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Abstract

Selecting a suitable proximity measure is one of the fundamental tasks in clustering. How to effectively
utilize all available side information, including the instance level information in the form of pair-wise
constraints, and the attribute level information in the form of attribute order preferences, is an essential
problem in metric learning. In this paper, we propose a learning framework in which both the pair-wise
constraints and the attribute order preferences can be incorporated simultaneously. The theory behind
it and the related parameter adjusting technique have been described in details. Experimental results on
benchmark data sets demonstrate the effectiveness of proposed method.
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1. Introduction

Clustering, partitioning data into sensible groupings
according to measured or perceived intrinsic char-
acteristics or similarity, is one of the most funda-
mental unsupervised data mining tasks 1,2,3,4. In the
past decades, clustering methods have been success-
fully applied in a variety of applications across a
wide range of fields, including computer vision, sys-
tem biology, and e-business, etc. In general, cluster-
ing is a subjective process which focuses on finding
optimal clusterings according to some specific dis-
tance of similarity measures. However, specifying
appropriate similarity measures is usually difficult

because of its dependency on human expertise.

Recently, the topic of semi-supervised cluster-
ing 5,6,7,8,9,10 has attracted a lot of research effort,
and it aims to utilize some kinds of side-information
to improve the accuracy in clustering. One popu-
lar type of side-information is in the form of Pair-
wise Link Constraints, which can be further divided
into the must-link constraints (instances i and j are in
the same cluster) and the cannot-link constraints (in-
stances i and j belong to different clusters). Based
on such information, the clustering objective func-
tion can be modified so that it includes satisfaction
of constraints, enforcing constraints during the clus-
tering process 11,12,13,14,15,16. A second line of re-
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search, to which this work belongs, focuses on learn-
ing a suitable metric from the dataset augmented
by some side-information, relevant to the task at
hand. Some recent research sought to address this
problem is usually referred to as Metric Learning
17,18,19,20. Xing et al. 17 proposed to learn a Maha-
lanobis metric using the Pair-wise Link Constraints,
before performing clustering with constraints. Their
proposed method is based on posting metric learn-
ing as a combination of gradient descent and iter-
ative projection to solve a convex nonlinear opti-
mization problem. Instead of using an iterative al-
gorithm as in the method 17, Bar-Hillel et al. 18

proposed a more efficient, non-iterative algorithm
called the Relevant Component Analysis (RCA) al-
gorithm to learn a Mahalanobis metric. More re-
cently, Halkidi et al. 19 proposed a framework for
the learning of a weighted Euclidean distance, based
on the Pair-wise Link Constraints and the cluster va-
lidity criteria. In addition, many researches utilized
instance-level information in the form of pairwise
constraints to assist document clustering 5,21,22,23,24.

All the aforementioned approaches aim to im-
prove the clustering accuracy by utilizing the
instance-level side-information, while the attribute-
level side-information has largely been overlooked.
A different scenario, in which attribute-level side-
information is a natural source of training data, oc-
curs when we wish to identify a different clustering
criterion from the original one but equally good in
terms of the objective clustering evaluation. For ex-
ample, consider clustering loan applications to de-
termine a method to identify risky loans but the clus-
ters fall along racial lines, the banks may wish to find
an alternative criterion but with equally good clus-
tering results. In this situation, existing clustering
results can be used as a good resource for instance-
level side-information, while the experts’ domain
preferences of some attributes over the others will
be used as the attribute-level side information. In
document clustering, attribute-level information in
the form of keywords can be obtained from impor-
tant parts, such as Title and Keywords 25, or by some
methods from keywords extraction and evaluation
26,27,28.

One example of the attribute-level side-

information is that an attribute ai is more important
than another attribute a j. These kinds of prefer-
ence information are prevalent and usually much
easier to obtain than precise relative weights of the
attributes 29,30,31,32. One recent attempt in this di-
rection was done by Sun et al. 33. Their proposed
method can incorporate attribute order preferences
into prototype-based clustering, and the problem of
metric learning is transformed into a convex opti-
mization problem of finding the most suitable at-
tribute weights 33. However, their method can only
incorporate the attribute order preferences.

In this paper, we aim to address the metric learn-
ing by utilizing both the instance-level side infor-
mation and the attribute-level side information. Our
approach is to obtain the distance metric through an
optimization method with the available side infor-
mation. The proposed framework can properly gen-
eralize both kinds of side-information to similarity
measures, so that these measures can be used with
any of the known clustering algorithms to discover a
“good” clustering that conforms to both the known
facts and the user’s preferences. Experimental re-
sults on a range of benchmark datasets indicate the
effectiveness and the potential of the proposed ap-
proach.

The rest of the article is organized as follows.
Section 2 provides a brief description of the cluster-
ing learning with instance-level and attribute-level
side information respectively. Section 3 describes
our learning algorithm with the combination con-
straints. Section 4 evaluates the proposed method
on all the UCI datasets used in existing metric learn-
ing papers. In the end, we conclude the paper in
Section 5.

2. Related Works

In this section, we briefly describe the concepts of
clustering with users’ constraints 17,33.

2.1. Metric Learning

Given a set of n points X = {x1, ⋅ ⋅ ⋅ ,xn} in some
space of dimensionality d, where xi = [xi1, ⋅ ⋅ ⋅ ,xid ]

t

(t denotes the transpose), xi ∈ ℜd , and the desired
number of clusters k, the objective of clustering
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is to obtain a partition of X . While the metric
learning is to obtain a vector of attribute weights
w = [w1, ⋅ ⋅ ⋅ ,wd ]

t (wi represents the degree of par-
ticipation of attribute i to the cluster), such that the
instances in the same cluster are close to each other
according to the L2 norm distance weighted using
w, and the constraints specified by users can be sat-
isfied.

2.2. Clustering with Instance-level Side
Information

The instance-level side information usually specifies
whether a pair of data instances belong to the same
cluster or not. It has become one common form to
represent users’ prior knowledge on the application
domain. For example, in information retrieval and
text mining community, the rapid increasing amount
of unstructured data renders it impractical to obtain
individual class labels for each instance. However,
it is much easier for the domain expert to provide
feedback in the form of pair-wise constraints such
as whether two instances belong to the same cluster
or not 34,35,36.

Definition 1. Pair-wise Constraints17: for the
point pair (xi,x j) ∈X , the “must-link” set S and
“cannot-link” set D constraints supplied by the users
can be defined as follows:

∙ IF xi and x j are in the same cluster, then xi and x j
satisfy the “must-link” constraint.

∙ IF xi and x j are in different clusters, then xi and
x j satisfy the “cannot-link” constraint.

In order to satisfy the constraints mentioned in
Definition 1, Xing et al. 17 constructed the follow-
ing optimization problem with respect to the Maha-
lanobis norm.

min
A

∑
(xi,x j)∈S

∥xi−x j∥2
A

subject to: ∑
(xi,x j)∈D

∥xi−x j∥A ⩾ 1

Aર 0 (1)

Through solving this convex optimization,
Xing et al. 17 made use of the learned matrix A to
obtain the rescaling data instances for xi with A

1
2 xi.

d(x,y) = dA(x,y) = ∥x−y∥=
√

(x−y)tA(x−y)
(2)

When A is diagonal, the Equation (2) can be
transformed into the Euclidean distance. Xing et al.
17 computed the corresponding Equation (3) of this
optimization problem with Newton-Raphson tech-
nique.

g(A) = g(A11, . . . ,Add) =

∑
(xi,x j)∈S

∥xi−x j∥2
A− log( ∑

(xi,x j)∈D
∥xi−x j∥A) (3)

2.3. Clustering with Attribute-Level Side
Information

The attribute-level side information usually speci-
fies the relative importance of a pair of attributes.
In many applications, it is usually much easier to
obtain this kind of attribute-level order information
than the specification of the attribute weights. For
example, the attribute(feature) analysis technique is
broadly used in text mining, with the help of back-
ground information, important attribute(feature) can
be identified 25, such as terms in title are more im-
portant than others in the content.

Definition 2. Attribute Order Preferences P rep-
resents the set satisfying attribute order preferences
relationship, pi = (si, ti,δi) (i = 1,2, ⋅ ⋅ ⋅ ,m), P =
{pi}m

i=1.
Attribute Order Preferences represent the dif-

ference between the importances of two attributes.
(s, t,δ ) (δ > 0) means that attribute s is more im-
portant than attribute t. Meanwhile, (s, t,−ε) and
(t,s,−ε) (ε is a small positive constant) denotes that
attribute s is with a similar importance as t.

The research of utilizing this kind of side infor-
mation is still very limited. One recent attempt in
this direction was done by Sun et al. 33. They made
use of attribute order preferences to construct the
following optimization problem. Through an itera-
tive updating procedure similar to the EM algorithm,
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a satisfactory set of weights for attributes can be ob-
tained.

min
{w,ξ},{πc}k

c=1,{µc}k
c=1

1
n

k

∑
c=1

∑
xi∈πc

Dw(xi,µc)+

λ1 ∑
p∈P

ξp−λ2Ĥ(w)

s.t.
w ∈ ∆d

ws−wt ⩾ δ −ξp f or all p = (s, t,δ ) ∈P

ξp ⩾ 0 f or all p ∈P (4)

where ∆d = {w ∈ ℜd
+∣wt ⋅ 1d = 1}, ℜd

+ denotes the
set of nonnegative real number, and 1d = [1, ⋅ ⋅ ⋅ ,1︸ ︷︷ ︸

d

]t ,

ξ = [ξp] where p ∈P .
In the function, the first term is intra-cluster dis-

tortion of the clusters {πc}k
c=1, which is an objec-

tive clustering validation index, µc is a cluster rep-
resentative for each cluster πc; the second term re-
flects the penalty on the constraints of attribute or-
der preferences, which represents the attribute-level
subjective criteria; the third term is a regularization
term−Ĥ(w) which guarantees the consistence of at-
tribute weight.

3. Clustering with Combined Constraints

When both the attribute-level and the instance-level
side information are present, the challenge in metric
learning is how to utilize both of them into clustering
process. In this section, we propose a novel learning
framework which can incorporate both the pair-wise
constraints and the attribute order preferences. The
mathematical representation of the method are also
presented in this section.

3.1. Learning Framework

Our aim is to generate robust and stable solutions via
an optimization method considering instance-level
and attribute-level side information simultaneously.

In order to achieve this objective, we construct an
optimization problem like this,

minPinstance−level +λPattribute−level

where the first term, Pinstance−level denotes the
penalty term of instance-level constraints, the sec-
ond Pattribute−level denotes the penalty term of
attribute-level constraints, the less the value, the bet-
ter the satisfactory level. The parameter λ controls
the relative contributions from each kind of side in-
formation. Through minimizing the overall objec-
tive, we can obtain the optimal attribute weights
based on the constraints for clustering.

First, we follow the Xing’s method, and make A
as diagonal to simplify the distance function so that
both constraints can be incorporated easily. When A
is a diagonal matrix, A = diag(A11,A22, ⋅ ⋅ ⋅ ,Add) =
diag(w2

1, ⋅ ⋅ ⋅ ,w2
d), each item in the diagonal corre-

sponds to an attribute weight wi. Thus, the Maha-
lanobis distance between two data instances xi and
x j can be transformed into:

∥xi−x j∥2
A = (

√
(xi−x j)tA(xi−x j) )

2 =

wt ⋅Distance(xi,x j) ⋅w (5)

in which Distance(xi,x j) is a diagonal ma-
trix, the items in the diagonal correspond to the
x′ij = [x′i j1, ⋅ ⋅ ⋅ ,x′i jd ] one by one. We have x′ij =
diag(Distance(xi,x j)), and x′i jk = (xik − x jk)

2(1 ⩽
k ⩽ d). In this way, the instance-level side infor-
mation Pinstance−level can be defined as the following
optimization objective:

min
w

wt ⋅DistanceS ⋅w

s.t.
DistanceD ⋅w ⩾ 1,

w ⩾ 0 (6)

where,

DistanceS = ∑
(xi,x j)∈S

Distance(xi,x j)

DistanceD = diag( ∑
(xi,x j)∈D

Distance(xi,x j)
1
2 ).

DistanceD is a row vector composed with the diago-
nal items in matrix. The constraint DistanceD ⋅w ⩾
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1 is added to enforce that A will not collapse the
dataset into a single point 17.

For the attribute-level side information in the
form of attribute order preferences, we introduce a
shifted hinge function 32 in the penalty term as used
in Sun et al. 33: for p = (s, t,δ ) ∈P , the penalty
term for p is ξp = max(δ − (ws−wt),0).

Both the Pattribute−level and the Pinstance−level ob-
jectives can be combined together with the control
parameter λ , accordingly we can obtain the overall
constrained optimization problem:

min
w,ξ

wt ⋅DistanceS ⋅w+λ ∑
p∈P

ξp

s.t.
w ∈ ∆d

ws−wt ⩾ δ −ξp,∀p = (s, t,δ ) ∈P

ξp ⩾ 0,∀p = (s, t,δ ) ∈P

DistanceD ⋅w ⩾ 1 (7)

where ∆d = {w ∈ℜd
+∣wt ⋅1d = 1}, 1d = [1, ⋅ ⋅ ⋅ ,1︸ ︷︷ ︸

d

]t .

This is a linear constrained convex quadratic op-
timization 37, and it can be solved using many differ-
ent methods, such as active set method, wolfe algo-
rithm, Lemke algorithm, cutting plane method, etc.

3.2. Simplifying the Optimization

For the convenience of solving the optimization
problem in Equation (7) , in this section, we intro-
duce some mathematical transformations to simplify
the computation.

First, for the unification of variables in the opti-
mization problem, we set

Y = [w1, ⋅ ⋅ ⋅ ,wd ,ξ1, ⋅ ⋅ ⋅ ,ξm]
t

Furthermore, in order to transform the con-
straints ws −wt ⩾ δ −ξp to the form related with
Y, we define m auxiliary vectors a = ap(p ∈P),
which describes each attribute order preference in-
formation in the set P . For an arbitrary ap, we set
ap ⋅Yt = ws−wt + ξp, and ws−wt ⩾ δ −ξp trans-
forms into ap ⋅Yt ⩾ δp. So, it is easy to obtain one
1 ∗ (d + m) vector, ap with the binary value 0 or

1. For example, if a dataset has four attributes, and
m = 1 (the attribute preferences set P contains only
one preference), then a1 = [0,−1,1,0,1], a1 ⋅Y t ⩾ δ1
corresponds to w3−w2 ⩾ δ1−ξ1, this expresses that
the weight w3 for the 3rd attribute is expected to be
higher than the weight w2 for the 2nd attribute.

Using this representation, the original optimiza-
tion problem (7) can be simplified into a linear con-
strained convex quadratic optimization as follows:

min
Y

Yt ⋅Distance
′
S ⋅Y+λ ⋅A ⋅Y

s.t.
B ⋅Y = 1

Y ⩾ 0

DistanceD ⋅C ⋅Y ⩾ 1

a1 ⋅Y ⩾ δ1

...

am ⋅Y ⩾ δm (8)

Here, Distance
′
S=⎛⎜⎜⎜⎝

DistanceS 0 . . .0
0 . . . . . . . . . . . . . . .0
... . . . . . . . . . . . . . . .

...
0 . . . . . . . . . . . . . . .0

⎞⎟⎟⎟⎠
(d+m)×(d+m)

.
A=[0,0 ⋅ ⋅ ⋅ ,0︸ ︷︷ ︸

d

,1,1 ⋅ ⋅ ⋅ ,1︸ ︷︷ ︸
m

],

B=[1,1 ⋅ ⋅ ⋅ ,1︸ ︷︷ ︸
d

,0,0 ⋅ ⋅ ⋅ ,0︸ ︷︷ ︸
m

].

Ct= ⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ 1
1

. . . 1

⎞⎟⎠
d×d⎛⎝ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0

⎞⎠
m×d

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Through the mathematical transformations men-

tioned above, the original constrained optimization
problem can be transformed into a clear and sim-
ple linear constrained convex quadratic optimization
problem, which can be easily solved by a range of
methods.
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In addition, for high-dimensional datasets, the at-
tribute order preferences used in Sun et al.’s method
are usually very small. This makes that the penalty
of violating this constraint is tiny, which makes it
difficult to obtain the attribute weight through op-
timization effectively. (s, t,δ )(δ > 0) means that
attribute s is more important than t, the priority of
s is higher than t. Thus, we can enlarge the at-
tribute order preferences to make s more important
than t clearly. So, we add an appropriate param-
eter α (0 < α < 1) on each attribute order prefer-
ence. Then, attribute order preference (s, t,δ ) can
be enlarged to (s, t, δ

α
). For example, if α = 0.1

and δ = 0.01, it can be enlarged to δ

α
= 0.01

0.1 = 0.1,
and 0.1 means a large value to high-dimensional
datasets.

min
Y

Yt ⋅Distance′S ⋅Y+λ ⋅A ⋅Y

s.t.
B ⋅Y = 1

Y ⩾ 0

DistanceD ⋅C ⋅Y ⩾ 1

α ⋅a1 ⋅Y ⩾ δ1

...

α ⋅am ⋅Y ⩾ δm (9)

In this way, each attribute order preference can
be suitably enlarged by the same proportion. In the
experimental result shown in Section 4, we will an-
alyze it through comparative experiments.

3.3. Parameters Adjustment for λ

As the optimization objective function contains two
parts, when the value of either one is much bigger
than the other one, it is necessary to use the pa-
rameter λ to make sure that none of them will be
overwhelmed by the other. If the attribute-level part
Pattribute−level is relatively too small, a larger λ is ex-
pected. In theory, the larger the parameter λ is, the
better the attribute order preferences is respected.

A rough guideline of the choice of λ is usually
related with the value of DistanceS, which is usually

much larger than that of ξp. This in general will ren-
der the second part of the objective function ineffec-
tive. In order to incorporate two information effec-
tively, it is necessary for the magnitude of attribute
order information part is close to that of instance
level information part. In fact, it corresponds to the
scale of DistanceS. If the magnitude of attribute-
level part is the same as that of instance-level part,
each one can work well for our optimization. In this
paper, for the convenience of keeping the two items
same importance, we set λ = 1

n ∑
d
i=1 DistanceS(i),

which represents the average value of each dimen-
sions among the “must-link” points.

For example, we randomly select some pairwise
constraints and one attribute order preference, and
set different values for λ on the dataset Iris. The at-
tribute order preferences is (3, 2, 0.4844), viz. w3−
w2 ⩾ 0.4844, and 1

n ∑
d
i=1 DistanceS(i) = 0.6525. As

shown in Table 1, with λ increases, the penalty term
of attribute order preferences gradually decreases,
and the attribute order preference is extremely satis-
fied when λ = 1

n ∑
d
i=1 DistanceS(i) = 0.6525. How-

ever, too large value for λ is not appropriate be-
cause it may overwhelm the instance-level informa-
tion. We will show the influence of λ values on clus-
tering results in experimental results.

Table 1. Different values for λ on Iris
λ ξ

0 0.4844
0.1 0.2844
0.2 0.1815
0.3 0.0944
0.4 0.0072
0.5 8.35e-9

0.6525 1.00e-09
0.7 4.75e-10

3.4. The Main Algorithm

A large number of clustering algorithms heavily rely
on the distance measure over the data instance space.
Accordingly, a suitable distance defined for the ap-
plication domain, will be able to be used with most
clustering algorithms. The method presented in this
paper can be used with any clustering algorithm
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which requires a distance measure. In our experi-
ments, we use k-means clustering algorithm in order
to get a fair comparison with Xing et al.’s method.

With the input dataset X = {x1, ⋅ ⋅ ⋅ ,xn}, num-
ber of output clusters k, must-link constraints S ,
cannot-link constraints D , and attribute order prefer-
ences P , parameters λ , our main algorithm includes
the following steps:

1. Formulate the optimization problem accord-
ing to the Equation (9);

2. Solve the optimization to obtain the weights
w.

3. Rescale each point in original datasets with
learned attribute weights w.

4. Clustering datasets transformed with learned
attribute weights w.

As the MOSEK package∗ can work fast and ef-
fectively, we use it to solve the optimization prob-
lem with combination constraints in this paper. Time
complexity of our optimization solved by MOSEK
is O(

√
nlog(1/ε)) 38, and it costs only about 1 sec-

ond even on large dataset with lots of side informa-
tion.

4. Experimental Evaluation

In this section, we provide empirical evidence for
the validity of our method through a comprehensive
set of experiments. We first describe the datasets
used and experimental settings in section 4.1. Then
in section 4.2, we introduce the evaluation criteria in
this paper for assessing the algorithm performance.
Followed by the results comparisons in section 4.3,
we demonstrate the comparative performance of the
proposed method with k-means, Xing’s method 17

and MPCK-Means 15. For a fair comparison, we
randomly select initial centroids for MPCK-Means,
and make sure cluster centroids of the three methods
are the same.

4.1. Datasets and Experimental Setting

For performance evaluation, this paper used the
datasets drawn from UCI machine learning repos-
itory†. Table 2 summarizes the characteristics of
these datasets. As indicated in Table 2, these
datasets vary significantly in their sizes, number of
clusters, and number of attributes.

In the experiments, for the high dimensional
dataset Ionosphere and Spam, we set magnification
factor α = 0.1 (described as section 3.2).

In our experiment, for convenience, we gener-
ate simulated attribute order preferences by using
the ground truth class information similar as Sun et
al. 33. Firstly, calculating the within-class distortion
Θ j =

1
v j

∑
k
c=1 ∑xi in class c(xi j−µc j)

2 for each dimen-

sion 1 ⩽ j ⩽ d, where v j =
1
n ∑

n
i=1(xi j− 1

n ∑
n
i=1 xi j)

2,
then, calculating the inverse within-class distortion
Γ j =

∑l ∕= j Θl
Θ j

. After that, estimating the optimal fea-

ture weights by w̃ j =
Γ j

∑
d
l=1 Γl

, which is just a rough
estimate of the optimal attribute weighting.

Table 2. Dataset characteristics
Dataset #Examples(n) #Attribute(d) #Clusters(k)

Iris 150 4 3
Diabetes 768 8 2
Soybean 47 35 4

Wdbc 569 30 2
Spam 4601 57 2

Ionosphere 351 34 2
Protein 116 20 6
Balance 625 4 3

Based on the estimated attribute weight vector w̃,
the largest and smallest ⌊d

2⌋ attribute weight can be
obtained. For the attribute order, we select ⌊d

4⌋ pairs
with the largest δ values as the attribute level infor-
mation. For datasets Ionosphere and Soybean, there
are some column attributes whose value is all same,
this results in that we cannot generate attribute or-
der preferences with this method. For the dataset
Ionosphere, the attribute order preferences can be
obtained after deleting the second attribute; for the
dataset Soybean, after deleting 14 attributes with the
same value, we still need add one tiny positive real

∗http://www.mosek.com
†ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
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(such as 0.0001) for avoiding the 0 value of denom-
inator.

For the dataset Protein, one attribute may be
more important, which incur that the attribute order
preferences are related with it. Thus, we use another
method as the following. For the obtained attribute
weights, we select the attributes with the largest and
smallest weight as a pair, then delete them, continue
another pair for the final results.

4.2. Evaluation Criteria

The notion of cluster validation refers to the quan-
titative and objective evaluation of the output of a
clustering algorithm. Evaluating the quality of clus-
tering is a fundamental problem in unsupervised
learning. In the absence of prior information, it is
in general a difficult task, and there are usually three
different criteria: internal, relative, and external 39.

Typically, clustering results are evaluated using
the external indices for measuring how similar a
clustering is to another clustering, through assess-
ing the performance by matching cluster structure
to a predefined reference ground truth, such as Jac-
card, Rand, F-Measure, NMI, etc. Since we assess
the performance and validity of our algorithm with
Xing et al. 17, we use the same evaluation criteria as
in 17. Additionally, for more complete performance
evaluation, we use the normalized mutual informa-
tion (NMI) and pairwise F-Measure as other mea-
surements.

4.2.1. Rand Statistic (RS)

As a pair counting approach, rand statistic 40 mea-
sures the degree of correspondence between a pre-
specified structure and the clustering results to data
points X . Using a generalized 2×2 contingency ma-
trix, it judges the percentage of member pairs two
clustering have in common for performance evalua-
tion.

Let C = {c1, ⋅ ⋅ ⋅ ,cr} denote the clustering result
in the dataset X , P = {p1, ⋅ ⋅ ⋅ , pk} presents the clus-
ters. Then, referring to x ∈ X , y ∈ X , we have the
following terms.

∙ SS: If x ∈ ci, y ∈ ci, and x ∈ p j, y ∈ p j, then

(x,y) ∈ SS.
∙ SD: If x ∈ ci, y ∈ ci, and x ∈ p j, y ∈ pt(t ∕= j), then
(x,y) ∈ SD.

∙ DS: If x ∈ ci, y ∈ ct(t ∕= i), and x ∈ p j, y ∈ p j, then
(x,y) ∈ DS.

∙ DD: If x ∈ ci, y ∈ ct(t ∕= i), and x ∈ p j, y ∈ ps(s ∕=
j), then (x,y) ∈ DD.

Let a, b, c, d refer to number in the set SS, SD,
DS, DD, and M = n ⋅ (n−1)/2, we can define the
clustering accuracy as:

R = (a+d)/M

This describes the fraction of the total number of
pairs members that occur in the same cluster in both
clusterings and the number of pairs of members that
don’t occur in the same cluster in either clusterings
compared to the total number of pairs 41.

4.2.2. Normalized Mutual Information (NMI)

Different from the pair method, normalized mutual
information is one kind of measure based on infor-
mation entropy and is utilized in many researches
42,43,44,45.

NMI(C ,B) =
I(C ;B)√

H(C )H(B)
=

∑
k
i=1 ∑

k
j=1 ni jlog n⋅ni j

ni⋅n′j√
∑

k
i=1 nilog ni

n ∑
k
j=1 n′jlog

n′j
n

Here, H presents the entropy, and I computes the
mutual information. C presents the clustering re-
sults after applying our approach to X , and B de-
notes the pre-specified structure. The number of
items in C and B are both k. We use ni to express
the object number in the ith cluster, n′j denotes the
one in the jth cluster. ni j denotes the item number
included in ith and jth cluster.

4.2.3. Pairwise F-Measure

F-measure derived from the traditional information
retrieval, and utilized same-cluster pairs to evaluate
clustering quality:
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Precision=
PairsCorrectlyPredictedInSameCluster

TotalPairsPredictedInSameCluster

Recall =
PairsCorrectlyPredictedInSameCluster

TotalPairsInSameCluster

F−Measure =
2×Precision×Recall

Precision+Recall

4.3. Results Comparison

We compare the proposed clustering framework
with the methods proposed in Xing et al. 17 and
MPCK-Means 15. The involved optimization prob-
lems in this paper and Xing’s work 17 are solved by
the Matlab MOSEK optimization toolbox.

4.3.1. Clustering Accuracy Comparison

For each the dataset, the same largest ⌊d
4⌋ weight at-

tribute order pairs, together with a set of randomly
selected pair-wise constraints (5% must-link con-
straints and 6% cannot-link constraints ‡) are pro-
vided into each metric learning algorithm for the
instance-level information and the attribute level in-
formation. In order to get a fair comparison, we
run each algorithm 10 times, and the average mea-
sures from these 10 runs are recorded for compara-
tive analysis. Fig.1, Fig.2 and Fig.3 show the result
comparisons on the rand statistic (RS), the normal-
ized mutual information (NMI) indexes and pairwise
F-measure respectively.
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Fig. 1. The result comparison of RS

Clearly, our clustering method with instance-
level and attribute-level side information are capa-
ble of achieving superior accuracy results with re-
spect to the Xing’s and Bilenko’s methods on all the
tested datasets. For the dataset Balance, because the
attribute level information is [0.25,0.25,0.25,0.25],
which means that all attributes are equally impor-
tant, this actually renders the attribute-level informa-
tion ineffective, and means that no improvement can
be achieved by the metric learning algorithms over
the regular k-means algorithm.
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Fig. 2. The result comparison of NMI
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Fig. 3. The result comparison of F-Measure

Then, we also report the t-test evaluation for as-
sessing the robustness of our method through mea-
suring the statistical significance of these results.
Usually, when the value is lower than 0.05, we can
conclude with 95% confidence that the two methods

‡This means in a dataset of 100 points, we used only 5 must-link and 6 cannot-link constraints
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are statistically different in performance. Table 3 -
Table 5 present the paired t-test results respectively
under RS index, NMI and F-Measure. It is obvi-
ous that in almost all cases §, the improvement over
Xings’ method and MPCK-means is significant.

Also, we obtain the statistical analysis result with
80 records (10 tests in each datasets) as Table 6.
This indicates that the improvement of our method
is significant over the k-means and the Xing’s and
Bilenko’s methods.

Table 3. t-test under RS index

Our approach k-means k-means-Xing MPCK-means
Iris 5.5166e-004 0.3514 0.0055

Diabetes 5.6334e-035 0.0038 1.9713e-013
Soybean 0.0055 0.0200 0.0037

Wdbc 3.7363e-022 0.0048 9.2679e-009
Spam 2.2432e-005 4.3680e-005 0.0458

Ionosphere 9.7811e-008 0.0081 2.6172e-006
Protein 0.1584 0.0333 0.0389
Balance 0.6197 0.5973 0.0324

Table 4. t-test under NMI

Our approach k-means k-means-Xing MPCK-means
Iris 9.2492e-005 0.4074 0.0325

Diabetes 3.5817e-028 0.0189 1.5387e-012
Soybean 4.7518e-004 6.7157e-004 4.9228e-004

Wdbc 2.8513e-016 0.0238 6.0432e-009
Spam 1.0554e-006 2.6554e-004 0.0081

Ionosphere 7.6949e-012 0.0033 2.8673e-009
Protein 0.1152 0.0189 0.0075
Balance 0.9337 0.9469 0.0011

Table 5. t-test under F-measure

Our approach k-means k-means-Xing MPCK-means
Iris 1.0031e-004 0.3653 0.0064

Diabetes 2.6989e-011 7.1729e-004 2.1465e-014
Soybean 0.0016 0.0074 0.0015

Wdbc 3.4647e-020 0.0051 1.0708e-008
Spam 0.8672 0.0669 0.4960

Ionosphere 2.0308e-015 0.0038 1.0273e-012
Protein 0.1539 0.0113 0.0041
Balance 0.4138 0.7807 0.0753

Table 6. t-test with 80 records

Our approach k-means k-means-Xing MPCK-means
RS 3.6329e-014 5.7858e-008 3.8536e-007

NMI 1.2980e-012 4.2926e-009 3.5164e-008
F-measure 2.4974e-007 8.3019e-006 1.1448e-010

4.3.2. Clustering Accuracy versus Constraints

Fig.4 - Fig.7 show the effect of the size of pair-wise
constraints on the quality of clustering on four UCI
datasets (Diabet, Wdbc, Ionosphere and Protein).
Most of these datasets are selected as “difficult-to-
cluster” by Halkidi 19.
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Fig. 4. Clustering accuracy versus constraints on Diabet
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Fig. 5. Clustering accuracy versus constraints on Wdbc

§except the Balance data set, on which the attribute-level information does not work effectively
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Fig. 6. Clustering accuracy versus constraints on Iono-
sphere
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Fig. 7. Clustering accuracy versus constraints on Protein

The curves corresponding to k-means-Xing,
MPCK-means and our approach have slightly dif-
ferent variations. We observe that our approach sys-
tematically leads to improvement in clustering qual-
ity and fast converge even in cases where few pair-
wise constraints are used. For the Wdbc dataset,
our clustering algorithm can obtain an abrupt ini-
tial increase up using only 5% of the data points
as constraints, while Xing’s method and MPCK-
means cannot obtain this accuracy even with 50%
constraints. In the dataset Diabetes and Ionosphere,
our method can obtain a better convergent result
than the others. Especially for the dataset Diabetes,
our method can obtain 61.369% accuracy only with
1% constraints, whereas additional constraints im-
prove the clustering accuracy only insubstantially.
A possible explanation for this is the distribution of
the underlying data. In addition, our method can

steadily increase clustering quality with more and
more constraints, while Xing’s method decreases on
Ionosphere dataset and MPCK-means decreases on
Protein dataset. Table 7 also prove robustness of
our method. The decrease of Xing’s method and
MPCK-means is mainly due to low coherence of
pairwise constraints 7, while our method can still ef-
fectively work by attribute order preferences.

Based on above analysis, we can conclude with
empirical evidence that our learning approach sig-
nificantly outperforms Xing’s method and MPCK-
means, which can only utilize the instance level in-
formation.

Table 7. t-test on the four difficult datasets with all trial results

Our approach k-means-Xing MPCK-means
Diabetes 0.0233 0.0045

Wdbc 0.0116 0.0194
Ionosphere 2.2745e-004 1.0716e-004

Protein 0.0014 0.0028

4.3.3. The Ratio between Must-link and
Cannot-link

Setting a proper ratio between must-link and cannot-
link is one problems which is usually considered
in utilizing metric learning, however, most of exist-
ing work didn’t consider this ratio 5,12,15,17 except
Halkidi 19.

Fig.8 shows clustering results with 10% ran-
domly selected must-link or cannot-link constraints
without setting a ratio between must-link and
cannot-link.

From the Figure, it can be seen that the perfor-
mance of our method is in general better than Xing’s
method and MPCK-means on most of datasets.

In the other part of this paper, for the conve-
nience of comparison, we use 5% must-link and 6%
cannot-link according to the paper 19.
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Fig. 8. Clustering results with 10% randomly selected con-
straints (This means in a dataset of 100 points, we randomly
select 10 constraints without setting ratio between must-link
and cannot-link)

4.3.4. Setting the Parameter λ

As shown in Fig.9, clustering quality improves with
λ value increases provided that λ value is not very
large. When λ value is too large, the weight of
attribute-level information becomes too large com-
paring to instance-level information. It may over-
whelm instance-level information and have negative
on clustering result. For example, according to Fig.9
and Table 8, Iris and Ionosphere can get best re-
sult when λ = 1

n ∑
d
i=1 DistanceS(i), and clustering

quality decreases with larger λ value. Although the
result is not perfect on some datasets, it is appro-
priate to set λ = 1

n ∑
d
i=1 DistanceS(i) on the whole

datasets, so as to avoid exhaustedly searching appro-
priate value for λ and treat both kinds of information
as equally as possible.

Table 8. set 1
n ∑

d
i=1 DistanceS(i) for λ

Dataset λ value clustering result (RS)
Iris 2.3075 0.9432

Diabetes 8.9921e+004 0.6123
Wdbc 1.4823e+005 0.8606

Soybean 0.8095 0.9187
Spam 3.1683e+006 0.5477

Protein 72.0500 0.7535
Ionosphere 8.0863 0.6732

Balance 86 0.5829
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4.3.5. Time Complexity Evaluation

According to Equation (7), the efficiency of
MOSEK toolbox is independent of numbers of pair-
wise constraints, and may be affected by dimension
of w (the dimension of dataset) and number of at-
tribute order preferences. Thus, we have experi-
ments for the two potential factors. As shown in
Fig.10 and Fig.11, time complexity of our optimiza-
tion is very low, close to 1 second. This demon-
strates that the two factors have no influences on
time complexity in our optimization process.
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Fig. 10. Time Complexity of our optimization versus di-
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Fig. 11. Time Complexity of our optimization versus num-
ber of attribute order preferences

5. Conclusions

In this paper, we have studied the problem of im-
proving data clustering by using both instance and
attribute level side information. Up to our knowl-
edge, this is one of the first attempt to systematically
incorporate these two kinds of side information to-
gether in the unsupervised learning context. A gen-
eral learning framework simultaneously combining
these two kinds of information, in the form of pair-
wise constraints and the attribute order preferences
respectively, has been proposed to learn a new dis-
tance metric. The problem is then transformed into
an optimization task which can be solved by a wide
range of existing mathematical methods. Addition-
ally, we have analyzed the detail factors in learn-

ing framework and the parameter setting for better
performance. Experimental results show that our
method can work effectively and significantly has
improved the clustering performance compared with
algorithms using the pair-wise constraints only.

In the future, we plan to incorporate the objec-
tive criterion to further improve the cluster quality,
and apply our method to some specific applications.
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