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Abstract

The Bonferroni mean is a traditional mean type aggregation operator bounded by the max and min operators, which 
is suitable to aggregate the crisp data. In this paper, we consider situations where the input data are interval 
numbers. We develop some uncertain Bonferroni mean operators, and then combine them with the well-known 
ordered weighted averaging operator and Choquet integral respectively for aggregating uncertain information. We 
also give their applications to multi-criteria decision making under uncertainty, and finally, some possible 
extensions for further research are discussed.
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1. Introduction

In many decision making situations under uncertainty, 
such as emergency management, military operations, 
contingency planning, and risk assessment, etc., interval 
numbers (interval utility values or value ranges) are 
usually used by experts to express their preference 
values over the considered objects, due to that the 
experts may not have enough knowledge or expertise
about the problem domain or a decision should be made 
under time pressure and lack of data. In the process of 
decision making, how to aggregate or deal with these 
given uncertain data (interval numbers1) by using a 
proper aggregation operator or mathematical model 
becomes a key step. As a result, some basic operations 
like “addition”, “subtraction”, “multiplication” and 
“division” on interval numbers were introduced in Ref.2, 
which make a basis for the potential applications of 
uncertain data. The comparison and ranking of interval 
numbers is also a fundamental issue, which plays an 

important role in the aggregation of uncertain data. A
variety of methods have been proposed to compare 
interval numbers.3-5 Wang et al.6 analyzed the strengths 
and weaknesses of the existing methods, and developed 
a simple yet practical preference ranking method of 
interval numbers. Facchinetti et al.,7 and Xu and Da8

also developed two straightforward possibility-degree
formulas for the comparison between two interval 
numbers, and studied their desirable properties.
Nevertheless, Xu and Chen9 showed that the three 
possibility-degree formulae developed in Refs.6-8 are 
equivalent, and employed the uncertain weighted 
averaging operator10 and the weights of experts to fuse 
all individual interval fuzzy preference relations into the 
collective interval fuzzy preference relation. 

Based on the basic operations and the ranking 
methods of interval numbers, some useful uncertain 
aggregation operators have been put forward, including 
the uncertain ordered weighted averaging (UOWA) 
operator,8 uncertain ordered weighted geometric 
(UOWG) operator,11 continuous ordered weighted 
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averaging (COWA) operator,12 and continuous ordered 
weighted geometric (COWG) operator,13 etc. Among 
them, the UOWA operator, which is motivated by the 
idea of the ordered weighted averaging (OWA) operator 
developed by Yager,14 first ranks all the uncertain data 
in descending order, and then fuses all these ordered 
uncertain data together with the weights of their ordered 
positions. The UOWG operator utilizes the ordered 
weighted geometric (OWG) operator15,16 and the 
possibility-degree formula to aggregate the given 
interval numbers. Yager12 developed the COWA 
operator, which is an extension of the OWA operator to 
the case in which the given datum is an interval number
rather than a finite set of data. The aggregated value 
derived by the COWA operator is associated with the 
attitudinal character of a basic unit-interval monotonic 
(BUM) function. The COWA operator is very suitable 
for aggregating decision information taking the form of 
interval fuzzy preference relation.17 Based on the 
COWA operator and the geometric mean, Yager and 
Xu13 introduced the COWG operator, and applied it to 
decision making with interval multiplicative preference 
relation. The common characteristic of the above 
uncertain aggregation operators are that they emphasize 
the importance of each datum or its ordered position, 
but can not reflect the interrelationships of the 
individual data. 

The Bonferroni mean (BM), originally introduced 
by Bonferroni,18 is a traditional mean type aggregation 
operator, which is suitable to aggregate the crisp data 
and can capture the expressed interrelationship between 
the individual data.19 Recently, Yager2 generalized the 
BM by replacing the simple average by other mean type 
operators such as the OWA operator14 and Choquet 
integral20 as well as associating different importance 
with the data. Considering the desirable property of the 
BM, and the need of extending its potential applications 
to more extensive areas, such as decision making under 
uncertainty, fuzzy clustering analysis, and uncertain 
programming, etc., in this paper, we extend the BM to 
aggregate uncertain data. In order to do so, we develop 
some uncertain BM operators, uncertain ordered 
weighted BM operator, and uncertain Bonferroni 
Choquet operator, etc., and study their properties. We 
also give their applications to multi-criteria decision 
making under uncertainty, and finally, discuss some 
possible extensions for further research.

2. A brief review on BMs

Given a collect of crisp data ( 1, 2, ..., )ia i n= , where 
0ia ≥ , for all i , and , 0p q ≥ . Bonferroni18 originally 

introduced an aggregation operator, denoted as ,p qB
such that
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Recently, the operator ,p qB  has been discussed in 
Ref.19,21,22 and called Bonferroni mean (BM). For 
the special case where 1p q= = , the BM reduces to 
the following:19 

1
2

1 2
, 1

1( , , ..., )
( 1)

n

n i j
i j
i j

B a a a a a
n n =

≠

 
 =  − 
 

∑

1
2

1

1 n

i i
i

u a
n =

 
=  
 

∑           (2)

where 
1

1
1

n

i j
j
j i

u a
n =

≠

=
− ∑ . 

Yager19 replaced the simple average used to obtain 

iu  by an OWA aggregation of all ja  ( j i≠ ):
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where iv  is the 1n−  tuple 1 1 1( ,..., , ,..., )i i na a a a− + , ω  is 
an OWA weighting vector of dimension 1n− , with the 
components 0kω ≥ , 1k

k
ω =∑ , and
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where ( )i kaπ  is the k th largest element in the tupe iv .

If each ia  has its personal importance, denoted by 

ip , then (3) can be further generalized as:
1
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1 2
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n i i
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pω ω
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− =  

 
∑     (5)

where 
1

n

i
i

p p
=

=∑ , [0,1]ip ∈ , 1, 2,...,i n= . 

In multi-criteria decision making, let 1 2{ , ,c cΩ =

..., }mc be a set of criteria, and let iΩ = { }icΩ−  be the 
set of all criteria except ic , then a monotonic set 

Published by Atlantis Press 
    Copyright: the authors 
                  762



Uncertain Bonferroni Mean Operators

measure im  over iΩ  is :im 2 [0,1]
iΩ → , which has the 

properties: 1) ( ) 0im φ = , 2) ( ) 1i
im Ω = , and 3) 

( ) ( )i im E m F≥ , if F E⊆ . Using the measure im , 
Yager19 further defined a Bonferroni Choquet operator 
as:
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and i
jH  is the subset of iΩ  consisting the j  criteria with 

the largest satisfactions, and 0
iH φ= . 1 2 1, ,...,i i inv v v −  are 

the elements in iv , and these elements have been 
ordered so that 1 2ij ijv v≥  if 1 2j j< .

In the next sections, we shall extend the above 
results to uncertain environments in which the input 
data are interval numbers.

3. UBM operators

An interval number can be defined as 
[ , ] { | 0 }a a a t a t a− + − += = ≤ ≤ ≤� . Given two interval 

numbers [ , ] ( 1,2)i i ia a a i− += =� , Xu and Zhai2 gave the 
following operations:

1) 1 2 1 1 2 2 1 2 1 2[ , ] [ , ] [ , ]a a a a a a a a a a− + − + − − + ++ = + = + +� � .
2) 1 2 1 1 2 2 1 2 1 2[ , ] [ , ] [ , ]a a a a a a a a a a− + − + − − + += ⋅ =� � .
3) 

1 1 1 1 1[ , ] [ , ]a a a a aλ λ λ λ− + − += =� , where 0λ ≥ .
4) 

1 1 1 1 1[ , ] [( ) , ( ) ]a a a a aλ λ λ λ− + − += =� , where 0λ ≥ .

To compare [ , ] ( 1,2)i i ia a a i− += =� , we first calculate 
their expected values:

( ) (1 ) , 1, 2, [0,1]i i iE a a a iλ λ λ− += + − = ∈� (8)

where λ  is an index that reflects the decision maker’s 
risk bearing attitude.  

The bigger the value ( )iE a� , the greater the interval 
number ia� . In particular, if both ( )iE a� ( 1, 2)i =  are 
equal, then we calculate the uncertainty indices of 
( 1, 2)ia i =� :

( ) , 1, 2i i iU a a a i+ −= − =�                     (9)
The smaller the value ( )iU a� , the less the uncertainty 

degree of ia�  is, and thus in this case, it is reasonable to 
stipulate that the greater the interval number ia� . 

Based on both (8) and (9), we can compare any 
two interval numbers. Especially, if 1 2( ) ( )E a E a=� �  and 

1 2( ) ( )U a U a=� � , then by (8) and (9), we have 

1 1 2 2

1 1 2 2
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a a a a
λ λ λ λ− + − +

+ − + −

 + − = + −


− = −
   (10)

by which we get 1 2a a− −=  and 1 2a a+ += , i.e., 1 2a a=� � .

Let [ , ] ( 1,2,..., )i i ia a a i n− += =�  be a collection of 
interval numbers, and , 0p q ≥ , then we call
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an uncertain Bonferroni mean (UBM) operator.
Based on the operations above, the UBM operator 

can be transformed into the following form:
,
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Example 1. Given three interval numbers: 
1 [10,15]a =� , 

2 [8,10]a =� , and 3 [20,30]a =� . Without loss of generality, 
let 1p q= = , then by (12) , we have

1,1
1 2 3( , , )UB a a a� � �

( )
1
21 10 8 10 20 8 20 8 10 20 10 20 8 ,

6


 = × + × + × + × + × + ×  



( )
1
21 15 10 15 30 10 30 10 15 30 15 30 10

6


  × + × + × + × + × + ×   


[12.1, 17.3]=

In the following, let us discuss some special cases 
of the UBM operator:

1) If 0q = , then (12) reduces to
,0
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which we call a generalized uncertain averaging 
operator.

1) If p→+∞ , 0q = , then (12) reduces to
,0

1 2lim ( , , ..., )p
np

UB a a a
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( ) ( )
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1 1
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n np pp p

i ip pi i
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1) If 1p = , 0q = , then (12) reduces to
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which is the uncertain averaging operator.
1) If 0p → , 0q = , then (12) reduces to
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which is the uncertain geometric mean operator.
2) If 1p q= = , then (12) reduces to
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which we call an interrelated uncertain square mean
operator.

The UBM operator has the following properties:
Theorem 1. Let [ , ]( 1,2,..., )i i ia a a i n− += =�  be a collection 
of interval numbers, and , 0p q ≥ , then

1) (Idempotency): , ( , , ..., )p qUB a a a a=� � � � , if 
,ia a=� �  for all i .

2) (Monotonicity): Let [ , ] ( 1,2,..., )i i id d d i n− += =�  be 
a collection of interval numbers, if i ia d− −≥  and 

i ia d+ +≥ , for all i , then ,
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,
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Since 1 2( , ,..., )nα α α� � �� � �  is a permutation of 1 2( , ,..., )nα α α� � � , 
then by (12) and (20), we know that 
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i.e., , ,
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Similarly, we can prove ,
1 2( , , ..., )p q

nUB a a a ≥� � �

min{ },min{ }i ii i
a a− + 

 
. 

As the input data usually come from different 
sources, and each datum has own importance, thus each 
datum should be assigned a weight. In this case, we 
shall consider the weighted form of the UBM operator.  

Let [ , ] ( 1,2,..., )i i ia a a i n− += =�  be a collection of 
interval numbers, each ia�  has the weight iw , satisfying 

0iw ≥ ( 1, 2,..., )i n=  and 
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a weighted uncertain Bonferroni mean (WUBM) 
operator, where
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Based on the operations of interval numbers, the 
WUBM operator (23) can be further written as:
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In the case where (1 ,1 ,...,1 )Tw n n n= , (24) reduces 
to 
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and then (25) can be transformed to
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which reduces to the UBM operator.
With the WUBM operator, let us give a simple 

approach to multi-criteria decision making under 
uncertainty:

Step 1. Let 1 2{ , ,.., }nX x x x=  and 1 2{ , ,.., }mc c cΩ =
be the sets of alternatives and criteria respectively. Each 
criterion has a weight iw , with 0iw ≥ ( 1, 2,..., )i m= , 

and 
1

1
m

i
i

w
=

=∑ . The performance of the alternative jx

with respect to the criterion ic  is described by a value 

range [ , ]ij ij ija a a− +=� , which is listed in the decision 

matrix ( )ij m nA a ×=� � . In general, there are two types of 
criteria, i.e., benefit criteria and cost criteria. We may 
normalize the matrix ( )ij m nA a ×=� �  into the matrix 

( )ij n mR r ×=� �  by the formulae:22

1

1
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ij ij ik
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+ + −
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1 1
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− + −

=

+ − +

=

 =

 =


∑

∑
  (29)

where [ , ]ij ij ijr r r− +=� , 1, 2,..., ; 1, 2,...,i m j n= = .
Step 2. Utilize the WUBM operator (25) (for the 

sake of intuitiveness and simplicity, in general, we take 
1p q= = ):

,
1 2[ , ] ( , , ..., )p q

j j j w j j m jr r r UB r r r− += =� � � �        (30)
to aggregate all the performance values ( 1,2,..., )ijr i m=�
of the j th column, and get the overall performance 
value jr�  corresponding to the alternative jx .

Step 3. Utilize (8) and (9) to rank the overall 
performance values jr� ( 1, 2,..., )j n= , and by which we 

rank and select the alternatives jx ( 1, 2,..., )j n=
following the principle that the greater the value jr� , the 

better the alternative jx .
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The prominent characteristic of the above approach 
is that it utilizes the WUBM operator to fuse the 
performance values of the alternatives, which can 
capture the interrelationship of the individual criteria. 

Now we provide a numerical example to illustrate 
the application of the above approach:
Example 2. Robots are used extensively by many 
advanced manufacturing companies to perform 
dangerous and/or menial tasks.22,23 The selection of a 
robot is an important function for these companies 
because improper selection of the robots may adversely 
affect their profitability. A manufacturing company 
intends to select a robot from five robots (jx j =

1,2,3,4,5) . The following four criteria (ic i = 1,2,3, 4)
(whose weight vector is (0.2, 0.3,0.4,0.1)Tw = ) have to 
be considered: 

1) 
1 :c Velocity (m/s) which is the maximum speed 

the arm can achieve.
2) 2 :c  Load capacity (kg) which is the maximum 

weight a robot can lift.
3) 3 :c  Purchase, installation and training costs

($1000). 
4) 4 :c  Repeatability (mm) which is a robot’s 

ability to repeatedly return to a fixed position. The mean
deviation from that position is a measure of a robot’s 
repeatability.

Among these criteria, 1c  and 2c  are of benefit 
type, 3c  and 4c  are of cost type. The decision 
information about robots is listed in Table 1, and the 
normalized decision information by using (28) and (29) 
is listed in Table 2 (adopted from Ref.22).

Table 1. Uncertain decision matrix A~

x1 x2 x3 x4 x5
c1 [1.8, 2.0] [1.4, 1.6] [0.8, 1.0] [1.0, 1.2] [0.9, 1.1]
c2 [90, 95] [80, 85] [65, 70] [85, 90] [70, 80]
c3 [9.0, 9.5] [5.5, 6.0] [4.0, 4.5] [9.5, 10] [9.0, 10]
c4 [0.45,0.50] [0.30,0.40] [0.20,0.25] [0.25,0.30] [0.35,0.40]

Table 2. Normalized uncertain decision matrix R~

x1 x2 x3 x4 x5
c1 [0.26, 0.34] [0.20, 0.27] [0.12, 0.17] [0.14, 0.20] [0.13, 0.19]
c2 [0.21, 0.24] [0.19, 0.22] [0.15, 0.18] [0.20, 0.23] [0.17, 0.21]
c3 [0.14, 0.16] [0.22, 0.26] [0.29, 0.36] [0.13, 0.15] [0.13, 0.16]
c4 [0.11, 0.16] [0.14, 0.23] [0.23, 0.35] [0.19, 0.28] [0.14, 0.20]

Here we employ the WUBM operator (30) (let 
1p q= = ) to aggregate ( 1, 2,3,4)ijr i =� , and get the 

overall performance value jr�  of the robot jx . Since 

( )
4

, 1
i j

i j
i j

wwθ
=

≠

= ∑

(0.2 0.3 0.2 0.4 0.2 0.1 0.3 0.4 0.3 0.1 0.4 0.1) 2= × + × + × + × + × + × ×
0.70=

then
1,1

1 11 21 31 41( , , , )wr UB r r r r=� � � � �

(1 (0.2 0.26) (0.3 0.21) (0.2 0.26) (0.4 0.14)
0.7

= × × × + × × ×
(0.2 0.26) (0.1 0.11) (0.3 0.21) (0.4 0.14)+ × × × + × × ×

) )
1
2(0.3 0.21) (0.1 0.11) (0.4 0.14) (0.1 0.11) 2 ,+ × × × + × × × ×

(1 (0.2 0.34) (0.3 0.24) (0.2 0.34) (0.4 0.16)
0.7

× × × + × × ×

(0.2 0.34) (0.1 0.16) (0.3 0.24) (0.4 0.16)+ × × × + × × ×

) )
1
2(0.3 0.24) (0.1 0.16) (0.4 0.16) (0.1 0.16) 2 

+ × × × + × × × × 


[0.182,0.221]=
Similarly,

2 [0.196,0.246]r =� , 3 [0.195,0.254]r =�

4 [0.160,0.200]r =� , 5 [0.143,0.186]r =�
Using (8), we calculate the expected values of 

( 1, 2,3, 4,5)jr j =� :

1( ) 0.221 0.039E r λ= −� , 2( ) 0.246 0.050E r λ= −�

3( ) 0.254 0.059E r λ= −� , 4( ) 0.200 0.040E r λ= −�

5( ) 0.186 0.043E r λ= −�
Then by analyzing the parameter λ , we have

1) If 80
9

λ≤ < , then 

3 2 1 4 5( ) ( ) ( ) ( ) ( )E r E r E r E r E r> > > >� � � � �
Thus, 3 2 1 4 5r r r r r> > > >� � � � � , by which we get the ranking 
of the robots: 

3 2 1 4 5x x x x x� � � �

2) If 8 1
9

λ< ≤ , then 

2 3 1 4 5( ) ( ) ( ) ( ) ( )E r E r E r E r E r> > > >� � � � �
Thus, 2 3 1 4 5r r r r r> > > >� � � � � , by which we get the ranking 
of the robots: 

2 3 1 4 5x x x x x� � � �
3) If 8

9
λ = , then 

2 3 1 4 5( ) ( ) ( ) ( ) ( )E r E r E r E r E r= > > >� � � � �
In this case, we utilize (9) to calculate the uncertainty 
indices of 

2r�  and 3r� :

2( ) 0.246 0.196 0.050U r = − =�

3( ) 0.254 0.195 0.059U r = − =�
Since 2 3( ) ( )U r U r<� � , then 2 3r r>� � . In this case, 

2 3 1 4 5r r r r r> > > >� � � � � , therefore, the ranking of the robots 
is
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2 3 1 4 5x x x x x� � � �

From the analysis above, it is clear that the 
ranking of the robots maybe different as we change the 
parameter λ . When 8 1

9
λ≤ ≤ , the robot 2x  is the best 

choice, while the robot 3x  is the second best one. But as 
80
9

λ≤ < , the ranking of 2x  and 3x  is reversed, i.e., the 

robot 3x  ranks first, while the robot 2x  ranks second. 
However, the ranking of the other robots  ( 1, 4,5)jx j =
keeps unchanged, i.e., 1 4 5x x x� � , for any [0,1]λ∈ . 

4. The UBM operators combined with the 
OWA operator and Choquet integral

In this section, we extend Yager’ results18 to uncertain 
situations by only considering the case where the 
parameters 1p q= =  in the UBM operator.

Let [ , ] ( 1, 2,..., )i i ia a a i n− += =�  be a collection of 
interval numbers, then from (11), it yields

1
2

1,1
1 2

, 1

1( , , ..., )
( 1)

n

n i j
i j
i j

UB a a a a a
n n =

≠

 
 =  − 
 

∑� � � � �

1
2

1 1

1 1
1

n n

i j
i j

j i

a a
n n= =

≠

  
  =   −    

∑ ∑� �   (31)

For convenience, we denote 1,1
1 2( , ,..., )nUB a a a� � �  as 

1 2( , ,..., )nUB a a a� � � , and let 
1

1
1

n

i j
j
j i

a
n

β
=
≠

=
− ∑� � , which is 

the uncertain average of all the interval numbers 
( )ja j i≠� . Then (31) can be denoted as:

1
2

1 2
1

1( , , ..., )
n

n i i
i

UB a a a a
n

β
=

 =  
 

∑ �� � � �           (32)

Suppose that iv�  is the 1n −  tuple 1 1 1( ,..., , ,i ia a a− +� � �

..., )na� . An uncertain ordered weighted averaging 
(UOWA) operator of dimension 1n −  can be defined as:

1 1 1

( ) ( ) ( )
1 1 1

( ) ,
i i i

n n n
i

k k k k k k
k k k

UOWA v a a aω σ σ σω ω ω
− − −

− +

= = =

 
= =   
∑ ∑ ∑� � � � (33)

where ( ) ( ) ( )[ , ]
i i ik k ka a aσ σ σ

− +=�  is the k th largest interval 

number in the tuple iv� , 1 2 1( , ,..., )Tnω ω ω ω −=  is the 
weighting vector associated with the UOWA operator, 

0kω ≥  and 
1

1

1
n

k
k

ω
−

=

=∑ .

   If we replace the uncertain average 
iβ�  in (32) with the 

UOWA aggregation of all ( )ja j i≠� , then from (33), it 
follows that

1
2

1 2
1

1( , ,..., ) ( )
n

i
n i

i
UB OWA a a a a UOWA v

n ω
=

 − =  
 

∑� � � � �  (34)

which we call a UBM-OWA operator. Especially, if 
(1 1,1 1,...,1 1)Tn n nω = − − − , then (34) reduces to the 

UBM operator.
If we take the weights of the data into account, and 

let 1 2( , ,..., )Tnw w w w=  be the weight vector of (ia i =�

1,2,..., )n , with 0iw ≥ ( 1, 2,..., )i n=  and 
1

1
n

i
i

w
=

=∑ . 

Then (34) can be generalized as:
1
2

1 2
1

( , ,..., ) ( )
n

i
n i i

i
UB OWA a a a w a UOWA vω

=

 − =  
 
∑� � � � �    (35)

In particular, if (1 ,1 ,...,1 )Tw n n n= , then (35) reduces 
to (34).
Example 3. Let 1 [3,5]a =� , 2 [1, 2]a =� , 3 [7,9]a =�  be 
three interval numbers, (0.3,0.4,0.3)Tw =  be the 
weight vector of ( 1, 2,3)ia i =� , and (0.6,0.4)Tω =  be 
the weighting vector associated with the UOWA 
operator of dimension 2 . 

Since 3 1 3a a a> >� � � , then we first calculate the 
values of the ( )iUOWA vω � ( 1, 2,3)i = :

1
2 3 1 3 2 2( ) ( , )UOWA v UOWA a a a aω ω ω ω= = +� � � � �

0.6 [7,9] 0.4 [1, 2] [4.6,6.2]= × + × =
2

1 3 1 3 1 1( ) ( , )UOWA v UOWA a a a aω ω ω ω= = +� � � � �
0.6 [7,9] 0.4 [3,5] [5.4,7.4]= × + × =

3
1 2 1 1 2 2( ) ( , )UOWA v UOWA a a a aω ω ω ω= = +� � � � �

0.6 [3,5] 0.4 [1, 2] [2.2,3.8]= × + × =
and then by (35), we have

1
3 2

1 2 3
1

( , , ) ( )ii i
i

UB OWA a a a w a UOWA vω
=

 − =  
 
∑� � � � �

( )
1

1 2 3 2
1 1 2 2 3 3( ) ( ) ( )w a UOWA v w a UOWA v w a UOWA vω ω ω= + +� � � � � �

( )
1
20.3 [3,5] [4.6,6.2] 0.4 [1,2] [5.4,7.4] 0.3 [7,9] [2.2,3.8]= × × + × × + × ×

[3.46, 4.86]=
In what follows, let us consider how to combine 

the UBM operator with the well-known Choquet 
integral. 
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Let the criteria sets Ω , iΩ  and the monotonic set 
measure 

im  over iΩ  be defined as in Section 2. In 
addition, let 

(1)i
aσ� ,

(2)i
aσ� ,…, 

( 1)i naσ −�  be the ordered interval 

numbers in iv� , such that  ( 1) ( )i ik ka aσ σ− ≥� � , 2,3,..., 1k n= − , 

and let 
( ) ( ){ | }

i ij kB a k jσ σ= ≤� � , when 1j ≥  and (0)i
Bσ φ=� . 

Then the Choquet integral of iv�  with respect to im  can 
be defined as:

( )
1

( ) ( ) ( 1)
1

( ) ( ) ( )
i i i i

n
i

m j i j i j
j

C v a m B m Bσ σ σ

−

−
=

= −∑ � �� �  (36)

by which we define
1
2

1 2
1

1( , ,..., ) ( )
i

n
i

n i m
i

UB CHOQ a a a a C v
n =

 − =  
 

∑� � � � �     (37)

as an uncertain Bonferroni Choquet (UBM-CHOQ) 
operator.  

If we take the weight 
iw  of each 

ia�  into account, 
then by (37), we have 

1
2

1 2
1

( , , ..., ) ( )
i

n
i

n i i m
i

UB CHOQ a a a w a C v
=

 
− =  

 
∑� � � � �  (38)

In the special case where (1 ,1 , ...,1 )Tw n n n= , 
(38) reduces to (37).

To illustrate the UB-CHOQ operator, we give the 
following example:
Example 4. Assume we have three criteria ( 1, 2,3)ic i = , 

whose weight vector is (0.5,0.3,0.2)Tw= , the 
performance of an alternative x  with respect to the 
criteria ( 1, 2,3)ic i =  is described by the interval 
numbers: 1 [3, 4]a =� , 2 [5,7]a =� , 

3 [4,6]a =� . Let 

1 2 3( ) ( ) ( ) 0m m mφ φ φ= = = , 1 2 3 2({ }) ({ }) 0.3m a m a= =� �

1 3 2 3({ }) ({ }) 0.5m a m a= =� � , 2 1 3 1({ }) ({ }) 0.6m a m a= =� �

1 2 3 2 3 1 3 2 1({ , }) ({ , }) ({ , }) 1m a a m a a m a a= = =� � � � � �
Then by (36), we have

( )1 1 1 1

2
1

( ) 1 ( ) 1 ( 1)
1

( ) ( ) ( )m j j j
j

C v a m B m Bσ σ σ −
=

= −∑ � �� �

( ) ( )2 1 2 1 3 1 2 3 1 2({ }) ( ) ({ , }) ({ })a m a m a m a a m aφ= × − + × −� � � � � �
[5,7] (0.3 0) [4,6] (1 0.3)= × − + × −
[4.3, 6.3]=

( )2 2 2 2

2
2

( ) 2 ( ) 2 ( 1)
1

( ) ( ) ( )m j j j
j

C v a m B m Bσ σ σ −
=

= −∑ � �� �

( ) ( )3 2 3 2 1 2 3 1 2 3({ }) ( ) ({ , }) ({ })a m a m a m a a m aφ= × − + × −� � � � � �
[4, 6] (0.5 0) [3, 4] (1 0.5)= × − + × −
[3.5,5.0]=

( )3 3 3 3

2
3

( ) 3 ( ) 3 ( 1)
1

( ) ( ) ( )m j j j
j

C v a m B m Bσ σ σ −
=

= −∑ � �� �

( ) ( )2 3 2 3 1 3 2 1 1 2({ }) ( ) ({ , }) ({ })a m a m a m a a m aφ= × − + × −� � � � � �
[5,7] (0.3 0) [3, 4] (1 0.3)= × − + × −
[3.6, 4.9]=

and then from (38), it yields
1

3 2

1 2 3
1

( , , ) ( )
i

i
i i m

i
UB CHOQ a a a w a C v

=

 
− =  

 
∑� � � � �

( )
1
20.5 [3,4] [4.3,6.3] 0.3 [5,7] [3.5,5.0] 0.2 [4,6] [3.6,4.9]= × × + × × + × ×

( )
1
2[6.45,12.60] [5.25,10.50] [2.88,5.88]= + +

1
2[14.58, 28.98]=

[3.82,5.38]=

5. Conclusions

We have investigated the Bonferroni mean under 
uncertain situations, and developed an uncertain 
Bonferroni mean (UBM) operator that can capture the 
interrelationship between the individual uncertain data. 
We have given a weighting form of the UBM operator, 
in which the importance of each datum can be taken into 
account, and then developed a simple approach based 
the weighted UBM operator to multi-criteria decision 
making. Furthermore, based on the well-known ordered 
weighted averaging (OWA) operator and Choquet 
integral, we have proposed some combined UBM 
operators, and detailedly illustrated their operational 
processes with some numerical examples. In further 
research, it is necessary and meaningful to give the 
applications of these operators to the other fields such as 
pattern recognition, fuzzy cluster analysis and uncertain 
programming, etc. 
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