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Abstract. Hyperspectral unmixing is estimating the endmembers and corresponding abundance 
fractions in a mixed pixel. In the past decade, NMF have been intensively studied to hyperspectral 
unmixing. As an important constraint for NMF, sparsity could be modeled making use of the L0 
regularize. Unfortunately, the L0 regularize is an N-P hard. In this paper, we uses a novel 
approximate L0 sparsity constraint (which we name AL0-NMF), we propose a project gradient 
algorithm for AL0 -NMF. The experimental based on synthetic and real data demonstrate the 
effectiveness of the propose method. 

Introduction  
Hyperspectral data is a spectal image cube, containing hundreds of spectral bands and spatial 
information .Owing to the low spatial resolution of the sensor, there are many mixed pixels in the 
remote sensing image. Hyperspectral unmixing which decomposes mixed pixels into a collection of 
constituent spectra, or endmembers, and the corresponding abundance fractions is often used to 
preprocess hyperspectral data [1].In the past few decades, many hyperspectral unmixing algorithms 
have been propose under the linear mixing model(LMM) such as vertex component analysis (VCA) 
[2], independent component analysis (ICA) [3], etc. 

As a widely used method of blind source separation (BBS), nonnegative matrix factorization 
(NMF) [4] can adopted to solve the hyperspectral unmixing. Unfortunately, due to the objective 
function of NMF is nonconvexity, a lot of local minimum occur. An easy but effective solution to 
reduce the problem is to introduce further constraints into the NMF algorithm. Now, some 
researchers used sparsity constraint on basic NMF, like [5]. Regularization method are usually 
utilized to define the sparsity constraint on the abundance matrix of the endmember. In general, L1 
norm is widely used to instead of L0 norm. But for L1 regularization, it will be always a constraint due 
to the abundances suffer from the sum to one constraint. The L0 regularization can yield a sparser 
results, while it is an NP-hard. In this paper, we introduce a smoothed function to approximate the L0 
norm, which can enforce the sparsity of endmember abundances and avoid to solve the NP-hard 
problem. 

In this paper, we introduce a new L0 regularization into NMF (AL0-NMF) to enforce the sparsity 
of abundance matrix. We used projected gradient methods in [6] to ensure convergence. In this 
approach, the SNC is embedded in the parameter update process. Through synthetic and real 
hyperspectral data experiments results, we observe our algorithm is state of the art. 

The rest of this paper is organized as follows. In Section 2, brief introduces AL0-NMF model of 
the hyperspectral unmixing. Section 3 give the algorithm of hyperspectral unmixing Section 4 show 
the results of synthetic and real hyperspectral data. Sections 5 draws conclusions.  

AL0-NMF Unmixing Model 

LMM and NMF. The LMM can be written as follows: 
X AS E= +                                                                                                                                                         (1) 
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Where L NX R ×∈  denotes the hyperspectral data, L PA R ×∈  denotes the endmember signatures, 
P NS R ×∈ denotes the endmember abundances, P NE R ×∈  denotes the additive noise. And L, N, P 

denotes the number of bands, the number of pixels and the number of endmembers in remote sensing 
image, respectively.  

Since NMF can lead to the part-based linear representations of the nonnegative high-dimensional 
data, it has received a lot of attention. NMF aims to decompose one nonnegative matrix X into two 
low-rank nonnegative matrices A and S .So we can solve the NMF problem as an optimization 
problem by minimizing the Euclidean distance. Cosidering the Abundance Nonnegative Constraint 
(ANC) and sum to one, the cost function is as follows: 
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There are numerous optimization algorithms to solving the problem (2), but due to the 
non-convexity of represent A and S together, it exists a lot of local minimum. In order to reduce the 
solution set, some additional constraints should be introduced. Sparsity is an intrinsic property of 
hyperspectral data. In most cases, the mixed pixel is usually the superposition of only a few 
endmembers, the abundance is localized with a degree of sparseness [7]. 

For this reason, we used sparse constraints into NMF. The cost function with sparse constraints is 
as follow: 

21(A,S) (S)
2 F

f X AS fλ= − +                                                                                                                 (3) 

AL0-NMF. In the recently, many forms of sparsity constraints have been used, like[8-9].From 
these paper, we know L1 norm used most due to the L1 norm easy to be solved and L0 norm has the 
sparsest result, but it is a NP-hard problem. In this paper, an approximate L0 norm we choose [11] and 
the approximate L0-NMF model (AL0-NMF) is given by 
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And pns is the abundance matrix for the row of p at the column of n. 

Algorithm for AL0-NMF  

Updating Rules. Main text paragraph. We know, the cost function (4) is not convex with respect to A 
and S together, but they are convex in A or S only. To solve the problem many algorithm has put 
forward, like multiplicative iterative rules, gradient descent, projected gradient methods [5] and so on. 
Here, projected gradient algorithm is used on this paper. 

To implement the projected gradient algorithm, we need to calculate the partial derivative: 
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In our experiments σ is set to 0.001. 
The update rule is  

1 1max(0, (A,S)) max(0,S (A,S))k k k k k k
A SA A f S fa β+ += − ∇ = − ∇                                                                      (6) 

Where the parameters kα and kβ are the learning step sizes selected based on the Armijo rule 
[11].The function max (0, x) is set the negative components to zero to satisfy the ANC. 

Implementation Issues. SNC: We adopt the method in [12] to ensure the SNC, which is widely 
used in hyperspectral unmixing algorithms. We augment the matrix X and matrix A by a row constant 
denoted by 
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                                                                                                                           (7) 

Whereδ is a positive number to control the impact of SNC? In our experiments, we find when we 
setδ  to 20, the abundances almost satisfy the SNC and our experiments has the best result. 
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Initialization: Random initialization and VCA-FCLS is widely used to initialize matrices A and S. 
In this paper, VCA-FCLS initialization is employed in experiments to speed up the convergence of 
the proposed algorithm. While VCA-FCLS to initialization, we should to estimate the number of 
endmember. Here, we resort Hysime algorithm [13] to estimate the number of endmember. 

Stopping criteria: We have two stopping criteria in our experiments. One is the maximum iteration 
number, which is set to 500 in our experiments. The other is the gradient of the cost function f  
between the current iteration and the starting should satisfy: 

21 1(A ,S ) (A ,S )i i

F
f fε∇ ≤ ∇                                                                                                                            (8) 

Where ε is set to10-4 in our experiments. Either of the criteria is met, the iteration stop. 
Parameter: The parameter λ is relies on the sparseness degrees of the material abundances, which 

cannot be obtained a prior, we use a possible estimator based on sparseness measure in [5]. 
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Where lx denotes the hyperspectral data at band l. 
The AL0-NMF algorithm is summarized as follows. 

Algorithm:AL0-NMF 
1: Estimate the number of endmembers P using the HySime algotithm and compute λ by (10). 

2: Initialize A and S by VCA-FCLS. 
3: while stopping criteria are not met do 

a): Update  Ak+1  by (7) 
b): Augment X and A to get Xf and Af.  

c): Updata Sk+1 by (7) 
End  

Experiments 

In this section, a series of experiments are used to test the performance of the proposed AL0-NMF 
algorithm. We will compared our algorithm with VCA-FCLS and L1 -NMF. 

Two metrics: spectral angle distance (SAD) and root mean square error (RMSE), which is most 
widely used will used to evaluate the performance of the algorithm. The SAD is used to compare the 
similarity of the pth true endmember signature pA  and its estimate pA

∧

. For the RMSE, which is used 

to compare the similarity of the pth true endmember abundance pS  and its estimate pS
∧

. For the 
RMSE, which is used to compare the similarity of the pth true endmember abundance pS  and its 

estimate pS
∧

. The SAD and RMSE are defined as 
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In our experiments, the smaller SAD and RMSE are, the better the algorithm is. In the following 
experiments, the result is acquired by averaging 30 random tests. 

To generate the synthetic endmember signature data, five spectral signatures are chosen from the 
United States Geological Survey (USGS) digital spectral library. The abundances matrix data 
generated can be describes as follows: 1) We divide an image of size ( )2 2r r r Z +× ∈  into r r×  blocks 
and each block is initialized with one type of endmember signature; 2) we utilized a ( ) ( )1 1r r+ × +  low 
pass filter to generate mixed pixels; 3) set a thresholdθ (in this paper we setθ  =0.7), for the pixel 
whose abundances is larger thanθ  a mixture composed of only two endmembers will take the place 
of it; 4) to simulate the noise in (1), zero-mean white Gaussian is added into the mixture data. In this 
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experiment, we aims to compare the three algorithms VCA-FCLS, L1-NMF and AL0-NMF with the 
different noise levels. The SNR is set to 20 and 50. 

 
Table 1 the results of SAD and RMSE with different unmixing methods 

 SNR VCA-FCLS L1-NMF AL0-NMF 
SAD 20 

50 
0.2057 
0.1782 

0.1548 
0.1392 

0.0332 
0.0162 

RMSE 20 
50 

0.1436 
0.1304 

0.0760 
0.0601 

0.0375 
0.0224 

From the table 1, we can see that our algorithm has the best results for both the SAD and the 
RMSE. That means our algorithm not only robust to the noise corruption, bur also could better 
represents the sparseness of the abundance matrix than L1-NMF. 

 

 
(a)                    (b)                           (c)                       (d)                         (e) 

 
       (f)                      (g)                          (h)                          (i)                            (j) 

 
Figure 2. Comparison of USGS library spectra(solid line) with (dotted line) the extracted 

endmember Comparison of USGS library spectra(solid line) with (dotted line) the extracted 
endmember signatures using our method.(a) Alunite.(b) Sphene.(c) Muscovite.(d) Dumortierite(e) 
Montmorillonite.(f) Kaolinite#1.(g) Buddingtonite. (h)Kaolinite#2. (i) Nontronite. (j) Pyrope. 

 
We applied the real hyperspectral data, which is an image acquired by the Airborne Visible 

/Infrared Imaging spectrometer (AVIRIS) over Cuprite, Nevada, to evaluate the propose method. The 
cuprite data have been widely used for hyperspectral unmixing research [7]. The size of original 
image is 250*191. The data has 224 bands that cover the wavelength ranging from 0.4 to 2.5μm. In 
order to improve the precision, we have remove the low SNR and water vapor absorption bands (1-2, 
104-113, 148-167 and 221-224). The other 188 bands are used in our experiment. According to the 
existing analysis in [2], 14 types of minerals are presented in the image. It is obviously seeing that 
variants of the same mineral with slightly different spectra can be regarded as the same endmember, 
so, in the experiments we set p=10. In Fig.2, we show the the comparison between the extracted 
endmember signatures by our experiments and the corresponding USGS spectra library. 

Conclusions  
In this paper, we proposed a new approximate L0-NMF sparsity constrained NMF to solve the 
hyperspectral unmixing problem. Compare with the other algorithms, our method could make the 
unmixing results more accurate. Although our method get a better results, we still needs further 
investigation in other hyperspectral applications. 
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