

A Realization of RS Code Encoding and Decoding in Software

Chenglin Miao a, Tong Li b, Xiaoling Wang , Huiming Wu
Department of Information Engineering, Academy of Armored Forces Engineering, AAFE Beijing,

China
a13601187076@163.com,b644392162@qq.com

Keywords: RS code, Encoding, Decoding.

Abstract. The RS code is a kind of nor binary BCH codes, and it has strong capability of error
correcting, which can correct not only random errors but also burst errors. Therefore, RS code may be
widely used in modern communications systems. With the rapid development of software defined
radio technology, encoding and decoding of RS code are implemented in common hardware platform.
Generally speaking, the simulation experiment is based on FPGA (field programmable gate array)
using VHDL-language or Verilog-language; in other ways it is based on DSP (digital signal
processor) using C-language or assembly language. This paper will introduce the basic computation
rules of RS codes firstly, and next will explain encoding and decoding process and its MATLAB
simulation experiment. At last, we design a system of RS code and this paper will demonstrate the
result of system in MATLAB software.

Introduction

The RS code is a kind of linear block codes, and it owns clearly coding efficiency and strong
capability of error correcting. It can correct (n-k)/2 random error and (n-k)/2 burst errors. Compared
to cyclic code, BCH code and other linear block codes, RS code has the strongest capability of error
correcting. Although some semiconductor companies have produced dedicated chips for RS code
encoding and decoding, these chips are too expensive. With accomplishing encoding and decoding in
software method, on the basis of assuring calculating accuracy, the method can reduce cost
efficiently.

Important Properties of RS code
In theory of RS code, the concept of domain is very important, which is called Galois field or finite
field and is shorted as GF. As to 4)(2GF , there are 2m elements which are shown as 0 1 13 140, , ,α α α α⋅⋅⋅ ,
where α is the root of primitive polynomial and the last sign 1qα − is 1. We operate all computation
rules about RS codes in Galois field including GF plus, multiplication, division and comparing
operation. For example, when m=4, its primitive polynomial is 4() 1p x x x= + + . Because α is the root
of p(x), so 4 1 0α α+ + = that is 4 1α α= + in other words. As shown in Table 1, every sign
in 4)(2GF ,which is 0 1 13 140, , ,α α α α⋅⋅⋅ , express 0,1,2,4,8,3,6,12,11,5,10,7,14,15,13,9,1 in decimal value.

The primitive polynomial is important for us to obtain all elements in Galois field. As to how to
know primitive polynomial, it is pure mathematical problem. Now, corresponding relation of the
order of Galois field and primitive polynomial can be shown in Table [1].

Table 1 some relation of Galois field
Element Evaluation Binary value Decimal value

0α 1 0001 1
1α 1α 0010 2
2α 2α 0100 4

… … … …
13α 3 2 1α α+ + 1101 13

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

© 2015. The authors - Published by Atlantis Press 808

14α
3 1α + 1001 9

The principle of RS code encoding
Before we study the circuit of encoding, the multiplier and divider should be introduced. The
encoding circuit’s basic structure is based on multiplier and divider.

Multiplier and divider. We define two polynomials, where
1

1 1 0() k k
k kA x a x a x a x a−

−= + + +
1

1 1 0() k k
k kB x b x b x b x b−

−= + + +
The following flow chart is about () ()A x B x . The process of a multiplier is shown in Fig. 1.

INPUT

OUTPUT

0N
1N 2N 1rN − rN

0 1, , ka a a⋅ ⋅⋅
Fig. 1 The process of a multiplier

Step 1: We should initialize registers.
Step 2: When we firstly input ka , which is the coefficient of the highest order of ()A x , into the

multiplier system. And registers are assigned values of 0 1, ,k k k ra b a b a b , and the multiplier system’s
output is ka .

Step 3: The second coefficient 1ka − is transmitted into the system, and the value of the m register
adds with 1k ma b− , while the result is sent to the next register. The value of the m register is updated by
the last one. The multiplier system’s output is 1 1k r k ra b a b− −+ .

Step 4: According to the steps above, the processes are repeated until the multiplier system output
constant term after right shifting k+r+1 character.

The following flow chart is about () / ()A x B x . The process of a divider is shown in Fig. 2.

0 1, , , ka a a⋅ ⋅ ⋅

0b 1b 2b 1rb −
1

rb −

Fig. 2 The process of a divider

Step 1: At the beginning of the operation, we should reset all registers. The coefficient of the
highest order of ()A x is firstly sent into the most left register in divider system. After shifting r
characters to right, 1 to 2t registers are assigned respectively by 1 2 1, , , ,k r k r k ka a a a− + − + + .

Step 2: When the input data shifts r+1 character to right, the divider system outputs 1
k ra b− , which is

the first coefficient k rx − , at the same time, 1
k ra b− is transmitted into registers behind.

Step 3: According to the above steps, the processes are repeated until the divider system right shift
k character. And the value of registers is the remainder.

The process of multiplier and divider combine the two processes above. The following flow chart
is about () () / ()A x D x B x , which is shown as Fig. 3.

RS code encoding. According to multiplier and divider that we design above, we design a circuit
of RS codes encoding. This paper denotes input data g(x) =g2tx2t+ g2t-1x2t-1+…+ g1x+g0 (g2t=1), m(x)
xn-k=mkxn-1+ mk-1xn-2+ mkxn-1+…+ m1xn-k+ 0xn-k-1+…+0 xs+0. And the output of m(x) xn-k/ g(x) is
just the result of encoding. The circuit about m(x) xn-k/ g(x) can be designed through multiplier and
divider.

809

In practical application, m(x) xn-k is always stored in registers in order to decrease calculated
amount. If so, all the process only need to carry out division and right shift n times.

INPUT

0d 1d 2d 1rd −
rd

0 1, , ka a a⋅ ⋅⋅

0N 1N 2N 1rN −
1

rN −

Fig. 3 The process of a multiplier and divider

The principle of RS code decoding
The process of decoding of RS code is the process that is to find the transmitted codes c(x) from the
received codes r(x). And some errors may have been mixed into r(x) because of disturbance and
others. We called these errors error pattern and denoted them as E(x).

Step 1. Figure out adjoint polynomial. Figure out adjoint polynomial Sj using received r(x) as
codes. As we all know, there are equations that reveal basic rules about generated matrix S and test
matrix H and received vector R.

1 2
1 1

22 1 2 2
2

1
2 1 2 2 2

0 2

1
1() ()

() () 1

n n
n

n n
T T

t n t n t
t

c saa a
saa a

S HR
c
c sa a a

− −
−

− −

− −

     
     
     = = =
     
     
      





   



1 2

22 1 2 2

2 1 2 2 2

1
1() ()

() () 1

n n

n n

t n t n t

aa a
aa a

H

a a a

− −

− −

− −

 
 
 =
 
 
  





   



 TS RH=

Where 1 2
1 2 1 0() n n

n nR x c x c x c x c− −
− −= + + + + .

x α= , 2x α= … 2tx α= are respectively plugged in ()R x to get the result of 1S , 2S … 2tS .And we’ll
use that to get 2 2(), (), , ()T tS RH R R Rα α α = =  

or ()j

jS R α= which can be expressed as.
Step 2. Figure out the error position polynomial. We define

1 2

1
1 1 01

() (1)(1) (1)

(1)

v
v

v v
l v vl

x X x X x X x

X x x x x−
−=

Λ = − − −

= Π − = Λ + Λ + + Λ + Λ





Where 1 21 / ,1 / , 1 / vX X X are roots of formula above and 1 2, , vX X X is the error position of
expression.

In this case, through establishing 2t simultaneous equations, 2t roots of them can be obtained.
These coefficients can be used to formΛ , and then we can figure out ()xΛ using adjoin polynomial S
quickly and easily, by applying Berlekamp-Massey algorithm to the problem. The algorithm is
implemented according to the three following steps:

Firstly, we initialize
1 1

0 0 1

() 1, (1) 0, 1
() 1, (0) 0,

x D d
x D d s

− −Λ = − = =
Λ = = =

We define that jd is the interval between line j+1 and line j, and ()D j is the order of ()j xΛ .

810

Secondly, according to
()

1 1
1

()
i x

j j j i i
i

d s s x
∂+Λ

+ + −
=

= + Λ∑ , jd is calculated. If 0jd = ,

then * *
1() (), (1) ()j jx x D j D j+Λ = Λ + = . And iteration goes on while 1jd + need to be calculated.

If 0jd ≠ , we should get line i ahead of line j so that - ()i D i is maximum in all lines ahead of line j.
According to 1 ()

1() () ()j i i
j j j ix x d d x x− −
+Λ = Λ − Λ , 1()j x+Λ is figured out.

Thirdly, we calculate 1jd + and repeat the second step. Through 2t iteration, 2 ()t xΛ can be figured
out, and 2 ()t xΛ is just a result that needs to be evaluated.

Step 3. Figure out the root of error position polynomial. As we all know, roots of error position
polynomials are the error positions. A method, which is called Chien search, can help us solve this
problem effectively. For example, by Chien search, we test whether error exists in x0 or not, and

01 / (1)n nx α α α= = = is plugged into ()xΛ formula, if the result is zero, we conclude that error exists
in x0, otherwise, it is right. The next process is to be implemented as the same way. 1 2, ,n nα α α− −  is
respectively plugged into ()xΛ to test 1 2 1, , nx x x − .

Step4. Figure out the error pattern. We have defined adjoint polynomial
2 2 1

1 2 3 2() t
tS x s s x s x s x −= + + + +3

And error position polynomial
1

1 1 01
() (1)

v
v v

l v vl
x X x x x x−

−=
Λ = Π − = Λ + Λ + + Λ + Λ

And we know 0 1Λ = , if 1
lx X −= then () 0xΛ = . A polynomial is used to calculate the value of error,

which is expressed as 2() () ()(mod)tx S x x xΩ = Λ . According to Forney’s algorithm, the effect of
computing modulo 2tx is to discard all terms of degree 2t or higher. Therefore, we can get the error
pattern expression of eik.

1

1

()
'()

k
ik

k

Xe
X

−

−

Ω
= −

Λ
 Where '()xΛ is the derivative of ()xΛ .

The final step is to add ()xΛ with the received codes on error position in Galois field, and the sum
is the result of decoding.

The result of simulation experiment and summary
We choose (31, 25) RS code as example to implement the whole simulation process of encoding and
decoding. Its primitive polynomial is 5 2 1x x+ + , which is obtained by look-up table or by using
directives of rsgenpoly on MATLAB, and its signs take from 5(2)GF with m=5.

The system is shown as Fig. 4.

811

Fig. 4 The RS code encoder and decoder system

From the simulation experiment, we can conclude that the result of decoder is accurate by
comparing decoding output characters and input characters. Of course, the number of error cannot
more than 3, for the capability of error correcting is (n-k)/2 as to (n, k) RS.

According to the function of Profile Summary in MATLAB, we can analyze that there are 123
additions and 120 multiplications in whole process. It costs about 0.169s, so the system is successful
to improve operation performance.

References
[1] C.E Shannon. A Mathematical Theory of Communication [J]. The Bell System Technical
Journal, 27: p. 379-423(part I), p. 623-656(part II), Jul, Oct.1948.

[2] W. J. Gross, F. R. Kschischang, R. Koetter, P. G. Gulak. Simulation Results for Algebraic
Soft-Decision Decoding of Reed-Solomon Codes [J]. Proc. of the 21st Biennial Symposium on
Common. Kingston: p. 356-360, Jun. 2002.

[3] Y. WU, R. Koetter, C. Hadjicostic. Soft-decision list decoding of Reed-Solomon codes [J]. IEEE
Common. Lett, 24(3): p. 481-490, Mar. 2006.

[4] Zhang Yong-guang, Lou Cai-yi. Channel coding and recognition technology [M]. Beijing:
Publishing House of Electronics Industry, 2010.

[5] V. Guruswami, M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-Geometry Codes
[J]. IEEE Trans. Inform. Theory, 45(6): p. 1757-1767, Sep. 1999.

[6] Error Correction Method for Reed-Solomon Decoding. US485-09 9-A. p. 258-261.

812

