be 
analyzed and handled all together.  In the literature 
related to dexterous manipulation of a robot hand, one 
of the major problems that remains to be solved is the 
determination of an appropriate preshape for grasping, 
given an object coupled to a predefined manipulation 
task.  In order to have a successful grasp execution, the 
robot control system should initiate grasp as the 
continuum of a successful grasp planning and approach 

of the preshaping phase. Grasp planning and grasp 
preparation works in literature are generally grouped 
into two major approaches: grasp synthesis (mechanical 
or analytical grasp based) and heuristic grasp planning 
approaches (physiological or knowledge based). 

The grasp synthesis approach is mathematically 
based and seeks to develop computational algorithms 
for the low-level control of the hand. Low-level control 
includes computation of finger contact positions, 
controlling finger joints through finger force and torque. 
These approaches assume well-defined models and 
precise sensory information. Shimoga3 provides a 
survey and overview of grasp synthesis techniques 
including the algorithms used. Many of the grasp 
synthesis methods deal with finding optimal contact 
points to satisfy a force closure property of the possible 
grasp using linear and nonlinear optimization 
techniques, such as Li and Sastry’s work.4 Coelho and 
Grupen5 proposed a robust control for an online grasp 
synthesis to achieve statically stable grasp 
configurations given instantaneous contact information. 
Arimoto6 implemented an intelligent control scheme for 
grasping and manipulation of an object by multi-
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fingered robot hands with fingers inducing rolling 
contacts with the object in 2D. In addition, grasp 
synthesis methods based on the concepts of wrench 
spaces were analyzed in the literature in terms of the set 
of all wrenches that can be applied to the object through 
grasp contact, such as Grasp Wrench Space (GWS) 
proposed by Ferrari and Canny7, Object Wrench Space 
(OWS) introduced by Pollard8 and Task Wrench Space 
(TWS) developed by Borst and Fischer9. These methods 
utilize the convex hull of task wrenches in order to 
match task and object in terms of wrench cones and 
ellipsoids, which yielded a scalar value for grasp 
matching between task and object and some grasp 
quality measures. However, these methods do not give a 
direct measure for an arbitrary grasp and do not link the 
high-level task to low-level grasp kinematics. Synthesis 
methods are in general, computationally intensive and 
do not yield effective results for mapping of high-level 
task, object and low-level grasp kinematics.  

The other group of works include heuristic grasp 
planning approaches, which are knowledge based, and 
utilize hand preshaping of human grasps. In general, a 
combination of the object geometry and task properties 
is the main factor for determining the grasp. In early 
phase of robotic grasps, many researchers have studied 
human grasp preshapes for various types of tasks. 
Cutkosky10 illustrates a grasp taxonomy for hand 
preshape matching for manufacturing tasks.   Iberall11 
gives a task oriented approach to hand preshaping and 
VF concept. In a work by Kang and Ikeuchi12, the 
robotic system observes a human while performing the 
task and then classifies the human grasp and transfers to 
the manipulator.  Further heuristic methods are 
developed using fuzzy expert systems to represent 
human experience for grasp preshaping, such as in the 
work by Bowers and Lumia13, a heuristic fuzzy expert 
system to grasp non-modelled objects using vision 
based noisy data. In addition, Gorce and Rezzoug14 
propose a heuristic approach for hand posture 
configuration using neural networks for inverse 
kinematics and reinforcement learning in order to 
optimize hand position and orientation without direct 
combination of task and object. Miller et al.15 
introduced a method for grasp planning using shape 
primitives, by demonstrating grasp simulations. 
Berenson et al.16 performed a work on grasp planning in 
complex scenes using grasp analysis, manipulation 
planning techniques and grasp databases. In a recent 

work, Ciocarlie et.al 17 analyzed low dimensional grasp 
postures for grasp synthesis.  Among these methods, 
heuristic grasp planning methods are efficient for grasp 
posture formation utilizing hand preshapes however 
they are lack of low-level kinematics for execution of 
the grasp.  

Neither of two approaches alone constitutes a 
global solution method for grasp preparation and 
execution for dexterous manipulation. Hence, another 
approach is necessary to utilize from heuristic planning 
and grasp synthesis approaches, to form an intelligent 
inference architecture. Such an approach can combine 
low-level kinematics from grasp synthesis approach and 
preshape formation from heuristic planning approach to 
complement each other. 

In this paper, we use a novel approach to deduce a 
successful preshape for an optimal initialization of the 
grasping task, considering the problem of preshaping 
and grasp kinematics as a sole continuum. It involves 
grasp planning and grasp synthesis using the attributes 
coming from each grasp phases. It is foreseen that 
preshape estimation must be planned virtually in a 
decision control unit, before any actual movement. This 
perspective is somewhat similar to physiological grasp 
situations in human infants and primates, observed by 
Arbib and Oztop.18 Further details of our approach are 
illustrated in the methodology section. 

The remainder of the paper is organized as 
follows. Section 2 presents our methodology.  Section 3 
illustrates the structure our Intelligent Inference System 
model and the computer implementation for the model 
developed. Section 4 contains the implementation 
results. Finally, Section 5 gives the conclusion of the 
paper. 

2. Methodology  

In our preshape estimation methodology, given in 
figure 1, first, the grasping task is analyzed and 
decomposed into primitives of axial translational and 
axial rotational displacements, as done in some of the 
previous works, such as Michelman’s experiments.19 
Object pose and shape are also analyzed to select 
approaching and grasp characteristics, by using object 
3D model. In addition, hand grasp space is partitioned 
by the Approach Plane method to combine task 
primitives and hand posture. Task primitives are 
interpreted as spatial displacements represented by 
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Figure 1. Preshape Estimation Methodology 

Figure 2. Example Object Models for Workspace 

wrenches in a partitioned grasp space. Moreover, using 
screw systems properties in existing robot hand contact 

models, representation pattern of the virtual grasps in 
wrench form is obtained by estimating kinematical 
effects of the possible virtual grasps on object 3D 
model. Utilizing task primitives and virtual grasp 
patterns in wrench form; a method for high-level task 
mapping to low-level kinematical actions is developed. 
We also introduce screw system based grasp measures, 
which are stability index and manipulability index. 
These measures support our inference system in 
justification and inferencing stages.  

The inference system uses the all estimated 
attributes as inputs, some of which are in forms of 
Fuzzy Sets. Using approximate reasoning based on 
fuzzy logic, we evaluate the matching of the desired 
task and possible grasp patterns, all represented in 
wrench form. Learning is achieved incrementally by 
means of developed ANN structure. All above 
techniques are integrated into an Intelligent Inference 
System. In the following sub-sections, we present 
detailed explanations for individual parts of our method. 

2.1. Object modelling and  analysis 

In robot hand grasping, grasp synthesis necessitates 
object representation or a model of object, due to nature 
of the manipulation problem. In grasp simulation 
environments, an object model defines the geometry and 

surface of the grasped object. This model can be defined 
as a primitive shape (prism, cylinder, etc.), grid, mesh, 
or polygonal structure. Object model provides a   
geometrical description of the surfaces of the object 
which is used in determining the accessible areas for 
each finger.  

We use 3D object models in forms of vertex and 
wireframe solid models of objects to be manipulated, 
shown in figure 2. In the implementation, the maximum 
object size is 4U, where U is size of our simulator hand 
middle finger phalange size.   

The object models are created using 3D simulation 
programs, such as 3DCanvas, and stored in disk files as 
wavefront object format. Using the disk files, possible 
finger contact points, contact surface normals are 
obtained by performing object model data analysis. The 
analysis also produces object attribute sets    in terms of 
size, such as width, height, depth, geometric center and 
also topological properties of model, number of 
vertices, faces together with triangles of the mesh in the 
wireframe model. The global coordinate frame is 
centered on the estimated geometrical center of the 
object, using set of vertex coordinates of the object 
model, given in eq. (1) & (2). In this work, it is 
referenced as COG and its coordinate axes are collinear 
with width, height and depth axes of the object model.   
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Figure 3. Approach of Hand towards an Object Model 

Table 1 Task Decompositions into Wrench Form. 

Task Q1: Translations Along Approach & Opposition 
Axes, Rotation Around Opposition Axis 

Approach 
Axis 

Opposition 
Axis Tx Ty Tz Rx Ry Rz

X Y 1.00 1.00 0.1 0.05 0.8 0.05
 

Task Q2: Translations Along Approach & Opposition 
Axes, Rotation Around Approach Axis 

Approach 
Axis 

Opposition 
Axis Tx Ty Tz Rx Ry Rz

X Y 1.00 1.00 0.1 0.8 0.05 0.05

2.2.  Task representation and grasp space 
partitioning   

In our perspective, for a task to be performed on a 
graspable object, there must be a link between a given 
high-level task description and a given low-level object 
description. Furthermore, the dextrous manipulation 
task needs to be parameterized by spatial displacements 
of  object after being securely grasped. In our preshape 
estimation, the task is analyzed and decomposed into 
primitives of axial translational and axial rotational 
displacements. Thus, high-level task information is 
translated into low-level grasp kinematics. Each 
primitive manipulation function performs a single 
translation or rotation. To perform arbitrary translations 
and rotations, the primitive functions must be 
sequenced. According to Chasle’s theorem, every 
spatial displacement is the composition of   rotation 
about an axis and translation along the same axis. 
Spatial displacements can be represented by using 
Screw Systems.20,21,22 We adapt screw systems 
representations and basically define task as: 

 Q=[T;R];  T=(Tx,Ty,Tz);  R=(Rx,Ry,Rz)    (3) 

In  eq. (3) , T represents the translational displacement 
and  R the pure rotational displacement, with respect to 
origin of coordinate frame, COG.  The wrench is 
represented as :   

W=[f;m]        (4) 

The wrench is dual to Q where f is the net force and m 
is the pure moment on a body  about its origin. Example 
tasks represented in wrench form are given in Table 1 as 
follows: 

In table 1, for translational  displacements, 1.00 
indicates full existence of displacement along an axis 
and 0.1  non existence. For rotational displacements , 
0.8 indicates full existence of rotation around an axis 
here as  0.05 indicates non existence. The magnitude 
values are determined during test simulations.  

The approach, opposition and transverse axes for  a 
preshaping hand are illustrated in figure 3. In our 
system, to achieve a task described in terms of 
translational and rotational primitives, the hand needs to 
have an approach and opposition axes representation.  
The decomposed task determines the set of congruent 
axes of the object and the hand , as shown in figure 3 .  

In addition, for precision type grasps, we foresee 
that the thumb and the forefinger are in opposite 
direction and there is one contact per finger.   This is 
expressed in our sample task space in terms of 
categorization of the axes as hand approach planes. 
Our further study resulted in the categorization of the 
hand approach and opposition axes as  hand Approach 
Planes. A 12-Plane categoric scheme that can 
encompass all possible cases of grasping approach  and  
covering our  primitive task space is given in figure 4. 
In this scheme, horizontal axis for a plane corresponds 
to the approach axis for the hand and vertical axis to 
opposition axis. In figure 4, planes are also labeled with 
plane index numbers , such as 05,11 .   
The reach of hand requires an established proper 
matching of an Approach Plane and task.  In order to 
have this matching, we have decomposed task space 
using  12-Plane categoric scheme as shown in figure 4. 
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Figure  4. Hand  Approach Planes Corresponding to Primitive Task  Space. 

  In addition, by means of  12 Approach Plane 
categorization, we  partition the total grasp space, for 
the approach of robot hand. The  preshape execution 
should then  adopt one of these planes.  For an 
Approach Plane identified by a plane index number, the 
grasp axes match to   object geometric dimensions, 
especially transverse axis of the Approach Plane is used 
for the determination of the number of fingers to be 
involved in preshaping ; hence it is also used  in contact 
kinematics analysis. For instance, for Approach Plane 
no 1 in figure 3, the transverse axis of preshape 
corresponds to the Z axis .  The number of fingers to be 

involved in a preshape approaching along Plane no 1, is 
determined using the object size information along 
transverse axis, that is depth size of object in this case. 
Feedforward Neural Networks are widely used for 
categoric classifications.23 Hence, we estimate the 
approach plane and the relevant approach value of robot 
hand, by a Multilayer Neural Network. 

 In our work, we implement a 3-layer  MLP (Input, 
Ouput and a 45-node Hidden Layer) as ANN, in which 
nonlinear activation function f(.) is logaritmhic sigmoid, 
and a  Back Propagation algorithm is used for 
training.We would like to explain structure of input and 
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Table 2 Input Vector of ANN. 

Tx,y,z: Translat. Motion along x,y,z axes.
Task Attributes 

 Rx,y,z: Pure Rotations around x,y,z axes.
W: Width, H: Height,  D: Depth 

#Vert: Number of vertices in  object model.

#V.Norm: Number of vertex normals,  

#Faces: Number of faces in object model. 
Object Attributes 

#Triang: Number of triangles used in object 
model representation. 

Table 3 Ouput Vector of ANN. 

Plane Index 
Y0, Y1, Y2, Y3 : 
Binary representation for approach plane 
index number. E.g. 1001=10 

Fuzzy Approach 
Value  

, Y4 Y5, Y6  : Binary representation for fuzzy
approach value . E.g. 01= Rwd_H 

Virtual Finger Y7,Y8  : Binary number of virtual fingers to 
be involved 

 

Figure 5. Structure of ANN for Hand  Approach Plane Estimation. 

Table 4  Training  Indicators of ANN. 

EMS=2.5e-3 EMS=1.0e-3 EMS=5.0e-4 

Epoch Train. 
Time Epoch Train. 

Time Epoch Train. 
Time 

8424 72 sec. 15864 85 sec 28032 145 sec 
6960 66 sec 13272 75 sec 30240 170 sec 
9432 89 sec 17832 105 sec 38184 210 sec 

output vectors of the ANN used, given in figure 5. The 
input vector to ANN is composed of  task represented in 
wrench form to represent a spatial displacement as well 
as object model attributes, such as size attributes, 
number of vertices, number of mesh triangles of its 
modeling.   The ouput vector of the ANN is a binary 
output vector composed of  approach plane number , 
fuzzy set attribute index for approach value and 
estimation for number of fingers to be involved in grasp.  
 
Input Vector of ANN, IV={ Task ; Object }            (5) 
T={ Tx, Ty, Tz, Rx, Ry, Rz } ;   
O={ W, H,  D, #Vert, #V.Norm, #Faces, #Triang}    
Output Vector:  OV={PI ; VF }                  (6) 
 PI={Y0, Y1, Y2, Y3, Y4, Y5, Y6}; VF={ Y7,Y8}    

2.3. Kinematic estimations for  virtual grasp 
patterns 

 The kinematic effects of contacts on a body 
can be analyzed  using constraint analysis methods. 
From kinematic  perspective, a multfingered robot hand 
is  basically a parallel manipulator mechanism 
composed of serial chained links operating in 
parallel.24,25 Therefore, application of screw system 
methods for parallel manipulators can be extended to 
robot hand kinematics. In addition, robot hand contacts 
on a body can be  analyzed as constraining contacts. 
Salisbury26  developed contact models for robotic 
grasping  using screw systems.   Mason and Salisbury27 
analyzed the contact kinematics  of robot hand based on 
contact models using screws. In our work, we use 
Salisbury’s26 soft finger contact model which has been 
less worked on . Salisbury26 in his model of soft finger 
contact, gives unit wrenches and twists; however the 
practical implementation of this model concerns 
Coulomb friction force. Therefore, wrenches due to 
frictional components, i.e. tangential forces and moment 
around contact normal, are scaled with some factors as  
indicated by Ka , Kn , Ko  and Mn .    
We implement our virtual grasp using the mentioned 
contact model and demonstrate it on a case, in order to 
estimate kinematic effects of the virtual grasp.  Given 
the approach plane , the number of fingers and the  
approach value, we determine contact locations by 
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Figure 7. Virtual Grasp with Contact Parameters. 

making collision test on object 3D model to verify that 
our fingers land on contact points and assign contact  
parameters to each virtual contact,  as shown in figure 7.     

 
We also calculate the contact position vectors ri with 
respect to  the COG (Object Geometric Center) of the 
object which is estimated in object analysis module. The 
contact position vector ri is calculated using the results 
from collison tests for the contacts  and  stored. The 
position vector is defined as: 

 ri = (xi, yi, zi)             (7)    
Indexes are r1 for thumb , r2 for index, r3  for middle 
finger and r4 for fourth finger, where Ci denotes the 
contacts and Wi denotes contact wrench.  
The contact wrenches can also be written in screw 
system couple form in ray coordinates. That is to say a 
couple is formed as:  

[ ]iii mfW ;=      (8) 

where fi denotes the force applied at the contact and mi 
denotes the moment existed at the contact.   From the 
figure 7, we notice that all contact surface normals are 
along opposition  axis (or –opposition axis for thumb). 
Since, the contact normals are in the same direction, and 
the contact wrenches for contacts C2,C3,C4 which are 
indicated by position vectors ri in figure 7 are same.  
For illustration purposes, we write wrenches only for 

thumb contact C1 and index finger contact C2.  
However, in the implementation all contact wrenches 
are indiviudally estimated.  If we rewrite W1 and W2 in 
this form , for the figure 7, we obtain below couples: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−−= 010;1111W                    (9)                    

     
              
               (10)    
 
 

In order to exemplify the contact wrenches, we use 
unity magnitudes in (9) & (10).  When we include 
frictional coeffients in wrenches, we obtain following 
wrench equations  (11) & (12). 

 ⎥
⎦

⎤
⎢
⎣

⎡
−−= 00;1 nona MKKKW             (11)   

⎥
⎦

⎤
⎢
⎣

⎡
= 00;2 nona MKKKW             (12) 

The values for coefficients are determined  during 
simulations and their values are discussed in the results 
section. After having calculated contact position vectors 
and couples for each contact , we use Poinsot’s 
Theorem of Screw Theory, to move all contact 
wrenches to the COG. By doing so, we obtain resultant 
net wrench on the object in couple form.  A couple in 
screw quantities, can be projected to a point  whose 
position vector lies from that point towards the couple 
screw axis, using the following transformation given in   
eq.  (13) and  (14).     

     

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
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m
fkW )( (13)  

∑=
k

konet WW )(     (14)                       

where, in our case for each finger, Wo(k) denotes the 
projected  wrench to COG , and fi denotes the forces 
applied at the contact and mj denotes the moments 
existed at the contact Ci, and ri  the contact position 

⎥
⎦

⎤
⎢
⎣

⎡
= 010;1112W
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vectors from the COG , given in figure7 (x) operator is 
the cross product operator. In our case, the i index could 
ranges from 1 to 3 , k is ranges from 1 to number of 
fingers and   j is 1 for our finger model. The Resultant 
Net Wrench  from all fingers are obtained direct sum of 
projected couples  We use resultant net wrench Wnet, as 
the representation pattern for a proposed  grasp by 
avoding complexity and computational burdens of the 
Minkowski sums and convex hull methods used in the  
other works. 
       As the grasp  performance measures ,we developed 
new measures which are “Stability Index” and 
“Manipulability Index” using the results obtained 
kinematic analysis of virtual grasp, by utilizing  the 
properties of screw systems  . We use Wrench Union 
(WU), the union of  Wo(k) , to represent Grasp Wrench 
Space. We also use Twist Intersection (TI)  to represent 
Grasp Twist Space and utilize the reciprocity theorem 
between  twists and wrenches.  The reciprocal twist 
space of a (WU), if exists, represents hidden degrees of 
freedom which indicates a degree of instability in the 
(WU) . 
 Then, we define “Stability Index” and “Manipulability 
Index” as follows:                                                                        
The  Stability  Index:  
Sta=rank(WU)-rank(TI), valued in [0..6]              (13)                                    
The Manipulability Index :   
Manu=rank(WU), valued in [0..6] .                        (14)                                        
 In order to find the reciprocal space twist, we make use 
of (WU) of the grasp and the algorithm developed by 
Adams and Whitney28  to calculate recipcrocal twist 
space and hidden degrees of freedom under constraints. 

2.4. Task and virtual grasp pattern matching 
using fuzzy logic  

     In the previous sections, we have formulated a 
wrench representation of the task as a spatial 
displacement Q and interpreted the grasp net wrench 
Wnet  on the object as a pattern representing the virtual 
grasp. Hence, the matching degree between these two 
patterns can be analyzed in order  to infer about 
suitability of the task Q and proposed preshape executed 
on object model and represented by  a virtual grasp 
pattern Wnet ,represented  in (15) & (16).  
 
    

]qqqqqq[Q 654321=
zyxzyx RRRTTT                 (15)  

 
]wwwwww[W 654321net =

zyxzyx RRRTTT                 (16)                        

 
Although there are several possible methods for 
matching patterns represented in vector space notation,  
such as distance based methods,  we have chosen 
similarity based methods to be able infer in symbolic 
level. In addition, to avoid possible errors which could 
originate from estimations, we use approximate 
reasoning methods. To develop the pattern matching, 
we inspected fuzzy pattern matching, especially fuzzy 
similarity measures. In this work, approximate 
reasoning based on fuzzy logic is selected for task and 
virtual grasp mapping to avoid possible uncertainities 
coming from sensitivity to virtual contact parameters 
and  possible computational errors.  A comparative 
survey of fuzzy similarity methods are given by Yeung 
et al .29   Among fuzzy similarity methods, “Fuzzy 
Approaching Degree Index” is the most convenient for 
symbolic level inference using fuzzy vectors. Given two 
Fuzzy sets or vectors of dimension N, as A and B, 
defined on Universe U: 
 

⎭
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⎩
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1                 (18)    

“Fuzzy Approaching Degree Index” which  is derived 
by Wang30, measures similarity between two fuzzy sets 
or vectors. ADI(A,B) yields a scalar value between 0 
and 1. 
 )()(),( BABABAADI ⊕∧•=         (19) 

)()( ii
n

i
baBA ∧=• ∨                       (20) 

)()( ii
n

i
baBA ∨=⊕ ∧                       (21) 

  In order to use “Fuzzy Approaching Degree Index” , 
we need to fuzzify our patterns which are in wrench 
form. For fuzzification of wrench patterns, we have 
implemented different membership functions, such as 
triangle, gaussian and trapezoid forms. We observed 
that trapezoid membership function yields better results 
during implementation phase.  
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Figure 8. Fuzzy Membership Functions  for  Grasp Wrench or Tasks. 

Table 5  Explanation of Fuzzy Sets. 

Fuzzy Set Description 
RWD-H A  high  quantity in negative direction 
RWD-M A  medium  quantity in negative direction 
RWD-L A  low  quantity in negative direction 
Zero A  zero  quantity  
FWD-H A  low  quantity in positive direction 
FWD-M A  medium  quantity in positive direction 
FWD-L A  high  quantity in positive direction 

The membership function with 7 fuzzy sets used is 
indicated in figure 8 .  We have 7  fuzzy sets named as 
RWD-H, RWD-M, RWD-L, Zero, FWD-L,FWD-
M,FWD-H, with descriptions given in table 5. We have 
used 7 sets to have a moderate level of granularity and 
symmetry on both positive and negative side. A fewer 
number of fuzzy sets yields a coarse estimations and a 
higher number of fuzzy sets yields more granulation but 
higher cost of computations and slower controller.  

The  wrench patterns are  fuzzified using  m-Fuzzy 
Vectors or Fuzzy Matrix of MxN. Hence our wrenches 
are 6 dimensional vectors, we have 6-Fuzzy Vectors to 
represent a wrench. When we apply ADI operator on 
our pattern    we obtain 6 output values , one for each 
dimension.  In order to combine these values into a 
general index , we define Total Fuzzy Vector 
Approaching Degree Index between m-Fuzzy Vectors. 

∑
=

∆
M

i
iinet wqADIWQTFVADI

1

),(),(     (22) 

where Q represents the task and Wnet represents the 
resultant wrench of grasp. We use TFVADI given in  
(22) as a matching criteria between task pattern Q and 
virtual grasp pattern W to infer about suitability of task 
and  estimated grasp preshape. 

3. System Architecture   

3.1.  Overview of the intelligent inference system  

We integrate our novel methodic approaches which 
are individually different in nature, into    an Intelligent 
Inference System (IIS) . The IIS is formed  by the 
synthesis of  object properties, manipulation task 
characteristics, virtual kinematic analysis and evaluation 
of contact wrench patterns  via  fuzzy approximate 
reasoning and developed ANN structure for incremental 
learning.  The IIS takes task and object model as inputs 
and yields a resultant grasp preshape selecting a virtual 
approach to the predefined object by analysis of  
possible virtual grasps with kinematic estimations and 
grasp quality measures. In order to reach our preshape 
determination goal, we  design IIS as   Hybrid 
Intelligent Inference System (HIIS) .  
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Figure 9. Overview of the  Hybrid Inteligent Inference System  Architecture 

The design model is compatible with Hybrid 
Intelligent Agent Structure 31,32, in the aspect of 
existence of individual units, such as performance 
element, learning element, internal critic unit, 
environment sensing element  and in their interaction. In 
figure 9,  overall block representation of HIIS is given.  

 In the architecture of figure 9, we have environment 
items which are external critic as a meta control, objects 
to be grasped as represented 3D models, task actions to 
be performed as grasp and grasp simulation to indicate 
result of the HIIS to external critic. The external critic is 
the human operator in our case. Grasp simulation is the 
end effector. The grasp performed by the grasp 
simulation  is limited to a quasistatic precision fingertip 
grasp and positions of the hand and object are known at 
each phase. The external critic adjusts the parameters of 

the internal critic and it inputs the task actions via user 
interface of the controller and also selects the object 3D 
model via user interface. Internal units of our controller 
are explained in the following sections with their 
functionality. 

3.2.  Environment sensing element  

 “Environment Sensing Element” (ESE) gets the 
command from external  critic for the task and object 
model input and prepares it for the other parts of the 
controller. Object model is transferred to memory from 
a disc file for further processing, with describing feature 
set attribute estimation, such as dimensions, number of 
triangles etc.  Task Q is converted to low-level grasp 
kinematics in wrench  form.  
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3.3.  Performance element   

 In our design, “Performance Element” (PE) is the 
execution unit which takes inputs from ESE in terms of 
task attributes and object attributes. It is composed of 
two successive parts: Approach Estimator (AE) which is 
composed of an ANN and Preshape Analyzer (PA) 
which estimates the virtual grasp kinematic estimations 
on object 3D model.   The PA performs grasp kinematic 
estimations and  grasp performance measures according 
to  the outputs of AE that is given in terms of hand 
virtual approach  towards object. For a selected 
Approach Plane, which determines approach and 
opposition axes of virtual grasp with respect to object 
geometry, and for a given approach value which is the 
coordinates of fingertips along the approach axis, we 
make a search of possible surfaces to land upon. In the 
estimation , virtual grasp formation is done using 
collision based exact 3D geometric contact detection 
algorithms such as “Ray Triangle Intersection” method 
to determine possible contact positions. 33 In this way , 
we test existence of a contact surface on the object for a 
given approach. After virtual contacts are determined,  
PA estimates Wnet  representing the proposed virtual 
grasp for the given Approach Plane and Approach 
value, with grasp measures.  

3.4.  Internal critic    

  “Internal Critic” (IC) has a role to decide about 
performance  of the execution of the HIIS rather than 
deciding for the performance of  Learning Element (LE) 
as stated in its general definition. For our case , it 
decides about execution performance of the HIIS 
Controller via  reinforcement, indicating success as 
reward and failure as penalty. This  results in 
determination of the execution  mode of the HIIS . It 
uses  fuzzy approximate reasoning for critism. It uses 
TFVADI to decide about mathing degree of task and 
resultant grasp preshape, using the various thresholds.  
Indeed, some of the execution modes involves 
activation of learning element by internal critic. The 
internal critic takes inputs from PE, ESE and inputs 
from External Critic. It send its output to PE, LE as 
reinforcement and  to Meta Control as report. The PE 
and LE depending on the HIIS execution mode, gets 
reinforcement from IC and using the Multistate 
Decision algorithm for execution both synchronously, 
they either decide to  run at a mode or to stop.  

3.5. Learning element   

“Learning Element” (LE) is  composed of  a “Search 
Unit” to find a proper coverage of workspace and 
Incremental Learning Unit (the ANN of PE in 
supervised training mode ).  The input to LE is from 
internal critic and environment sensing element . Output 
from LE is sent to PE, to internal critic and to external 
critic as report.  Learning of a new objects occur as 
‘Incremental Learning’. Initially , the ANN is  basically 
trained and training data is composed of only for  a  
simple cube . The other objects are introduced by “Meta 
Control” to the controller one by one with some sample 
tasks from our task space representation. When learning 
element is activated, first, for the given object and task,  
the search unit runs and finds the corresponding  “Best 
Possible Grasp” . This information is added to training 
data for ANN and IO training is performed in 
supervised learning mode. It recurses the PE after IO 
training, to test its learning performance by  internal 
critic . Hence, learning performance also tested by 
reinforcement. With this structure, learning of the 
overall HIIS  is an “Incremental Learning” which is a 
hybrid combination of supervised and reinforcement 
learning. 

3.6.  Execution modes of the HIIS  

Execution of the HIIS  is very similar to a Multistate 
Decision Control. The HIIS  is a Four State Controller. 
States are successive. The flow diagram for execution 
modes for HIIS  are given figure 10 . 
Execution Mode 0:  This is  the normal execution of PE 
with Internal Critic using Execution Threshold. The 
HIIS start for cold startup at this mode, when PE is 
reinforced as failure by Internal Critic,  it ends with 
transition to next mode , Execution Mode 1. In case of 
success reinforcement from Internal Critic, the HIIS   
send its output to Grasp Simulation , it stops and waits 
next command from Meta Control. If a deadlock is reset 
by External Critic, the execution again starts at this 
mode.  LE is at stop in this mode . 
Execution Mode 1:  This is the execution of PE with 
Internal Critic using Execution Threshold, but it 
includes a local search within estimated Approach Plane 
in terms of Approach Value. When the PE is reinforced 
as fail by Internal Critic, it ends with next mode , 
Execution Mode 2. In case of success reinforcement 
from Internal Critic, the HIIS  send its output to Grasp 
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Figure 10. HIIS Execution Flow Diagram 

Simulation , it stops and waits next command from 
Meta Control. LE is at stop in this mode . 
Execution Mode 2:  This is the execution of PE with 
Internal critic, but using Recognition Threshold to test 
acknowledge of the object by the HIIS  itself . When the 
PE is reinforced as failure by Internal Critic, it ends 
with next mode , Execution Mode 3. In case of success 
reinforcement from Internal Critic, the HIIS  stops and 
reports to Meta Control recogniton of object and also 

asks for Task Correction. It waits next command from 
Meta Control. Grasp simulation is not performed at this 
mode. LE is at stop in this mode . 
Execution Mode 3:  This is the execution of PE and LE 
with Internal Critic using Execution  Threshold . This 
mode is used for training new object and new task to the 
HIIS . After Object is reconized as new Object, LE uses 
its Fuzzy Explorer to search all planes and approaches 
to find best possible task as grasp wrench pattern which 
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Figure 11. Testing Controller Robustness 

is most similar to the desired task by Meta Control. 
Object attributes and Best Possible Task is used in  IO 
training of ANN , in Supervised Learning . The new IO 
set is added to training data files and IO training for 
ANN is performed. In this way , both a new object and a 
possible new task is taught to controller. In order to test 
LE learning performance, the HIIS executes itself at 
mode 0 and if not succesful executes at mode 1 and  
after all, if it fails, controller reports a deadlock and 
stops.  

4.   Results and Discussions    

The designed HIIS architecture is implemented as a 
software package.  In our work,  we have used 3D 
object models in forms of vertex and wireframe  solid 
models of objects to be manipulated. In order to 
demonstrate the performance of HIIS in a better 
environment, we have also implemented a basic Robot 
Hand Simulation toolbox only with kinematics. The 
Hand is a 4 fingered 16 DOF hand model which is 
similar to UTAH-MIT Hand. Hand Base frame adjusts 
its position according to the approach plane index.  
Input for the hand simulator is the approach plane and 
the estimated contact locations. In the hand simulation, 
we test exact collision of fingertip with the estimated 
contact surface. In the implementation, we assume that 
hand base frame can move around object within any 
path or without any obstacle avoidance . The all 
software source code is written in C++ programming 
language and using OpenGL Libraries  on a PC 
environment . 

We have tested HIIS with certain categories of tasks 
and objects. We have investigated learning capability, 
parametric sensitivity and estimation performance of the 
HIIS  as well as its robustness. In the result figures, 
desired task Q  is represented in wrench form. Output 
values for the HIIS are given according to each result 
category such as Approach Plane #, approach value, 
TFVADI and Execution Mode Index  as well as the 
simulated grasp. In some cases,  Wnet is also given to 
justify the performance. In the following sections , we 
present our results with our basic comments. 

4.1.  Results for testing performance robustness of 
HIIS using pre-trained object 

In this category of results , we demonstrate 
robustness of the HIIS  performance to, variations in 
task , using pre-trained object.In the results given in 

figure 11 , as case #1, for the given basic training object, 
we request the task Q as a translational motion along Y 
axis with a rotation around Y axis , as well as translation 
along Z axis, all according to COG. However, there are 
also added disturbance items in rotational terms for X 
and Z rotations .  When we inspect the results given in 
the figure, we could see that The HIIS yields Approach 
Plane  as #7 and Approach Value as 0.1. It means that 
robot hand will approach along  Z axis while opposition 
axis is Y and estimated virtual grasp pattern matched to 
desired task with TFVADI value of 4.09 /6.00 . The 
execution mode is 0 which indicates controller run in 
the mode remembering both object and task category. A 
successful grasp simulation is the final result.  In 
addition, response of HIIS is satisfactory to tolerate 
disturbances in task which do not exist in our training 
data set.  Task disturbances are tolerated  for a trained 
object with success, giving the correct approach plane , 
approach and indication of proper execution mode.  In  
case #2, we have changed the  task Q as a translational 
motion along X & Y axes and with a rotation around X 
axis. HIIS gives us Approach  Plane as #6  and 
Approach Value as 0.1. It means that robot hand will 

approach along  Y axis while opposition axis is X and 
estimated virtual grasp pattern matched to desired task 
with TFVADI value of 3.6 /6.00 . The execution mode 
is 1 which indicates controller run in the local search 
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Figure  12  Testing HIIS  learning with a simple object  
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Figure  13  Testing HIIS Learning with a complex object  

mode along approach axis but remembering both object 
and task category. In  case #3,  we ask the HIIS  an  
almost impossible task with this object geometry which  
is prismatic . The task  as a translational motions along 
X,Y,Z axes; with  rotations around X,Y,Z axes.   As 
indicated by the  results, the HIIS  recognized the object 
with TFVADI 5.31 and asked for task correction in 
execution mode 2. In this case, we see that HIIS  
recognized the trained object under variations of task 
attributes. The responses of  the HIIS  to disturbances in 
tasks and to irrelevant tasks indicates the robustness of 
the HIIS . 

4.2.  Results with training for primitive objects 

In these group of results , we aim to test learning 
performance of the HIIS  for relatively simple objects 

,using previously trained tasks. In the results of figure 
12, for the given basic tasks, we ask the HIIS to 
recognize a new primitive object and ask to learn it. As 
case # 1, the task , a pre-trained task, is given as 
translational motions along X, Y axes; with rotation 
around X axis.  The HIIS recognized new object and 
learned it successfully, in execution mode 3 with 
TFVADI 3.78.  In case #2, we would like to test 
execution performance of the HIIS after learning the 
object, for another basic task. The task is given as 

translational motions along X and Z axes; with rotation 
around X axis.  The HIIS  performed execution of the 
task  at  exec mode 1, with TFVADI 3.6 indicating that 
object remembered and a suitable grasp for task is 
yielded.   As case #3, we would like to test execution 
performance of the HIIS , for another basic task, . The  
task is  given as  translational motions along X and Z 
axes with  rotation around, Z axis. As seen from grasp 
simulation and preshape results, the HIIS performed for 
another basic task, at execution mode 0, demonstrating 
successful learning of the object, with TFVADI 4.0. 

4.3. Results with training for complicated objects 

In this category, we test learning performance of the 
HIIS  with relatively difficult objects. 

In the results given at figure 13 for case #1, for the 
given basic task, we ask the HIIS  to recognize a new 
complicated object, Dolphin and ask to learn it. The  
task is  given as  translational motions along X, -Y axes 
with  rotation around -Y axis, a pre-trained task.  As 
seen from grasp simulation and preshape results, the 
HIIS recognized new object and learned it successfully. 
The excution mode 3 indicates the  learning of new 
object and it occured with a relatively high matching 
degree TFVADI 5.89 due to given a very optimal task 
which yields our conclusion that complicated objects 
should be trained with compatible tasks.  As case #2, we 
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Figure 14  Sensitivity to Contact Coefficient Parameters. 
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Figure 15  Sensitivity to Variations in Thresholds. 

ask the HIIS  a possible but relatively difficult   task  as  
translational motions along X & Y axes and with a 
medium valued rotation around Y axis .   As seen from 
results, the HIIS performed right but with a minor 
modification. It is seen from the figure that matching 
degree for this case is TFVADI :4 , which is obtained by 
means of  local search . As case #3, we ask the HIIS  a 
possible but relatively difficult   task  as  translational 
motions along X & Z axes; with  a rotation around X 
axis .  Successful Grasp simulation results indicate that  
the HIIS  performed correctly  but with a local search of 
contact places along approach axis.   

4.4. The HIIS  performance  with variations in 
contact model parameters 

In the following  section, we give performance 
results with variations in contact frictional coefficients. 
In virtual grasp case, these coefficent are only effective 
for grasp matching. The Task is arbitrarily chosen from 
our sample task space. The other parameters remain  
unchanged. The parameters, Ka,Ko,Kn and Mn are used 
to represent soft finger contact wrench coefficients, as 
in actual implementations of soft finger by Howe and 
Cutkosky34 . In our work , we design our contact model 

as  compatible  with the existing contact models and we 
utilize Howe and Cutkosky’s work in determination of  
these parameters as well as softfinger experiments of 
Murakami 35 . In our models we take friction coefficient 
as µ=1.0. 

The results given in figure 14, we present our best 
found values highlighted with bold typeface.  It is 
important  to mention that, variations in contact friction 
parameters, do not effect plane index and approach 
determination, but  may effect approximate reasoning 
part of HIIS , as it would yield different wrench 
magnitudes for a given task and object.  

4.5. The HIIS performance  with variations in 
threshold parameters 

The HIIS is a multistage decision system and transition 
between stages are determined by the internal critic by 
using a relevant threshold.  In our threshold parameters 
analysis, indicated by Figure 15, we observed that the 
system is  dependent on thresholds and especially 
“Estimation Threshold” which effected HIIS overall 
performance  since it is the major switching element for 
HIIS  execution modes and acts in combination with 
other thresholds.  
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Figure 16  Sensitivity to Variations in Fuzzy Membership Functions. 

4.6. The HIIS performance  with variations in 
fuzzy membership functions 

In the  figure 16, we present the analysis of the HIIS 
under variations of fuzzy memberships, one 
membership at each step.  By making parameter 
variations in Fuzzy Membership Functions either 
narrowing or widening about 20-30 % of the trapezodial 
membership functions one at a time, we reached the 
following conclusion about the effect of the MFs  to 
HIIS . As it could be seen from figure 16 , MF 
variations mainly effective for ZERO MF , for the other 
MF variations, even there is small change in TFVADI 
values , overall grasp preshape is almost same .  

This is an indication of that the HIIS uses a stable 
approximate reasoning that is not effected much by 
parameterization  due to fuzzy logic attribute matching 
technique.  

4.7. The Results with Odd Cases 

In the following results given in figure 17 and figure 18,  
eventhough  HIIS  estimated a preshape for the given 
task and object, however hand simulation kinematics 
indicates that these preshapes are not possible with hand 
constraints using inverse kinematics and the fingers are 
retracted. The amount of such results are quite low 
around 15 % overall 500 experiments. 
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5. Conclusion 

In this work,  a  Hybrid  Intelligent Inference System 
(HIIS) for optimal preshaping and grasping of robot 
hand is designed and the model is implemented in a 
software simulation environment. The HIIS model is 
developed  such that it includes grasp planning coming 
from task requirements, approaching and grasping 
which is  related to object, its pose and environment , as 
a sole continuum controller. The HIIS uses  attributes 
coming from each grasp phases to deduce a successful  
preshape for a good initialization of a subsequent grasp 
task. Object pose,  shape , together with environment 
constraints are also analyzed to select  approaching and 
grasp characteristics.  It takes inputs from the virtual 

environment and yields a resultant grasp preshape, after 
handling decomposed task attributes, and selecting a 
virtual approach to the predefined object by an analysis 
of  possible virtual grasps with kinematic estimations 
and grasp quality measures developed using screw 
systems.  
The results show us that our proposed method 
combining high level task and low level kinematics for 
preshape estimation works as a intelligent system. The 
designed HIIS was implemented using 3D computer 
simulation environment which demonstrated us  that it 
could be implemented in real hardware environment. 
HIIS executes attributes  in symbolic forms, which can 
be easily integrate a higher level robot control 
mechanisms. The HIIS for  preshaping demonstrated 
satisfactory results for enough robustness, incremental 
learning of new objects and tasks .It  also handled some 
uncertainity in tasks. The hand grasp simulation results 
are encouraging to work further in this approach, 
especially to implement HIIS in a real hardware 
environment. 
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