

Research on Component Query Matching Algorithm for Component
Library Based on Facet Description

Yue Li a, Xianjiu Guo b
Dalian Ocean University, Dalian, China

a33977300@qq.com, b879753691@qq.com

Keywords: software reuse; component library; component retrieval.

Abstract. More excellent containment matching model is proposed based on component inclusion
matching model. Moreover, matching cost algorithm is analyzed to get inclusive matching model.
Therefore, efficiency of recall and precision of component are significantly improved comparing with
traditional component query situation.

Introduction
Representation and retrieval of component are the two main core technologies of reusable software
component library. Representation of component facet and corresponding retrieval technology has
been widely applied. Among them, both REBOOT and NATO put forward classification scheme of
reusable software component.

In addition, retrieval of component library takes into account incomplete description of component
need to query. Query matching should have a certain degree of flexibility, not only can give the user
returns but also corresponding matching degree, to provide useful information for the users to reuse
components. At the same time, classification scheme of facet in each component library may be
completely different. Therefore, the user may need to span multiple component libraries to find
appropriate component. How to realize the retrieval component across the component library is an
urgent problem to be solved [1-2].

Facet Description of Component and Query Representation

Tree Representation of Component Facet. With the application of component library based on
network, XML has been described as a component mark-up language. XML document of a
component can be mapped to an unordered labelled tree. At present, classification describing model
is adopted on most of component facet. Figure 1 showed a facet document based on XML component
facet and its tree representation.

Fig.1 Facet Document and Tree Representation of Component

Component Query Representation. Component query can be expressed as a query tree, i.e.,
names of facet and sub-facet are turned into corresponding nodes and their sub-nodes, facet terms
value needed to be inquired is turned into leaf nodes, and a virtual root node is used to combine them
into a the query tree, as shown in figure 2.

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

© 2015. The authors - Published by Atlantis Press 926

Fig.2 Component Query Tree

 Therefore, component query is turned into the matching between query trees and facet
description tree in the library. Many research results have been got on tree matching problems. Tree
embedding or tree inclusion are directly related to the matching, that is, the best embedding or contain
position of one tree in another is found.

Matching Model of Component Query

In order to analyze and states matching model of this paper, definition of tree inclusion is introduced,
and tolerable definition is given. The meaning of component retrieval and matching model is
analyzed combing with the features of component query.

Definition 1 Tree Inclusion / Tree Embedding
Suppose Q= (V, E, root (Q)) and D= (W, F, root (D)) are two unordered labelled tree. If there is a

mapping f V → W, which satisfies the following conditions:
(1)u=v⇔f(u)=f(v), u,v∈Domain(f)=V
(2)label(v)=label(f(v))
(3)u=parent(v) ⇔f(u)=ancestor(f(v))
We say Q is a included tree, while D contains Q.

If the above condition (3) is changed into u=parent (v) ⇔ f (u) =parent (f (v)), there is a embedding
from Q to D.

Definition 2 Inclusion Matching
Suppose Q= (V, E, root (Q)) and D= (W, F, root (D)) are two unordered labelled tree V 'V and W'

W. If for all u, v ∈ V ' , there is a mapping f V′→W′meeting the following conditions:
(1)u=v =>f(u)=f(v), u,v∈Domain(f)
(2)label(u)≈label(f(u))
(3)u=ancestor(v) =>f(u)=ancestor(f(v))
Then f is called a tree inclusion matching from Q to D, referred to as the tree inclusion or inclusion

matching.
Inclusion matching is shown in Figure 3 (a). Comparing with the definition of tree containment or

tree embedding, it breaks through domain constraints of f and allows redundant query information,
which fundamentally creates condition for component query recall, and only requires
ancestor-descendant relationship. Therefore, it allows missing layer of participating node information
for matching to improve recall ratio.

Definition 3 Containment Matching
Q= (V, E, root (Q)) and D= (W, F, root (D)) are two unordered labelled tree, V ′ V and W ′ W. If for

all u, v ∈ V', there exists a mapping f from V' to W ' meeting the following conditions:
(1)u=v=>f(u)=f(v),u,v∈Domain(f)
(2)label(u)≈label(f(u))
(3)u=ancestor(v) =>f(u)=ancestor(f(v))
Then f is called a tolerable matching from Q to D, referred to as the tree tolerant or containment

matching. Tolerable matching is a special case of inclusion matching. As shown in Figure 3 (b),

927

tolerance matching has higher requirements comparing with inclusion matching, and all term
conditions of facet in query tree must be met. Without affecting component query efficiency, the
precision is improved, and the user can query different component libraries with different
classification schemes.

 (a) Containment Matching

(b) Tolerable Matching

Fig. 3 Schematic Diagram of Two Tree Matching

Matching Algorithm and Analysis of Component Retrieval

Matching Cost of Component Retrieval. Based on above matching model, tree matching can be
considered from the transformation between them. The main idea of tree transformation is to define
some editing operations in advance, through which a tree T1 can be converted to another tree T2.
Giving a real number for each edit operation x→y, x, y∈{label}∪{φ} calls edit cost of this
operation, denoted byγ(x→y). Essence of matching is a map. In order to define matching cost
meeting the requirement of component matching features, concept of spectrum is introduced [3].
Algorithm Analysis of Matching Cost. The following algorithm can be used to a complete query.

Input: connection query tree array SearchTree [] and component array ComTree []
Output: component set R meeting the need of query
R=φ;

For each tree Q in query array
For each tree D in component array
If mismatching exists in any leaf node
break;
else
calculate matching cost by calling the calculating method of above matching cost(for non-leaf

nodes)
end if
put component D to R;
end for

928

end for

Conclusion

This paper put forward an improved matching method for query in multiple component libraries
based on containment matching model. Although the efficiency is a little lower than traditional model,
the recall and precision ratio are enhanced. The research results of this paper can be widely used in
component query based on facet description in multiple component libraries and network component
library. In addition, component matching algorithm composed in this paper can be used as one of the
effective methods for component retrieval.

Acknowledgement

The paper is funded by Science and Technology Department of Liaoning Province (No.2012216012)
and National Marine Public Welfare Projects (No.201205023-4).

References

[1]Podgurski A,Pierce L.Retrieving Reusable Software by Sampling Behavior[J].ACM Transactions
on Software Engineering and Methodology,1993,2(3):286-303.

[2]Zaremski A M.Signature and Specification Matching [D].School of Computer Science, Carnegie
Mellon University, 1996.

[3]Merkl D,Tjoa A M,Kappel G.Learning the Semantic Similarity of Reusable Software
Components[C].Proceedings of the 3rd International Conference on Software Reuse,1994:33-41.

[4]Zhang K Z.On the Editing Distance between Unordered Labeled Trees [J].Information Processing
Letters, 1992, 42(3):133-139.

929

