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Abstract 

Multi-objective optimization focuses on simultaneous optimization of multiple targets. Evolutionary game theory 
transforms the optimization problem into game strategic problem and using adaptable dynamic game evolution 
process intelligently obtains the optimized strategy. The problem of multiple frequency offsets estimation in 
distributed multiple inputs and multiple outputs system is real-world multi-objective search and optimization 
problems which are naturally posed as non-linear programming problems having multiple objectives. Simulation 
results evidence the proposed algorithm is superior to other algorithms with more robust convergence and 
environmental applicability.  

Keywords: Multi-Objective Optimization, Evolutionary game, Non-linear Programming Problem, Distributed 
multiple inputs and multiple outputs. 

1. Introduction 

1.1. Multi-Objectives Optimization Strategies 
based on Evolutionary game 

Conventional optimization usually requires that 
objective function is continued and differentiable. 
Search direction of next step defined by derivative of 
objective function is short of simplicity and 
commonality. When problem becomes more complex 
and large scaled, search time will be expanded 
significantly. Evolutionary computing is a stochastic 

search algorithm based on natural law and its 
achievements have got wide attention in academic cycle 
which is attributed to its characteristics of adaptively 
and global optimization, all of which are resulted from 
the separation from the independence on derivative of 
objective function. 
True to its name, evolutionary game theory appeared 
first in biology. Previous work by John Maynard Smith 
and his collaborators in biology and mathematics 
combined basic conception of game theory and 
principles of biological evolutionary optimization and in 
1973 Maynard and Price put forward the central concept 
of “evolutionary stable strategy” which was developed
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further in Maynard Smith's (1982) influential Evolution 
and the Theory of Games, and these events symbolized 
the commence of research wave on evolutionary game 
theory.   
Both genetic algorithm and evolutionary computing 
consider the biological evolving process as directed 
imitated object of adapted global optimization and 
usually are called evolutionary computing methods. The 
context used to interpret an evolutionarily stable 
strategy envisions a large population of agents who are 
repeatedly, randomly matched in pairs to play a game. 
Evolutionary game in biological model also involves 
biological evolutionary process, coordination evolving 
process of biological population in particular, so 
combination of evolutionary computing and game 
theory was a natural selection in essence. 
Evolutionary game optimization method based on 
economic game theory maps search space of 
optimization problem into the combinational space of 
game strategies and objective function into utility 
function.1 In an evolutionary game, through dynamic 
evolutionary process of fitted individual can 
optimization problem be solved, each individual 
chooses among alternative actions or behaviors whose 
payoff or fitness depends on the choices of others. Over 
time the distribution of observed behavior in a 
population evolves, as fitter strategies become more 
prevalent. 
Global convergence of evolutionary game optimization 
algorithms has championed its popularity in 
optimization area in recent years.2 One optimization 
problem can be represented by3:  

 arg max ( )
x

x
D

f
∈

                          (1) 

Where  

                             (2) nD R⊆

is called search space. 

 :f D R→                                 (3) 

is objective function. Usually 1 2 , ( , )x n
nx x x= ∈… R

[ , ], 1,2l u
i i ix x x i n∈ = …  is n vector. l
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is the global optimum of this problem. 
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*
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Nε ε ε
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= − < >⎪⎩
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which satisfy (4), when  
*( )x D Nε∈ ∩ x                    (7) 

*x  is the local optimum of this problem. 

1.2.  Multi-Objective Optimization in Distributed 
MIMO Systems 

Multi-objective parameter optimization originated from 
some researching of economic balance and competition 
equilibrium belong to economics, in the well-known 
economist. Pareto's book concerning economic welfare 
theory, he proposed multi-objective optimization 
problem. To date, multi-objective optimization not only 
has made many significant achievements in theory, but 
expanded its application field increasingly. As a 
functional tool of solving problems from the scope of 
engineering technology, economic, administration, 
military and systems engineering, multi-objective 
decision foregrounds its powerful vitality gradually.4,5

Distributed multi-input multi-output (Distributed MIMO) 
system is an important application area of future 
communication technique. It uses multiple parallel 
channels transmission method so that it can achieve 
higher transmission efficiency. After applied the 
distributed antenna configuration, the original single-
objective optimization problem become a typical multi-
objective optimization problem because transmitting 
antennas or receiving antennas located in different 
geographic locations and using different crystal lead to 
different transmitting antennas to the same receiving 
antennas has different frequency offset. 
Even a general Distributed MIMO system that 
transmitting antenna located in a different location, the 
mobile service also uses a distributed antenna. At this 
point, we could consider that the receiving terminal’s 
each receiving antenna and the transmitting terminal’s 
same transmitting antenna have a different time delay 
and frequency offset, and also with the transmitting 
terminal’s different transmitting antenna. Under such 
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assumptions, the time matrix offset and frequency offset 
matrix could extended to 
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Where
, ,i jθ

 
denotes time offset between receiving 

antenna i and receiving antenna j, ,i jε  denotes   
normalized frequency offset between receiving antenna 
i and receiving antenna j. 
Eq.  (8) and (9) shows that when transmitting antenna 
and receiving antenna are the distributed case, 
frequency estimation becomes multi-parameters 
estimation problem. To solve this problem, Y. Yao 
proposed Quasi-optimal parameter optimization 
strategy6, as it essentially transfers joint multi-objective 
optimization to quasi-optimal single-objective 
optimization, its parameter estimation performance and 
applicability are limited.  
Refs. 7 proposed joint multi-parameter optimization 
strategy of multi-frequency offset parameter, which 
took into account of the case of the same time delay. 
Based on traversing search optimal strategy’s estimated 
model, respectively, through the expectation 
maximization (Expectation Maximum, EM) and SAGE 
(Space-Alternating Generalized Expectation-
Maximization) algorithm to simplify multi-objective 
optimization strategies, experimental data show that 
performance of the algorithm proposed in this paper can 
be close to the Cramer-Rao lower bound (CRLB). It is 
noteworthy that these methods can achieve estimation 
accuracy reach to CRLB under high signal to noise ratio 
(SNR), but the EM algorithm’s local convergence 
properties and sensitivity to initial conditions can make 
its performance deteriorating in low SNR circumstances. 
The proposed multi-objective optimization algorithm 
based on evolutionary game is superior to other 
algorithms with more robust convergence and 
applicability, especially to joint optimized strategy 

searching problem with multi-channel and multi-
parameter. 

2. System Model 

In recent years, Distributed MIMO system has attracted 
attention since it can counteract large-scale fading (path 
loss and shadow fading) and improve coverage, link 
quality and system capacity. The concept of Distributed 
MIMO system was first proposed by Saleh in 1987 in 
order to solve the wireless communication coverage in 
house8. In this case, each transmit/receive antenna is 
equipped with its own oscillator; therefore, different 
transmit/receiver pair may have different carrier 
frequency offset and the performance of such systems 
may seriously degrade in the presence of frequency 
offsets due to poor synchronization. Because of this, it 
is of primary importance to accurately estimate these 
frequency offsets and compensate for them prior to 
performing detection. Distributed MIMO system 
distributes its antenna in different locations, illustrated 
by Fig. 1, so it is much more complicated to estimate 
multi-frequency offsets, as the existing algorithms for 
the single-input, single-output (SISO) system cannot be 
applied directly to Distributed MIMO systems.   

MS1

MS2

BS

MS:  Mobile service
BS:   Base Staion 

MS3

 

Fig.1 Schematic diagram of distributed MIMO systems 

In distributed MIMO system, system distributes its 
antennas of base station in different locations and these 
antennas are connected to a central processor through 
fiber or coaxial cable. Thus, each antenna sends 
received information of mobile service to central 
processor and in the meantime central processor also 
sends information to mobile service through multiple 
antennas of base station using fiber or coaxial cable. 
Considering in a flat-fading MIMO system, the k th 
receiving antenna receive information at the time of : n
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Then maximum likelihood estimation of communication 
channel and frequency offset can get from 
minimizing logarithm likelihood function. 

 
2

1

R

k

M

k k
k

y S hε
=
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  That is equivalent to minimize 

 
2

kk k ky S hεΛ = −                 (13) 

  Fixing , we can get kw

            (14) ( ) 1ˆ
k k k

H H
kh S S S yε ε ε

−
= k

  Then multi-frequency offset estimation problem can be 
transformed to multi-objective optimization of  

 ( ) 1
ˆ arg max

k k k k
k

H H H
k k ky S S S S yε ε ε εε
ε

−
=          (15) 

Eq. (15) indicates that multi-frequency offset estimation 
problem is the special case of multi-objective 
optimization. Traversal search methods are too complex 
to implement, so in recent years, this problem has got a 
wide attention.9-12 In which Refs. 7 improved EM 
algorithm to accelerating algorithm ECM and simplified 
multi-dimensional search effort to estimate multi-
frequency offset using SAGE, the mean square error of 
estimation approached CRLB. 

2.1.  EM 

EM is an iterative optimization method to estimate some 
unknown parameters, given measurement data.13-  15

However, we are not given some “hidden” nuisance 
variables, which need to be integrated out. The intuition 
behind EM is an old one: alternate between estimating 
the unknowns and the hidden variables. This idea has 

been around for a long time. One of the most insightful 
explanations of EM, that provides a deeper 
understanding of its operation than the intuition of 
alternating between variables, is in terms of lower 
bound maximization (Neal and Hinton, 1998; Minka, 
1998). 
The derivation of EM algorithm depends on an 
assumption which is call complete data space x. there is 
mapping relationship  between observed 
stochastic variable y in incomplete data space and x. 
Function g is a many-to-one transformation. In the mth 
iteration, EM algorithm first computes expectation. This 
is called E-step (Expectation Step): 

( )y g x=

 [ ] ( ) [ ]{ }ˆ ˆ( ) log ,m mQ E f x yθ θ θ θ=          (16) 

The second step is called M-step (Maximization Step) 
which updates parameter vector 

 [ ] [ ]1ˆ ˆarg max ( )m mQ
θ

θ + = θ θ     (17) 

The representation of EM is relatively complex, but it is 
really amazing to use simple multi-step iteration to get 
maximum likelihood estimation. In this derivation, the 
E-step can be interpreted as constructing a local lower-
bound to the posterior distribution, whereas the M-step 
optimizes the bound, thereby improving the estimate for 
the unknowns. Its physical meaning is obvious that m-
step of algorithm guarantees the incremental value of 
likelihood function in each step. It can be proved that 
posterior value of likelihood function is larger or equal 
to the value before iteration. Hence, through multi-step 
iteration, EM algorithm can converge to local optimum 
neighbouring the initial value. 
Whether or not EM algorithm can search out global 
maximum depends on initial value [ ]0θ̂ . Its convergence 
rate is inversely proportional to the conditional Fisher 
information matrix of x , [Appendix A]. When 
dimensions of complete data space is large, convergence 
rate will be low, so the application of this algorithm is 
sensitive to its applied environment. 

y

2.1.1 ECM 

In some case, when M-step EM algorithm is too 
complex, ECM (Expectation Conditional Maximization) 
algorithm can simplify its computing16. If parameter 
vector θ  can be divided into M group 
including lθ , 1, 2...l M= , then the mth iteration of EM 
algorithm can be divided into M substeps, in which lθ  
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is updated at the lth substep. At this time, , v v lθ ≠ is 
fixed as the last updated value. 
The lth step includes: 
(i) Search ： 

   [ ] [ ]
[ ]

1
ˆ , 

ˆ ˆarg max ( ) m
v vl

m m
l v l

Q
θ θθ

θ θ θ+

= ≠
=      (18) 

(ii) Updated: 

      [ ] [ ]1ˆ ˆm m
l lθ θ +=                              (19) 

In the backdrop of Distributed MIMO system, ECM 
algorithm is applied to solve multi-parameter 
optimization. First, the l Transmitting antenna training 
series and frequency offset are defined by 
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In EM algorithm, receiving signal yk constructs 
incomplete space. Solve for parameter is  
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(i) E-step: computing expectation 
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1
l
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substitute Eq. (28) into Eq. (27), get 
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  Suppose is the independent and identically 
distributed (i.i.d.) complex Gaussian variables with 
zero-mean and variance 1. And z

,k lh

k, and yk are joint 
Gaussian distributed, so 
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where 

[ ] [ ] [ ] [ ]
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T
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k ve e e e⎡ ⎤= ⋅⋅ ⋅⎢ ⎥⎣ ⎦
              (33) 

(ii) M-step：maximize solution 

[ ] [ ] ( )
21

, ,
1

ˆ ˆarg min
TN
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k l l k l k l

l
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θ
θ +

=
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Eq. (34) can be divided into NT  independent process 

 [ ] [ ] ( )
21

, ,
ˆ ˆarg min

l

m m
l k l l kz s e h

θ
θ + = − ,l k l       (35) 

Different from synchronously updating solve for 
parameter in EM algorithm, ECM algorithm divides Eq. 
(35) into two steps. In the first step, update one of 
parameters ( ), ,,k l k lw h , and at the same time keep other 
parameter as the latest updating value. [ ]2ˆ m c

lθ
+  

represents estimation of lθ  at c-step in the mth iteration 
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(c=1,2). So M-step of EM algorithm includes two 
substeps: 
(i) Step 1:  

Set 

                    (36) [ ]
, ,

ˆ m
k l k lh h=

update . That is, computing ,k lw
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,k ljw te is expanded in Taylor series of second order at 
, get [ ]
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Substitute Eq. (39) into Eq. (38) and differentiate {}⋅  to 
 and let the result be equal 0, the updated ,k lw [ ]1

,ˆ m
k lw +  is 

 

[ ] [ ]

[ ] ( )( ) ( ) [ ] [ ]{ }
[ ] ( )( ) ( ) [ ] [ ]{ }

,

,

* ˆ
, ,11

, , * ˆ2
, ,1

ˆˆ
ˆ ˆ

ˆˆ

m
k l

m
k l

N jw tm m
k l l k ltm m

k l k l N jw tm m
k l l k lt

t z t s t h e
w w

t z t s t h e

=+

=

ℑ
= −

ℜ

∑

∑
(40) 

Simulation results indicate the relevant function is 
convex. 
(ii) Step 2:  
Fix , update  to . That is, computing  ,k lw ,k lh [ ]1

,
ˆ m
k lh +
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, ,
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Tm m m

l k l k lw hθ + + +⎡= ⎣
⎤
⎦

and 

 [ ]

( )

[ ] ( ) ( )
[ ]1

,

*
1 ,

, 2 ˆ
1

1

ˆ1ˆ  m
k l

mN
m k l l

k l N jw ttlt

z t s t
h

s t e
+

+

=
=

= ∑
∑

        (42) 

Change the value of k and repeat above-mentioned 
algorithm in NR times, estimation values of all receiving 
antennas can be computed. 

2.1.2 SAGE 

As convergence rate of EM algorithm is relatively low, 
SAGE (Space-Alternating Generalized Expectation-

Maximization)17 algorithm is proposed to fill up this 
inefficiency. The methodology of SAGE is the division 
of parameter vector into smaller groups and updates 
them. When a small group is updated, others’ 
parameters remain the same. In SAGE algorithm, every 
group of parameters constructs a hidden data space but 
not a big complete data space. Suppose Sθ  represents 
the vector including S parameters in the vectorθ , Sθ  
represents the vector including remaining parameters, 
then Sx is the accommodation hidden data space. In 
SAGE algorithm, update of Sθ  includes two steps: 
(i) E-step： 

Determine conditional logarithm likelihood expectation 

 [ ] [ ]( ) [ ]{ }ˆ ˆ( ) log , ,m mS
S S S SQ E f x yθ θ θ θ θ= ˆ m (43) 

(ii) M-step： 
Search maximum 

 [ ] [ ]1ˆ arg max ( )
S

m
S SQ

θ
θ + = ˆ m

Sθ θ  (44) 

In the backdrop of distributed MIMO system, SAGE 
algorithm is also applied to solve multi-parameter 
optimization. 
Divide solve for parameter into NT groups of  

 lθ , l=1，2，…，NT              (45) 

when one group is updated, others remain the same. 
Hidden data space of lθ  can be defined by 

 ( ), , ,k l l k l k lx s e h n+              (46) 

Where all n are correlated to hidden data space so that 
Fisher information matrix of hidden data space can be 
reduced to improve convergence rate. 
Updating process of lθ  in the mth iteration is described 
in following, also including E-step and M-step. In the 
mth iteration, these two steps will be executed NT times 
in order to update all lθ . 
(i) E-step： 

With the constraint conditions of yk，
[ ]ˆ mθ , keep vθ ，

v l≠  constant, compute the expectation of logarithm 
likelihood function of hidden data space, 

 
[ ] [ ]{ }( ) [ ]{ },

ˆ ˆ( ) log , ,m m
l k l l v v l

Q E f x yθ θ θ θ θ
≠

= ˆ m
k   (47) 

then 
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Substitute Eq. (48) into Eq. (47)， 
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(ii) M-step：update  [ ]1ˆ m
lθ
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Same as ECM algorithm, Eq. (51) can be divided into 
two substeps: 
(i) Step 1: get  [ ]1

,ˆ m
k lw +
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(ii) Step 2: get
[ ]1
,

ˆ m
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     (53) 

SAGE-ECM algorithm is the combination of ECM and 
SAGE which also applies to each receiving antenna in 
order to get the estimation value of receiving 
information. 
Maximum likelihood estimation aims to get global 
optimum strategy. However, both EM and other 
accelerating algorithms are local optimum algorithms. 6 
can provide the initial value (Appendix B). But only if 
this value is approach the global optimum, the iteration 
process of algorithms can get relatively exact estimation. 
Since performance of EM algorithm is very sensitive to 
the initial value, the result of algorithm is prone to get 

local optimum. At the same time, because estimation 
range is inversely proportional to length of training 
series in frequency offset estimation methods based on 
relevant frequency offsets, estimation range of both EM 
and other accelerating algorithms are limited to the 
range of initial value estimation. The applicability of 
algorithms is limited too. 

2.2. Evolutionary game 

This paper propose a frequency offset estimation 
method based on evolutionary game, which normalized 
estimation range can reach the maximum range3, and 

mean square error of estimation reaches CRLB.  
The following is a case of evolutionary game 
optimization method. According to Refs. 18, a 
noncooperative game cab be formulated by 

 [ , , ]G I S U=                                (54) 

Where, {1,2, , }II n= …  represent individual number of 
game players, S is strategy set of game players. U is 
the utility function of game. Every component ix ，

1, 2,...i n= , of variable  is corresponding to a strategy 
of game players, that is, 

x
{1,2, , }II n= … . Strategy set of 

a game player is ， . Every component 
i

[ , ]l u
i i iS x x= i I∈

x ， 1, 2,...i n= , of variable x  is mapped to a game 
play in the game through ϕ , the utility function can be 
represented by 

1( ) ( ( )) ( )s su f fϕ−≡ = x

I

       (55) 

Theorem 1: the global optimization solution  of 
Eq.  

*x
(1) reference goes here corresponding to strategy 

set 
*
 is a Pareto-optimal equilibrium point of game G.  s

Proof:   
Because 

( ) ( ),s xiu f i≡ ∈                     (56) 

and 

x D∀ ∈ , *( ) ( )x xf f≥            (57) 

 we have 
s S∀ ∈ ,        (58) *( ) ( ),s si iu u i≥ ∀ ∈ I

According to de definition of Nash equilibrium, this 
strategy set is the Nash equilibrium point. And because 
under such strategy set utility of each player reach 
maximum, such equilibrium status is Pareto-optimal. 
Evolutionary process chooses the initial strategy set  
stochastically, and through many iterations of sequential 
optimization response can set reach a dynamic “stable” 

0s

Published by Atlantis Press 
    Copyright: the authors 
                  80



M.Jin et al 
 

state, to which artificially impose a stochastic 
interference that represents sudden noise, therefore, the 
“stable” state is disrupted and through sequential 
optimization response the set reaches another “stable” 
state. Repeat this process until the preset stopping 
criteria is satisfied. 
Definition1 set 

[ , , ]G I S U=                                   (59) 

and 

, 1, 2,..., , ,i kS S k n k− = ∏ = ≠ i

S

i

                 (60) 

if 
* * ( ) ( )( ) { : ( , ) ( , ), }s s si i

i i i i i i i i i iB s S u s u s s− − −= ∈ > ∀ ∈
(61) 

Then  

:i iB S S− →                                (62) 

which is called the best-response correspondence for 
player i  
Under certain strategic set, if the strategies of other 
players remain unchanged, a player chooses the strategy 
to maximize its utility. This is the optimum response of 
the player in such strategic set. Start from certain 
strategic set s , the dynamic process of each player 
choosing their optimum response alternatively in 
sequence is called optimum response dynamics. 
Definition of interference operator in evolutionary 
process: to ith component is  of s , that is, the strategy of 
the player, if random number rand(0, 1) is lower than 
given interference probability , then the player will 
randomly choose one strategy in the strategic set to 
replace such component, otherwise, the strategy remain 
unchanged. Repeat such selection method to each 
strategy in the strategic set, then we have strategic set  
after interference. 

dp

's

Another problem is how the player searches its own 
optimum response strategy. Suppose that parameter 
range of ix , that is corresponding component of 
strategic set of player i  is [ , ]l u

i ix x . Because strategies 
of other players remain constant, this problem is 
converted to a single variable optimization problem, so 
a simple stochastic searching process is applied to 
obtain the approximation of optimum response strategy. 
In this process, new strategy ix  is produced by mutation, 
that is    

 1 2(0, ( )), 1,2,t t
i ix x N t t Cσ+ = + = …         (63) 

Where  is independent Gaussian random 
variable with zero mean and variance ,  is 
preset searching number. Evolutionary rule of 

2(0, ( ))N tσ
2 ( )tσ C
σ  is  

 ( 1) ( ),0 1t tσ ασ α+ = < <                (64) 

If variant value of ix  exceeds the range of the 
parameter, then take one point in its range to replace it. 
In this search process, the strategy with maximum 
utility will be regarded as approximation of optimum 
response strategy of the player. 
As for  receiving antenna, thk ,1 ,[ ]ε

Tk k k Mε ε= …  has 
I Tn M=  frequency offset, that is TM  players. 

According to rule of maximum likelihood estimation, 
the game utility function can be expressed by 

  (65) ( ) 1
( )ε H H H

ku y S S S Sε ε ε ε

−
= ky

  Strategic set of game players is  

 , 1,2, ,ε Tk
k Mε= =∏ …     (66) 

where 2 ( 0.5,0.5)kε π∈ − . Multi-frequency offset 
estimation can be transformed to the searching problem 
off maximum utility function  of multiple players 
in given range. 

( )εu

In accordance with previous analysis, game structure of 
distributed frequency offset estimation is [ , , ]εG I u= ，

{1, 2, , }TI M= … , where Pareto-optimal equilibrium 
point of game can be obtained by optimum response. 
The optimum response is when a player iω  has a chance 
to rectify its strategy, the value of new strategy will 
satisfy  

 (
'

' arg max ,
i

i i i
s S

u )'
iε ε ε−

∈
∈                    (67) 

Start from initial value combination of certain game 
player, the dynamic process of each player choosing 
their optimum response alternatively in sequence is 
called optimum response dynamics. When all game 
players adopt the same value combination after Mth 
iterations, this is called steady-state. According to 
literature 1, any steady-state of dynamic optimum 
response must be Nash equilibrium. This paper applies 
similar evolutionary optimization algorithm to solve it. 

1t
iω
+ , new value of game player in this process will be 

produced by 

         (68) 1 2(0, ( )), 1,2,p p
i i N p pε ε σ+ = + = …P
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Where  is independent Gaussian random variable 
with zero mean and variance ,  is preset 
searching number. Evolutionary rule of 

N
2 ( )pσ P

σ  is1  

( 1) ( )p pα σ+ = i 0.5, = , (1) 1σ =           (69) σ α

 If variant value of iω  exceeds the range  

, ,
1

[ , ]ε
TN

l u
k i k i

i

ε ε
=

=∏                                   (70) 

then take one point in its range to replace it.  
Since normalized frequency offset kε  is continuously 
distributed in the range of 2 ( 0.5,0.5)π −  and utility 
function Eq. (65) is multi-extremum function, different 
steady-states are resulted from different initial value. In 
the frequency offset searching process, when reaching 
the steady-state, the process of leaping out of current 
steady-state and searching for next steady-state is 
needed. Comparing the values of different steady-states, 
different game players can reach Pareto-optimal 
equilibrium point of game. According to literature 1, we 
can avoid the local optimization. We generate a random 
number which is uniform distribution on the interval [0, 
1] for any game player, if the random number is lower 
than given interference probability , then the player 
will randomly choose one strategy in the strategic set to 
replace current value, otherwise, stay unchanged. 

dp

Above mentioned analysis indicates that searching for 
Pareto-optimal equilibrium game point of multi-
frequency offset optimized strategy is in essence the 
process of T times of searching different steady-state 
and  rounds of searching optimum response. P
In the real systems, due to complexity restrictions, the 
number of P  and  must be limited that resulted in 
approximation value. If range of variables 

T

ω
k

ω=∏ ，                    (71) 1, 2, , Tk = … N

is larger, the range of  and T  needs even larger.  P
Algorithm for the multi-frequency offset estimation 
based on the evolutionary game is summarized in the 
Table 1.  

3. Simulation Results and Analysis 

In this section, we investigate the MSE performance of 
our proposed algorithm in a Distributed MIMO in flat 
fading environment, mainly for the number of 
transmitter antennas . The training sequence 
portion is with length of . In the classic training 

sequence used in Yao’s method is taken from a row of a 
Hadamard matrix with length . It consists of 
length of 

2TN =
32N =

32N =
4P = correlator, which controls the estimation 

range of the frequency offset in 67. Relevant simulation 
parameters are listed in table 2. 
Fig. 2 illustrates the mean square error of frequency 
offset estimation between sending antenna 1 and 
receiving antenna 1. With increase of relevant length 
from 4 to 8 to 16, the results indicate that estimation 
performance is improved. But according to 6, the range 
of frequency offset will be reduced with the increase of 
relevant length. 
The performance this algorithm is approaching 
estimation lower limit, but with the increase of SNR the 
interference among antennas is intensified, the 
algorithm proposed by Yao yield mean square error 
platform of estimator. This indicates that this kind of 
algorithm is single objective optimization in essence 
and does not take advantage of the strength of multi-
objective joint optimization, so its application is 
sensitive to the environment and limited. 
EM algorithm is a transversal searching method based 
on multi-objective joint optimization which increases its 
adaptability and obtains the relatively ideal solution to 
the problem that with the increase of SNR estimation 
mean square error platform exists. But the algorithm 
still uses relevant estimation as the initial value and 
local convergence, so range of estimation is limited and 
under low SNR the algorithm is hard to converge to the 
global optimum. The paper proposes the algorithm 
based on evolutionary game overcomes the problems 
that previous algorithms encounter. The following is the 
comparison made through numerical simulation. 
Performance of all algorithms is illustrated and relevant 
explanation is given. Relevant simulation parameters 
are listed in table 3. 
Fig. 3 illustrates that using initial values based on Yao’s 
method, SAGE-ECM solves the problem of interference 
among antennas. When SNR is higher than 10dB, 
estimation performance reaches CRLB. But when SNR 
is low, it is hard to converge to global optimum whose 
performance is even lower than that using single 
objective optimization method. 
Fig. 4 explains this phenomenon. Analyzing the 
objective function of multi-objective optimization at 
8dB, it is found that when SNR is low, there are 
multiple local optimum of objective function and using 
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initial values based on Yao’s method, estimation error is 
relatively big.  

Table1.   Summary of  Estimation for the Receivers thk

1. Initialization 

Random choose initial  from the set 2  0ε [ 0.5,0.5]π −

2.  rounds best-response correspondence T

for     0,1   t T= …

1 /dp t=  

for   1 Rm M= …  

for  1,2, Ti M= …
Compute the approximate best-
response correspondence 
in rounds. P

         
( )( ) ' arg max ( )

                    , 1,2

p
i it u it

p P

ε ε∈

= …
 

end 

              if   ( ( ) ') ( ( ))ε εu m u m>
'  ( 1) ( )ε εm m+ =

           else 

   ( 1) (ε εm m+ = )

     end 

end 

if    drand p<

( 1) : choose one form 2π[-0.5,0.5] randomlytε +  

end  

end 

Table 2. Simulation parameters of quasi-optimal multi-
parameter optimization 

TN  2 

RN  2 
Q  32 
P  4、8、16 

1,1 1,2

2,1 2,2

,
,

ω ω

ω ω
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0.01,0.015

2
0.02,0.025

π
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Because ECM algorithm increases the value of the 
objective function through multiple iterations, the final 
parameter estimation can exactly obtain the maximum 
of objective function. So ECM is local optimization 

algorithm which converges to the neighboring point of 
initial value. In result, ECM algorithm converges to a 
local optimum instead of global optimum which creates 
a relatively big error, so estimation accuracy is worse 
than initial value. 

 

Fig. 2. Performance of quasi-optimal multi-parameter 
optimization method 

Table 3 simulation condition for multi-frequency offset 
estimation 

Q  32 

P  8 

1,1 1,2,ω ω⎡ ⎤⎣ ⎦  [ ]2 0.01,0.015π  

Parameters for proposed 
method 

80
7

T
P
=⎧

⎨ =⎩
 

 

 

Fig. 3. Performance of different optimization methods 
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The proposed algorithm based on evolutionary game 
avoids the occurrence of this situation. Because 
evolutionary game algorithm is a global optimization 
algorithm, when SNR is higher than some level, this 
method can complete optimization of multi-frequency 
offset parameters with accuracy of approaching CRLB. 
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0

0.50
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15

20

25

( )f ε

1,2 / 2ε π
1,1 / 2ε π

 
Fig. 4. Objective function value of Multi-objective 

optimization 

M
SE

1,2 / 2ε π
Fig. 5 Estimation performance of different method 

Fig. 5 is the comparison of estimation range of several 
estimation algorithms which represents the applicability 
of the method. Estimation range of Yao’s method is 
single objective optimization in essence, so estimation 
range is small. The local convergence makes EM 
algorithm also encounter the problem that estimation 
range is limited. The estimation range of the proposed 
algorithm based on evolutionary game reaches the upper 
bound, and MSE of estimation is free from the influence 
of frequency offset, that is, the proposed algorithm is 

superior to other algorithms with more robust 
convergence and applicability. 
Because evolutionary game optimization is heuristic 
algorithm, closed form solution of expression can’t be 
obtained in solving process, the complexity is higher 
than EM algorithm. But high accuracy and large 
estimation range distinct this algorithm can be used in 
real environment, especially in off-line optimum 
strategy analysis. 

4. Conclusion 

Multi-objective optimization has made many significant 
achievements expanded the scope of application in 
engineering technology, economic, administration, 
military and systems engineering. The problem of 
multiple frequency offsets estimation in a Distributed 
MIMO Systems is real-world search and optimization 
problems which are naturally posed as non-linear 
programming problems having multiple objectives. 

 
In this paper, combining multi-objective optimization 
theory and evolutionary game optimization, a large 
frequency offset estimation algorithm with higher 
estimation precision has been proposed based on 
evolutionary game theory. Different frequency offsets 
are mapped as players in the game theory to transform 
the frequency offset optimization problem to optimized 
equilibrium point. The performance of this algorithm 
overcomes the error floor in MSE performance of 
frequency offsets, and local optimization problem of 
EM algorithm. The results also indicate that the propose 
algorithm avoids the occurrence of the situation that 
objective function may have multiple local optimum, 
which guarantees the high performance of optimization 
and also adaptability of the algorithm. 
 
Appendix A.   CRLB of the performance of multi-

objective estimates derived 

In Distributed MIMO systems, because the frequency 
offset estimate is unbiased, so the CRLB of the mean 
square error of estimation equals to the reciprocal of 
Fisher information. 

 2 1ˆ ˆvar( ) {( ) }
( )

E
J

θ θ θ
θ

= − ≥  (A.1) 

where  
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2

2
2( ) {[ ln ( | )] } { ln ( | )}J E f x E f xθ θ θ

θ θ
∂ ∂

= = −
∂ ∂

(A.2) 

( | )f x θ denotes conditional distribution density 
function 
Through the Fisher information matrix, the lower limit 
of frequency offset estimation can be found, this 
provides an excellent theoretical basis for measure of 
the algorithm 
Define the following vector： 

  (A.3) ( ) ( )Re Imη h h ε
TT T T⎡= ⎣
⎤
⎦

⎤⎦

⎥
⎥

where 

   (A.4) 1 2h h h h
R

TT T T
M⎡ ⎤= ⎣ ⎦

      (A.5) 1 2ε
T

T

Mε ε ε⎡= ⎣

Estimated vector ’s Fischer information matrix F is a 
diagonal matrix 

η

            (A.6) 

1

2

F
F

F

Fm

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

where denote the Fischer information matrix of 
estimating parameter  

Fk

ηk

 2

Re( ) Im( ) Im( )
2 Im( ) Re( ) Re( )

Im( ) Re( ) Re( )

U U
F U U

T T V

k k

k k k

k k

σ

− −⎡
⎢= ⎢
⎢−⎣

T
T

k

k

k

⎤
⎥
⎥
⎥⎦

k

(A.7) 

where 

  (A.8) 2

( )

( ) ( )

( ) ( )
(1,2,... )

ε ε

ε ε

ε ε

U S S

T S D S D h

V D h S D S D h

D h h
D

k k

k k

k t k

H
k

H
k t k

H H
k k

k k

t

diag
diag N

⎧ =
⎪

=⎪
⎪⎪ =⎨
⎪ =⎪
⎪ =
⎪⎩

Available Frequency estimation’s CRLB is  

 
2

1( ) {Re( )}
2

ε V T U TH
k k k kCRLB σ −= − 1

k
− (A.9) 

At the same time, obtained lower bound of channel 
estimation’s mean square error 

 
2

1 1 1 1( ) {Re(2 [Re( ) ] }
2

h U U T W TH
k k k k K kCRLB σ − − − −= + Uk

 (A.10) 

 1W V T U TH
K k k k

−= − k

=

                (A.11) 

As the the frequency synchronization (frequency offset 
estimation and compensation) of synchronization 
problems is manly discussed in this paper in, it no 
longer to discuss the channel estimation. 
 
Appendix B. Quasi-optimal multi-parameter 

optimization of frequency offset 

Refs.6’s method is the first multi-frequency offset 
estimation method is also low complexity, easy practical 
method for solving multi-frequency offset. Later, a 
number of multi-objective optimization methods are 
built on this analysis or use this method to obtain initial 
value of frequency offset estimated, then, go on the 
iterative estimation. 
Assume that the delay of all transmitting antenna to 
receiving antenna are the same, but different frequency 
offset. Algorithm’s core idea is to place each antenna 
with multistage repeat orthogonal sequences and the 
same deal for multiple sequences at the receiving end, 
furthermore, diversity of the results can get frequency 
synchronization performance. Its essence is to transform 
multi-objective optimization into multiple single-
objective optimization problems. 
Firstly, the data sequence is divided into M sub-
sequences, each sequence is Wlash sequence.  
To the receiving antenna n, received the sub-sequence 
b’s symbol l is 

 

(B.1) ( ) ( ) ( ),2
, , , ,

1

   1, ,
T

m n

M
j f lT

n b m m n b n b
m

r l a l e h l l Lπ η
=

= +∑

where， ( )ma l denote lth data launched by transmitting 
antenna m， L  is the length of training sequence， ,m nf  
denote the frequency offset between transmitting 
antenna and receiving antenna，T is Symbol period，
{ }, ,m n bh denote tapped delay line coefficients, which is 
the i.i.d. complex Gaussian variables with zero-mean 
and variance 1， ( ),n b lη  denotes Zero mean complex 
Gaussian noise random variance, and satisfy:  
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( ) ( )( ){ }

( ) ( ) (
, ,

2             

n b n bE l l

n n l l b b

η η

σ δ δ δ

Η

′ ′ ′

)′ ′ ′= − − −
(B.2) 

Training sequence  

                  (B.3) ( )( )0ma l l Q≤ ≤

is Walsh orthogonal sequence, assume Q  is orthogonal 
sequence’s length.  

 [ ]2log2 TMQ =                  (B.4) 

which mean [ ]2log TM  not less than 2log TM ’ integer, 
and satisfy： 

  (B.5) ( ) ( )
1

   
0    

Q

m m
l

Q m m
a l a l

m m′
=

′=⎧
= ⎨ ′≠⎩

∑

The receiving signals is correlated with the local mth 
training sequences ： 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

,

,1

,1, 1,
1

22
,1,

1

2
,1,

1 1

1,
1

,1, ,1, ,1,( ) ( ) ( )

m

m n

m

P

a b m b
p

P
j f kP p T

m b m
p

M P
j f kP p T

m b m m
m p
m m

P

b m
p

m b m b m b

R k a kP p r kP p

h a kP p e

h a kP p a kP p e

kP p a kP p

E k I k N k

π

π

η

′

=

+

=

+
′ ′

= =
′≠

=

= + +

= +

+ + +

+ + +

= + +

∑

∑

∑ ∑

∑

 (B.6) 

where ，  is correlation length。 P
Make one difference related, differential distance is i ，
so 

 
( ) ( ) ( )( ){ }

,1

,1, ,1, ,1,

2 2
,1, ,1           

m m

m

m b a b a b

j if PT
m b m

C i E R k R k i

h A e π

∗
= −

=
(B.7) 

When differential distance is set to 1，then 

 
( )

( ) ( )

,1,

/ 1

,1, ,1,
1

ˆ 1

1        1
/ 1

m b

L P

m b m b
k

C

Ra k Ra k
L P

−⎢ ⎥⎣ ⎦
∗

=

=
−⎢ ⎥⎣ ⎦

∑ −
(B.8) 

then  

 ( )(,1 ,1,
1 ˆˆ arg 1

2m C
PT

ε
π

= )m b  (B.9) 

Eq. (B.9) shows that Yao’s method is actually a 
multiple single objective optimization method, it 
ignores the interference caused by multiple objectives, 
therefore, it cannot gain the best estimation performance, 
it is a quasi-optimal multi-parameter optimization 
method. 
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