
Sparse Unmixing using an approximate L0 Regularization 
Yang Guo1,a, Tai Gao1,b, Chengzhi Deng2,c , Shengqian Wang2,d and JianPing 

Xiao1,e 
1 School of Jiangxi Science & Technology Normal University, Nanchang Jiangxi Province, china 

2 School of Nanchang Institute of Technology, Nanchang Jiangxi Province, china 
aaccuracygy@gmail.com, b 765739247@qq.com, cdengchengzhi@126.com,  

dsqwang113@263.net, exiaojianping89@163.com 

Keywords: Sparse unmixing, approximate sparsity, the linear mixture model, and approximate 
sparsity regularizer 

Abstract. Recently, sparse unmixing focuses on finding an optimal subset of spectral signatures in a 
large spectral spetral library. In most previous work concerned with the sparse unmixing, the linear 
mixture model has been widely used to determine and quantify the abundance of materials in mixed 
piexels[1]. In this paper, we propose a new sparse unmxing method based on an approximate 
sparsity regularization model[2]. The approximate sparsity regularizer is much easier to solve than 
the L0 regularizer and has stronger sparsity than the L1 regularizer. What’s more, a variable 
splitting and augmented Lagrangian methods introduced in to solve the proposed problem. Our 
numerical results on sparse unmixing illustration the efficiency of approximate sparsity a under the 
SUnSAL algorithm framework, compared to the L1 norm. 

Introduction  
Spectral unmixing is an effectively way to hyperspectral date analysis. To deal this problem, the 
spectral unmixing technique was proposed, which estimates the fractional signatures of pure 
spectral signatures in each mixed pixel. Based on the relationship of photons interact with material, 
mixed pixel model can be divided into two basic models: the linear mixture model and the nonlinear 
mixture model[3]. As the linear mixture model is ease of implementation and flexibility, It’s has 
been widely used into many different applications. 
  In this paper, we proposed a novel compound regularization based hyperspectral unmixing 
method, which exploits the approximate sparsity. The approximate sparsity L0 regularized, which 
provides much easier to solve than L0 regularized, and better sparsity than L1 regularized. 
Experimental results also show that the proposed method can effectively improve the SRE of 
hyperspectral unmixing. 

Sparse unmixing 
Linear mixture model  
The linear mixture model assumes minimal secondary reflections and multiple scattering effects in 
the data collection procedure, and hence the measured spectra can be expressed as a linear 
combination of the spectral signatures of materials present in the mixed pixel. The LMM can be 
formulated as follows: 

,y M nα= +                                   (1) 
where y is a L 1×  column vector of observed hyperspectral pixel, L is the number of the spectral 
bands, M is an L q×  matrix standing for the q endmembers, α  is a  q 1×  abundance vector, n 
represents a L 1×  vector of error and noise. There are two constraints are widely used in the linear 
mixture model: the abundance non-negativity and abundance sum-to-one, as follows: 

0α ≥ ，                                     (2) 
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Sparse Unmixing 
The idea of Sparse unmixing is to find a linear combination of endmembers for each observed pixel 
from a large spectral library. Given a known large spectral library A, the sparse unmixing can be 
written as[4] : 

y Ax n= +                                  (4) 
Where A acts as the available spectral library, which is a large matrix, L pA R ×∈  containing p 
endmembers. L denotes the number of bands, and p is the number of endmembers in A.  
  Bearing the LMM and sparse unmixing theory in mind, we consider a general minimization 
problem as: 

0
min . . , 0,1 1T

x
x s t y Ax x Xδ− ≤ ≥ =                    (5) 

Where 
0

x  denotes the 0L  norm of the vector x, 0δ ≥  is the tolerated error and modeling error. 
However, in terms of computational complexity, the 0L  norm optimization problem is a typical 
NP-hard problem, and it was difficult to solve until Candes and Tao[5,6] proved that the 0L  norm 
can be replaced by the 1L  norm under a certain condition of the restricted isometric property(RIP). 
Therefore, the optimization problem is relaxed to alternative convex optimization problem can be 
written as: 

1
min . . , 0,1 1T

x
x s t y Ax x Xδ− ≤ ≥ =                   (6) 

Where 
1

x denotes the 1L  norm. The constrained optimization problem can be converted into an 
unconstrained Lagrangian version,as follows: 

2

2 1

1min (x) {1}(1 )
2 q

T
Rx

Ax y x xλ
+

− + + +            (7) 

Where λ  is a non-negative regularization parameter which controls the relative weights of two 
objective function.  The (x)qR+

  and {1}(1 )T x  represent the ANC and ASC, respectively. 

Proposed model and algorithm  

Unmixing Model Based Approximation 0L  norm 
While 1L  regularization provides the best convex approximation to 0L  regularization and it is 
computationally efficient. However, 0L  regularizer can not obtain a satisfactory solution. In this 
paper, we consider using a continuous function to approximate 0L  norm sparse unmixing method, 
which provides smooth measure of 0L  norm and better sparsity than 1L  regularizer. The 
smoothed 0L  norm can be written as[7]: 

2 2

2 2

2 2

2 2

exp( ) exp( )
2 2(x)

exp( ) exp( )
2 2

x x

f
x xσ
σ σ

σ σ

− −
=

+ −
                           (8) 

The parameter σ  is a positive constant and 0σ ≠ . As σ  approaches to zero, we have: 
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Define the continuous multicariate approximate sparsity function as: 

i
1

(x) (x )
m

i
F fσ σ

=

=∑                            (11) 

As we know, the larger value of σ , the smoother (x)Fσ  and worse approximation to 0L  norm;  
the smaller value of σ , the closer behavior of (x)Fσ  to 0L  norm. 

Algorithms for approximative approach with smoothed 0L  norm 

In  this work, we use the approximative approach 0L norm to replace the 1L  norm in(7), as 
follows: 

 2

2

1min ( ) (x) {1}(1 )
2 q

T
Rx

Ax y g x xλ
+

− + + +                 (12) 

( ) 1 (x)g x Fσ= −                          (13) 
In this work, we used the variable splitting and augmented Lagrangian algorithm to solve(12), and 
we introduce intermediate variable u, then transform problem(14) into an equivalent problem, 

2

2

1min ( ) ( ) {1}(1 )
2 q

T
Rx

Ax y g u u xλ
+

− + + +                 (14) 

The augmented Lagrangian of problem(14) is 

 2 2

2 2

1( , , ) ( ) ( ) {1}(1 )
2 2q

T
R

L x u d Ax y g u u x x u dµλ
+

= − + + + + − −       (15) 

The algorithm is shown in Algorithm 1. 
 

Algorithm 1. Unmixing algorithm based on approimative approach 0L  norm 

1. Initialization and parameters setting:  set k=0, 0 0 0, ,x u d  

2.repeat:  1 ( , , )arg min k kk

x
L x u dx + ←  

          1 ( , , )arg min k kk

u
L x u du + ←  

          1 11 ( )k k kk d x ud + ++ − −←  
3. until some stopping criterion is satisfied 

Experiments 
  Having presented our method in the previous section, we now turn our attention to demonstrate 
its utility for sparse unmixing. The proposed model are compared with the SUnSAL method. All the 
considered models take into account the abundance non-negativity constraint. Here, we employ 
synthetic data and real-world data in order to evaluate the performances of the algorithms. The 
signal-to-reconstruction(SRE) is used to evaluate the accuracy of unmixing mothods, which is 
defined as follows: 

( )


2

2
210

2

( )SRE dB  10*log
( )

E x

E x x

 
 =  − 
 

 

Here, x  denotes the true abundances matrix,  x  represents the estimated one each column of 
which corresponds with the abundances of a pixel, and ( )E •  denotes the expectation function. 
Generally speaking, the larger the SRE is, the more the estimation approximates the truth. The max 
iteration number maxiter and the iteration stopping criterion stopε  are set to 200 and 0.001. 
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Synthetic data 
  In this experiment, the spectral library is the United States Geological Survey(USGS) digital 
spectral library, which contains 240 materials with 224 spectral bands distributed uniformly in the 
interval 0.4-2.5 mm . 
Table 1 shows SRE(dB), obtained in the simulated dataset, for all the SNR levels considered and for 
different values of the parameter,  such as λ and σ .  
Real data 
The hyperspectral dataset used in the real data experiments is the United States Geological 
Survey(USGS) digital spectral library. The size of the test area we chose was 250 x 191-piel subset. 
The USGS library containing 498 pure endmember signatures are measured for 224 spectral bands 
in the interval 0.4- 2.5 mm . with nominal spectral resolution of 10 mm . Prior to the analysis, bands1- 
2, 105- 115, 150- 170, and223- 224 were removed due to water absorption and low SNR in those 
bands, leaving a total of 188 spectral bands. In our experiments, we use spectral obtained from this 
library as input to the unmixing methods, and make a qualitative analysis of the performances of 
different sparse unmixing methods. 

Table1. SRE(dB) comparison between different algorithms on the synthetic data 
Data cube SNR(db) SUnSAL 0ASL SU  

 
 
 

DC2 
(k=4) 

20 3.05 
12 10λ −= ×  

3.52 
32 10 , 0.12λ σ−= × =  

30 6.41 
22 10λ −= ×  

8.03 
44 10 , 0.06λ σ−= × =  

40 12.75 
34 10λ −= ×  

15.10 
57 10 , 0.02λ σ−= × =  

     

                           
 

                   
 

Fig.1.Estimated abundance fractions with the different methods for the Cuprite data 
 

As the smoothed Approximation 0L  model behave much better than 1L  model, we only display 
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the results obtained by these two models. As shown in Fig 1,  the varying degrees of unmixing 
accuracy for the two typical minerals, Buddingtonite and Chalcedony. Compared with SUnSAL, the 

0ASL SU  algorithm is closer the classification maps produced by the SUGS Tetracorder algorithm. 
However, generally speaking, we can conclude that our algorithm outperforms the SUnSAL 
algorithm. 

Conclusions 

To improve the accuracy of spectral unmixing, we consider using the 0L  norm to replace the 1L  
norm to measure the SNR, and propose a new smooth function to approximate the 0L norm. we 
also have used an effective method basde on variable splitting and augmented Lagrangian algorithm 
to solve the approximate 0L  norm problem. Experimental results on both the synthetic data and 
real data gives sparser and more accuate of our new models. 
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