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Abstract. We establish a converse comparison theorem for backward stochastic differential
equations(BSDEs). Under some weaker assumptions, we prove that we can compare the generators if
we can compare the solutions of two BSDEs (at time t =0) with the same terminal condition.

Introduction

Backward stochastic differential equations(BSDES) have been first introduced by Pardoux and
Peng [6]. In this paper, they proved that there existed a unique, adapted and square integrable solution
to a BSDE of type

T T
Yi :§+J.t g(s, ys’zs)ds_J.t z.dW,, 0<t<T (1)

Providing that the generator was lipshitz in both variables ¥ and Z , and that S and

(9(5.0.0))scpory are square integrable. The comparison theorem, which is an important theory of
BSDE, was established by Peng [7] and then generalized by El Karoui et al.[4]. It allows to compare
the solutions of two real-valued BSDEs whenever we can compare the terminal conditions and the
generators. In this note, we try to investigate a converse problem: If we can compare the solutions of

two BSDEs (at time t=0)with the same terminal condition, for all terminal conditions, can we
compare the generators?
Chen [2], Briand et al.[1] and Coquet et al.[3] work on this subject and established some converse

comparison theorems. In their papers, the authors all assumed that 9(5,¥.0)=0 The condition is so
strong that many generators do not satisfy it. So Jiang[5] generalized their results under some natural

and reasonable assumptions about generator 9 But it needs that we can compare the solutions of two
real-valued BSDEs at any time. It seems to be strong.
In this note, under some weaker assumptions, we prove that we can compare the generators if we

can compare the solutions of two BSDEs (at timet = 0) with the same terminal condition.

Preliminaries

Before giving the main results, let us introduce some notations and assumptions.
Let (Q,F,P) be a probability space carrying a standard d-dimensional Brownian motion, (W,),.,.

starting fromW, =0, and let (F,),., be the o -algebra generated by (W,),.,. We do the usual P

augmentation to each F, such that (F,)., is right continuous and complete. If z belong to R?,
|| z ||denotes its Euclidean norm. We define the following usual spaces of processes:
S, ={¢ progressivelymeasurable: ||¢ ||§2: E[SUPy.ier | 4 7] < o0}

H,(R") ={¢ progressivelymeasurable: ||¢||>= E[IOTM | dt] < oo}
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Let the generator g of a BSDE be a function g:Qx[0,T]xRxR® — R such that the process
(9(t, Y, 2))1qor; is progressively measurable for each(y,z) e Rx R?. For the function g, we make

the following assumptions:
(A1) There exists a constant K >0, such that

19t Y1, 2) -9t Y., ) ISK( Y =Y, [+]2 -2, ) P-as. Vt,y,Y,.2,7,;
(A2) The process(g(t,0,0)),41; € H,(R);

(A3) P-as., V(y,z2)eRxR?, t—g(t,y,z) isright continuous in t €[0,T] and left continuous
inT.

Lemma 2.1 (Pardoux and Peng[6]) Let g satisfy (Al) and (A2), then the BSDE (1) has a unique
solution which is a pair of adapted processes (y,(T,9,¢),z,(T,9,£))qoriN S, x H,R".

In the following, we often denote (y,(T,9,£), (T, 9,&))iqor; BY (Vir Z)iqor; TOr cOnvenience.

Lemma 2.2 (Comparison theorem) Let g,g" satisfy (A1) and (A2). y;,y"; € ’(Q,F,P). (y,2)
and (y',z") respectively are the unique adapted solutions of the following two BSDEs:

T T
Yo =Yr +J't sll(S,ys,Zs)ds—jt z.dW,, 0<t<T

y't=y'T+J'tTg'(s,y's,z's)ds—fz'SdWS, 0<t<T
@Iy, 2y5,0(y52)29'(s,y,z') as., thenwe have y, >y’ ;
(2) Furthermore, y,=y', < y; 2y5,09(s,¥',2'.)=g'(s,y's,z',).
Lemma 2.3 Let g satisfy (A1) and (A2), 0<t<s<T and £eL’*(QF,P),then
1) .(9,8,¥,(9.T.£)) = v, (9. T, )
) y(9.7,y.(9.T. &) =y,(9.T. &) as., if t[0,7].

Main results

Theorem 3.1 Let two generators g, and g, satisfy (Al),(A2), and (A3), Then the following two
conditions are equivalent:

(i) Forany re[0,T], £eLl?(RF,,P) wehave y,(9,,r.&)=Y,(9,.1,&);

(i) For any triplet, we have g,(t,y,z)=0,(t,y,z) P-as.

Proof. It is obvious that (ii) = (i), so we only need to prove that (i) = (ii).

If we write y,(g,,r,&) as the initial value of the solution of a BSDE, then

Yo(9u, 1 &) =Yy =&+ [ 0,(s,Y,, Z,)ds [ z,W,
where (Y,,Z,) is the unique adapted solutions of the BSDE.
According to the Lemma 2.3 and the assumption (i), forany 0<r <s<T, we get
yO(gl’S’é:) = yo(gp r, yr(gvslf))
= yo(gzi ry, (gll S, 5))

=&+ I g,(t,Y,, Z,)dt ‘f Z,dw, + Iof 9,(t,Y,, Z,)dt _Ior 2w
=&+ [0,y Z)dt—[ Z,aW, +[ g, .Y, Z)dt - g,(t.Y, Z)et
= &+ [ (0, (1Y, Z) ~ 0,6 Y, Z))dt+ [ 9y (1Y, Z)dlt - [ Z,dw,

= yo(g1! S, § + IO (gz(tlYt ’ Zt) - gl(tlYt ’ Zt))dt)
Thus from the Comparison theorem we have
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£=¢+[ (0,(6Y,,2) - 0,(LY,, Z)d)
So
[ (9,(t.Y,2)-0,(t.Y, Z))dt =0
By the arbitrariness of r and continuity of g in t, we have g,(,Y,,Z,)=0,(tY,Z),
V(t,Y,Z) €[0,T]xRxR". Thus we complete the proof of Theorem.
Remark 3.1 In the above theorem, we needn't to assume g(t,0,0)zO. So, our assumptions

are more natural and reasonable than that of [5].
For a given stopping time, we now consider the following BSDE

Vo=&+[ o(st.z)ds=[ zdw,,  7<T @)

Remark 3.2 By the result of [8], the Lemma 2.2 still hold true if we consider the above
equation(2).
Theorem 3.2 Let two generators g, and g, satisfy (Al), (A2) and (A3). Then the following

two conditions are equivalent:
(i) For each stopping time <T, &el’*(QF,, P) wehave y (9,,7,£) =Y,(9,.7,£);

(ii) For any triplet v (t,y,z) [0, T]xRxR", we have g,(t,y,2) = g,(t, y,z) P-as.

Proof. It is obvious that (ii) = (i), so we only need to prove that (i) = (ii).
If we write y,(9,,7,&)as the initial value of the solution of a BSDE, then

Yo(0: 7. &) =Yy =&+ [ 0,(s, Y., Z,)ds—[ Z,dw,
According to the Lemma 2.3 and the assumption (i), forany 0<z <s<T , we get
Y0(91:8,6) = ¥o(91,7.Y.(9,,8,5))
=Y,(9,,7,Y.(9,,8,¢))

=&+ 0,6V, Z)dt [ Z,awW, +[ g, Y, Z)dt—[ Z,dw,
=§+J.OS gl(t’Y’['Zt)dt_J-osztth —|—J.Org2(t,Yt,Zt)dt_J.OT gl(t'Yt’Z'[)dt
=&+ [(0,(t Y, Z) - 0,(LYo Z))dt + [ 0,4 Y, Z)dt - Z,dw,

= ¥o(0,8, &+ (9,(tY,,2) - 0,(t.Y,,Z)))dt)
Thus from the Comparison theorem we have
E=&+ (9,(tY,Z) -9, Y,, Z))dt)
So
J, (@.(tY, Z)~g,(t.Y,.Z))dt =0
By the arbitrariness of 7 and continuity of g in t, we have g,(t,Y,,Z,)=09,tY,.Z,) ,
V(t,Y,Z) €[0,T]xRxR". Thus we complete the proof of Theorem.
Counterexample Let us define generators g, =y sin t and g,=0. Then g,,9, satisfy
assumptions (A1),(A2) and (A3). Let (Y,',Z!)(i=1,2) be the unique adapted solution of equation
Y =&+ (rY Z)dr [ Zldw,

Applying It’s formula to YtleIOSinrdr ,\We can get
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t t
sinrdr sinrdr sinrdr
0

d (Yﬁefo )= e dy;! +Yt1defos‘””” _eh Zdw,
integrate over the interval [0, s], then by taking expectation we conclude that

S o
sinrdr

Vi = eb e e L]

yo(gza 5,5) :Y02 = E[é] < el_COSSE[g] :Yol = yo(gl’sié)
But the inequality g, > g, does not hold.
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