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Abstract 

To solve chaotic time series prediction problem, a novel Prediction approach for chaotic time series based on 
Immune Optimization Theory (PIOT) is proposed. In PIOT, the concepts and formal definitions of antigen, 
antibody and affinity being used for time series prediction are given, and the mathematical models of immune 
optimization operators being used for establishing time series prediction model are exhibited. Chaotic time series is 
analyzed and corresponding sample space is reconstructed by phase space reconstruction method; then, the 
prediction model of chaotic time series is constructed by immune optimization theory; finally, using this prediction 
model to forecast chaotic time series. To demonstrate the effectiveness of PIOT, the three typical chaotic nonlinear 
time series are generated by nonlinear dynamics systems that are Lorenz, Mackey-Glass and Henon, respectively, 
and are used for simulating prediction. The simulation results show that PIOT is a feasible and effective prediction 
method, and meanwhile provides a novel prediction approach for chaotic time series. 

Keywords: Chaotic time series, phase space reconstruction, immune optimization theory, prediction. 

 
*Corresponding author. 

E-mail: liuxiaojie8@126.com (Xiaojie Liu). 

1. Introduction 

TTime series is a set of data constructed by chronological 
observed data. Generally speaking, time series 
prediction mainly includes three operation steps, namely 
analyzing the past and current data of time series, 
establishing the corresponding time series prediction 
model, and predicting the future data of time series. 
Time series prediction has received considerable 
applications in various fields1, 2, 3, such as economics 
prediction, weather prediction and network traffic 
prediction etc. Time series prediction may usually be 
classified into the linear and nonlinear prediction 
method. The typical linear time series prediction models 

mainly include auto regressive (AR), moving average 
(MA), auto regressive moving average (ARMA) and so 
forth.3, 4, 5 However, these models are mostly 
the statistical method based prediction models and need 
some priori knowledge that are proved difficultly, so 
these models can hardly obtain effective prediction 
results for chaotic nonlinear time series. Due to the most 
of time series possessing chaotic nonlinear 
characteristics in real-life and artificial intelligence 
method holding better approximation capability for 
nonlinear time series, numerous researchers have 
proposed using artificial intelligence method to solve 
nonlinear time series prediction problem, such as 
genetic algorithm(GA)6, neural network(NN)7, support 
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vector machine(SVM)8 and so on. The advantage of GA 
is that it can establish prediction model by means of a 
small amount of data of time series, but its 
shortcomings show that it exists some limiting problems, 
for instance, the simple evolutionary learning 
mechanism. The merits of NN have mainly self-learning, 
nonlinear mapping and parallel distributed processing 
etc. but it has some congenital drawbacks, such as easy 
to fall into local optimization, difficult to determine the 
number of hidden layers and  slow to training speed.2, 9 
Although SVM has some merits which are strong 
predicting ability, fast convergence rate and global 
optimization etc, but the prediction performance of 
SVM is sensitive to some key parameters that are 
penalty parameter, non-sensitive loss parameter and 
kernel function and so on.10, 11, 12

Artificial immune system (AIS) is another new 
frontier research in artificial intelligence areas, and is 
one of bionic intelligent systems inspired by biological 
immune system (BIS). It can not only distinguish and 
withstand nonself antigens that are illegal intrusions but 
also possess the evolutionary learning mechanism of 
Darwin’s evolution theory13, 14. The study of AIS mainly 
includes negative selection, clonal selection theory and 
artificial immune network15. To date AIS has been 
successfully employed in a wide variety of different 
application fields like network security, numerical 
optimization, data mining, pattern recognition, fault 
detection and so forth.16, 17, 18, 19, 20 AIS make full use of 
some merits of BIS such as self-learning, self-adaption, 
self-organization and immune memory etc. In order to 
resist nonself antigen and maintain immune system 
stability, antibody will be cloned, mutated or produced 
continually so as to enhance the restraint ability against 
nonself antigens.14 According to the advantages of AIS, 
many researchers have proposed intelligence methods 
based on immune optimization mechanism for solving 
corresponding nonlinear problems, where the specific 
nonlinear problem is viewed as antigen and the 
candidate solution of relevant problems is viewed as 
antibody.21, 22 Compared with other intelligence 
methods, AIS possesses the capabilities of the global 
optimization and fast convergence speed.23, 24

In this paper, a novel prediction approach for 
chaotic time series based on immune optimization 
theory (PIOT) is proposed according to the chaotic 
characteristics of nonlinear time series and the 
superiority of artificial immune system solving 

nonlinear problems. The mainly contributions of this 
paper are: 1) Propose a novel prediction modelling 
method for chaotic time series based on phase space 
reconstruction method and immune optimization theory; 
2) Introduce a new antibody encoding form 
corresponding with time series prediction problem that 
inspired by the antibody characteristics of BIS; 3) Give 
a new immune selection operator in terms of artificial 
immune network, the new operator introduces affinity 
not only between antibody and antigen but between 
antibody and antibody in order to enhance the diversity 
of population; 4) Give a new antibody mutation operator 
according to the new antibody encoding form, the new 
operator utilizes affinity between antibody and antigen 
to determine antibody mutation strategy so as to 
improve the capabilities of the global search and local 
optimization for population. 

The remainder of this paper is organized as follows. 
The prediction principle of chaotic time series is 
described in Section 2. The prediction approach for 
chaotic time series based on immune optimization 
theory (PIOT) is presented in Section 3. The 
effectiveness of PIOT is verified using three typical 
chaotic time series generated by nonlinear dynamic 
systems in Section 4. Finally, the conclusion is given in 
the last section. 

2. The Prediction Principle of Chaotic Time 
Series 

Chaotic time series prediction process is mainly 
composed of time series analysis, prediction modelling 
and time series prediction. The change for any data 
element of chaotic time series is decided by interacting 
with neighbored data elements. So the inherent variation 
rule of time series can be found by analyzing the sub-
sequence of time series before prediction point, and a 
prediction value that approximate target value at 
prediction point will be deduced by it. Packard et al. in 
Ref. 25 have put forward the concept of phase space 
reconstruction and introduced the chaotic theory to 
analyze nonlinear time series, the idea of phase space 
reconstruction is that the phase space of time series is 
reconstructed using the delay coordinate of one of 
variables in dynamic system observed. Then, Takens et 
al. in Ref. 26 have given the relevant mathematical 
proof for phase space reconstruction theory, the 
conclusions show that the regular track may being 
restored from dynamic system by an appropriate 
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embedding dimension to reconstruct a high-dimensional 
phase space. Therefore, phase space reconstruction 
theory provides a reliable theory foundation for chaotic 
time series prediction problems. 
    Utilizing phase space reconstruction method to 
analyze and reconstruct chaotic time series, a suitable 
phase space (i.e. sample space) being used for 
establishing time series prediction model is obtained. 
Suppose chaotic time series { ( ) | ( ) }X x t x t= ∈\ , where 
t=1, 2… n; \  is the real number set, a sample space S 
established by phase space reconstruction method is: 

{ ( ), ( )} {[ ( ), ( 2 ), , ( )],[ ( )]}X t Y t x t x t x t d x tτ τ τ= − − −" .  (1) 

    Where , ,...,( 1)t n n dτ τ= − + ; τ is the time delay; d is the 
embedding dimension; X(t) is the in-sample of 
prediction model; Y(t) is the target value of prediction 
model; sample space S is composed of ( 1)n d τ− −  
samples. 
    For chaotic time series prediction, the prediction 
value is more affected by neighboring data elements 
than far distance data elements for time series, so the 
performance of establishing prediction model and 
corresponding prediction precision can be improved by 
selecting appropriate training samples (i.e. sample 
window) neighbored with prediction point. In this paper, 
we adopt C-C method27 to calculate time delay, 
embedding dimension and delay time window (i.e. 
sample window). Let w(≤l) is the sample window size, 
where ( 1)l n d τ= − −  represents the sample number of 
sample space S, when consider corresponding prediction 
value to target value Y(t), w samples before prediction 
point t are selected to build time series prediction 
model : df R → R , and then forecasting target value at t 
time, the relationship between prediction value and 
prediction model is: 

ˆ ( ) ( ( ), ( 2 ), , ( ))Y t f x t x t x t dτ τ τ= − − −" .      (2) 

3. Immune Optimization based Chaotic Time 
Series Prediction 

As the above-mentioned prediction principle, the vital 
problem of chaotic time series prediction is how to build 
an efficient prediction model by the past and current 
data of time series. To solve chaotic time series 
prediction problem, a novel prediction approach for 
chaotic time series based on immune optimization 
theory (PIOT) is proposed. The basic ideas of PIOT are: 
1) to analyze chaotic nonlinear time series and 

reconstruct a high-dimensional sample space by phase 
space reconstruction method introduced in Section 2; 2) 
to approximate the sample point of sample space by 
immune optimization mechanism such as clonal 
selection, immune network, immune memory and 
vaccination, and then build corresponding prediction 
model of time series; 3) to predict time series using this 
prediction model. Therefore, the prediction modelling 
process of time series realized by immune optimization 
mechanism is a crucial part of PIOT. 

3.1.  PIOT modelling 
Initialization of 

Antibody Population 
and Parameters

Obtain Antigen

Affinity 
Evaluation

Is termination 
criteria satisfied

Clonal Proliferation

Antibody Mutation

Update Antibody 
Population

Memory Antibody 
Evolution

Obtain Prediction 
Model

Immune Selection

Y

N

New Antibody 
Generated

Time Series 
Prediction

G
=G
+
1

Gene Evolution

 
 

Fig. 1. The prediction modelling paradigm of PIOT. 
 
The prediction modelling paradigm of PIOT is shown in 
Fig.1. The function modules of PIOT mainly include 
initialization of antibody population and parameters, 
affinity evaluation, immune selection, clonal 
proliferation, antibody mutation, memory antibody and 
gene evolution etc. In Fig.1, the solid lines indicate the 
basic flowchart of prediction modelling; the dotted lines 
indicate the called relationship between both function 
modules, namely one function module linking with the 
arrow tail need to call another function module linking 
with the arrow head in modelling process. When affinity 
between antibody and antigen is reach to the termination 
condition of immune evolution, the prediction 
modelling process is stopped and the relevant prediction 
model is obtained. Thus, the modelling capability and 
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the prediction performance of PIOT depend on antibody 
encoding mechanism, affinity evaluation method and 
immune optimization operators etc. 

In this section, the concepts and formal definitions 
of antigen, antibody and affinity associated with time 
series is given. Then, the mathematical models of 
immune optimization operators being used for time 
series prediction modelling, which deal with immune 
selection, clonal proliferation, antibody mutation, 
memory antibody evolution and gene evolution, are 
depicted in detail. 

3.1.1. Antigen, antibody and affinity 

In BIS, antigen is a kind of substances which can 
stimulate organism to produce immune response and 
arouse specific reaction associated with the organism’s 
reactant; and this substance can be recognized as 
exogenous substances or some components of organism. 
Antigen holds two important characteristics28: 1) 
immunogenicity, i.e. antigen stimulates lymphocyte of 
immune system to produce immune response; 2) 
specific reactivity, i.e. antigen is specifically 
synthesized with antibody. Antibody is a type of 
immune molecule which is produced by humoral 
immune response after antigen stimulating organism, 
namely immunoglobulin. Antibody can not only directly 
neutralize antigen components such as pathogens, 
microbe and virus, but also induce cellular immune 
response. Due to the specificity of antigen, there are 
antigenic determinants on antigen surface which can be 
recognized by antibodies, and meanwhile antibody 
determinants on antibody surface being used for 
recognizing antigenic determinants. Thus, affinity is 
usually defined as discrimination intensity between 
antigenic determinant and antibody determinant. 
    In order to simulate the dynamic immune mechanism 
of BIS, this paper applies immune optimizing 
mechanism to solve chaotic time series prediction 
problem. The concepts and formal definitions of antigen, 
antibody and affinity being used for establishing time 
series prediction model are depicted in this section. 

3.1.1.1. Antigen 
The definition of antigen is relative to the specific 
problem in AIS. For chaotic time series prediction 
problem, this paper use Takens’ delay embedding 
theory to analyze time series  
and reconstruct corresponding sample space S. In the 

course of prediction, a part of samples in sample space S 
is viewed as antigen, which is the premise condition of 
time series prediction modelling. 

{ ( ) | ( ) , }X x t x t t= ∈\ `∈

}Definition 1. Antigen  
represents a training sample subset in sample space S 
being used for establishing time series prediction model; 
antigen component 1 2

1{ | ,d
i iatg ag ag i m+= ∈ ∈\

1, , , ,d dag x x x x +=< >"  represents a 
sample point in training sample subset. 
    Where d is the embedding dimension, m is the 
number of antigen component. An antigen component 
comprises the in-sample X(t) and target value Y(t) 
associated with prediction model. 

3.1.1.2. Antibody encoding 
Antibody is made up of the Fab(Fragment antigen-
binding) and the Fc(Fragment crystallized) in BIS.28 
The Fab of antibody, which can higher bind with 
antigen, is formed by two identical polypeptide heavy 
chains and two identical polypeptide light chains. Each 
polypeptide comprises the constant region and the 
variable region, where the constant region is relatively 
stable parts for the number and arrangement of amino 
acids on polypeptide chain; the variable region is a part 
of amino acids that its arrangement is different for 
different antibody. Furthermore, the variable region is 
divided into the hypervariable region and the framework 
region, the studies of biological immunology show that 
antibody mutation reaction is only concentrated in 
hypervariable region including a few number of amino 
acids, and the amino acid variation of framework region 
is relatively less than that of hypervariable region. 
Accordingly the antibody fragment of hypervariable 
region has better affinity with antigen, and is a crucial 
region of antibody in order to recognize antigens. The 
biological structure of antibody can abstractly be 
depicted in Fig. 2. 

Constant RegionFramework RegionHypervariable Region

Variable Region

 
Fig. 2. The biological structure of antibody. 

For chaotic time series prediction problem, the 
prediction model is usually represented as mathematical 
expression, its elements is mainly composed of 
arithmetic operators, mathematical functions, variables, 
constants and so forth, so the precision of prediction 
model is related to the structure and the constituted 
elements of mathematical expression. Besides the linear 
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expression, the expression tree is another representing 
form of mathematical expression.29 The expression tree 
has two type nodes: the leaf nodes and the non-leaf 
nodes, the mapping relationship between the linear 
expression and the expression tree that its maximum 
out-degree equals two is shown in Fig. 3. According to 
Fig. 3(b), the symbol change of non-leaf node has a vital 
effect to the operation result and the structure of 
mathematical expression. For time series prediction 
model, once prediction model changed, viz., the 
variation rule of time series was destroyed, the 
corresponding prediction result may be deviated 
seriously. On the contrary, the symbol change of leaf 
node can bring only slight effect to the operation result 
of mathematical expression, and not change to the 
structure of that. 

0.5*(a+b)-c/sin(d)
0.5 +

b

c

-

* /

a d

sin

(a) linear expression (b)expression tree  
Fig. 3. Mapping relationship of linear expression and 
expression tree. 
 

According to the biological structure of antibody 
and the mapping relationship between the expression 
tree and the linear expression, the formal definition of 
antibody encoding used for chaotic time series 
prediction problem is depicted detailedly as follows. 
Definition 2. Antibody  

 denotes a 
candidate solution of prediction model being used for 
approximating time series curve, viz., a character string 
containing prediction model; Population 

. 

{ , , |atb Hr Fr Cr Hr= < > ∈
{ , } , { } ,

LL Lfh cFuns Vars Fr Vars Cr∈ ∈` }

}{ |1iAbs atb i= ≤ ≤n
    Where Hr, Fr and Cr denote respectively the 
hypervariable region, the framework region and the 
constant region of antibody;  
denotes a set which include arithmetic operators and 
mathematical functions selected by user in terms of a 
given problem complexity, Q represents the square root 
function, P represents the exponential function, N 
represents the sine function and O represents the cosine 
function; denotes the variable 

set specified by user according to a given problem 
parameters, ? represents the coefficient location in 
prediction model; ` denotes natural number set; L

{ , ,*, /, , , , }Funs Q P N O⊆ + −

{?, , , , , , , }Vars a b c x y z⊆ "

h, Lf 
and Lc(constant natural number) denote respectively the 
length of hypervariable region, framework region and 
constant region for an antibody; n (constant natural 
number) denotes the number of population. 
 

? +

b

c

-

* /

a d

N

(b)expression tree

-*/？+cN abd… 212…

(c)antibody encoding 

0.2,0.5,……

coefficient item

constant 
region

?*(a+b)-c/N(d)

(a) prediction model

hypervariable 
region

framework 
region

 
Fig. 4. Mapping relationship of prediction model, expression 
tree and antibody encoding. 
   
    From definition 2, the structure of antibody encoding 
is composed of hypervariable region, framework region 
and constant region. For the symbols of antibody 
encoding, the hypervariable region involves arithmetic 
operators, mathematical functions, variables and ?; the 
framework region involves variables and ?; the constant 
region only involves constant natural number. For 
example, a prediction model, 0.5*(a+b)-c/sin(d), can be 
converted into ?*(a+b)-c/N(d), the mapping relationship 
of prediction model, expression tree and antibody 
encoding are shown in Fig. 4, where Fig. 4(a) presents 
prediction model; Fig. 4(b) is a expression tree 
associated with Fig. 4(a) that its maximum out-degree 
equals two; according to the structure characteristics of 
antibody and the hierarchical traverse method of tree29, 
a antibody encoding consisting of some possessing 
specific meaning characters in Fig. 4(c) is obtained by 
Fig. 4(b). Known from Fig. 4, the antibody decoding 
operation is a reverse process of antibody encoding. 
    The key factor to determine the length of antibody 
encoding is variable region according to the definition 
and characteristics of antibody encoding. Due to the 
prediction model being one part of antibody encoding, 
the length of prediction model will not exceed the 
predefined length of antibody encoding. This paper uses 
some characteristics of expression tree to determine the 
length of variable region that is the node number of 
expression tree. The expression tree comprise non-leaf 
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node (function node) and leaf node (terminal node), 
non-leaf node is mainly related to arithmetic operator 
and mathematical function etc, and leaf node usually 
includes variable,? and so on, where ? represents the 
coefficient of prediction model. 
Theorem 1. Supposing Fnc represents the node number 
of expression tree; m represents the maximum argument 
number of function node, then the maximum number of 
terminal node Tnc do not exceed (m-1)*Fnc +1. 
Proof. Let an expression tree holds n nodes, the 
maximum out-degrees of node equal m, ni indicates the 
node number that the out-degrees of node equal i, so the 
node number of expression tree is 

0 1 2 mn n n n n= + + + +" .                  (3) 
In expression tree, except for root node, the all rest 

nodes have an entry filiation. Let s indicates the sum of 
filiation, then n=s+1. Due to these filiations are related 
to nodes that their out-degrees respectively are 1, 2, 3,…, 
m, viz., the sum of filiation s=n1+2n2+3n3+…+mnm, the 
node number of expression tree is 

1 2 32 3 mn n n n mn= + + + + +1

1

1

}Cr index index Scefindex i L

.              (4) 

From Eqs. (3) and (4), the number of terminal node 
that their out-degrees equal zero is 

0 2 3 42 3 ( 1) mn n n n m n= + + + + − +" .       (5) 

Hence, when the out-degree of each function node 
in expression tree equal m, in other words, 
n2=n3=…=nm-1=0, we can obtain 

0 ( 1) mn m n= − + .                           (6) 

Where nm represents the function node number; n0 
represents terminal node number. 

Therefore, the maximum number of terminal node 
Tnc do not exceed (m-1)*Fnc +1.                                   □ 

From theorem 1, the variable region length is the 
sum of function nodes and terminal nodes for 
expression tree in the worst case, i.e. Fnc*m+1, where 
function node number Fnc is given by user. So 
hypervariable region length Lh and framework region 
length Lf in this paper equal respectively function node 
number (Fnc) and terminal node number (Tnc). 
According to the hierarchical traverse method of 
expression tree, we consider two situations about the 
encoding symbols of hypervariable region: 1) when the 
function node number is less than the hypervariable 
region length, the encoding symbols comprise 

arithmetic operators, mathematical functions and 
variables; 2) when the function node number equal the 
hypervariable region length, the encoding symbols 
include only arithmetic operator and mathematical 
function. Moreover, the encoding symbol form of 
framework region corresponds with the terminal node 
symbol of expression tree. 

The constant region is mainly related to two 
concepts: index item index and coefficient item 
coefficient, its length can be given by user according to 
the complexity of problem. The constant region 

c{ | ,1i i= ∀ ∈ ≤ ≤

,

 is an 
index item set comprising index values, the coefficient 
item set  { |j jScoefficient coefficient coefficient= ∈\  

}j Scefindex∈  is a real number set, where 
 is the range of subscript value of 

coefficient item, `  is natural number set, \  is real 
number set, L

Scefindex ⊆ `

c(≤Lh) is the constant region length. Each 
index value corresponds to each coefficient location in 
coefficient item set, and is used for obtaining real value 
of corresponding coefficient item in prediction model, 
the variation rang of coefficient value is between [0,1]. 
The relationship of index item, coefficient item and 
antibody encoding symbol ‘?’ is shown in Fig. 4. 

3.1.1.3. Affinity evaluation 
Affinity is usually used for describing the fitness or 
similarity between antigen and antibody in AIS. As far 
as chaotic time series prediction problem is concerned, 
using affinity between antibody and antigen to reflect 
the approximate intensity between prediction models 
and time series, and using affinity both antibodies to 
reflect the population diversity. 
Definition 3. Antigen-affinity is defined as the fitness 
between antibody and antigen; antigen-affinity is 
evaluated by 

( )2

1

1( , )
11 ( , )

atg m

j j
j

Aff atb atg
p atb ag t

m =

=

+ −∑ j

.       (7) 

Where agj is the jth component of antigen atg, 
1≤j≤m; pj is the prediction value obtained by using the 
in-sample X(t) associated with prediction model in 
antigen component agj to replace corresponding 
variables of prediction model included in antibody atb; 
tj is the target value Y(t) associated with prediction 
model in antigen component agj; ( )i  is the root mean 
square error(RMSE) between target values and 
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prediction values. The smaller ( )i , the bigger antigen-
affinity, it show antibody has better fitness to antigen, 
viz., prediction model holding better approximation 
capability to time series. The antigen-affinity is close to 
1 when ( )i  is gradually decreased to zero, i.e. the 
prediction model associated with a given antibody is an 
idea prediction model. 

From definition 1 and definition 2, an in-sample 
X(t) in antigen component exists corresponding 
relationship with a variable character of antibody 
encoding. To calculate antigen-affinity, each antigen 
component ag effectively combines with the given 
antibody according to Eq. (7). Taking the approximation 
capability between antigen component and antibody as 
example, supposing the embedding dimension d=4, then 
an in-sample X(t) of antigen component can be 
expressed as ﹤x(1), x(2), x(3), x(4)﹥ , the variable 
character set of antibody encoding is defined as {a, b, c, 
d}, where a, b, c and d correspond to x(1), x(2), x(3) and 
x(4), respectively. It is worth noting: data number of in-
sample part of antigen component equal variable 
number corresponding with antibody encoding, and 
keeps consisting with the embedding dimension d. Let 
x(1)=0.22, x(2)=0.63, x(3)=0.12, x(4)=0.85, the 
prediction model, ?*(a+b)-c/N(d), in Fig. 4 can be 
rewritten as ?*(0.22+0.63)- 0.12/sin(0.85), where ? 
equals 0.5, viz., obtaining a prediction value associated 
with antigen component ag. 
Definition 4. Antibody-affinity is defined as the 
similarity between one antibody and another antibody in 
population; antibody-affinity is evaluated by 

1
( ( ), ( )

( , )
atblen

match s ti
atb s t

atb

)f atb i atb i
Aff atb atb

len
== ∑ .   (8) 

0 , ( ) ( )
( ( ), ( ))

1 ,
s

match s t

iff atb i atb i
f atb i atb i

otherwise
≠⎧

= ⎨
⎩

t .   (9) 

Where lenatb=Lh+Lf+Lc, Lh, Lf and Lc represent 
hypervariable region length, framework region length 
and constant region length of an antibody, respectively. 
Generally, antibody-affinity is calculated by hamming 
distance method. 

3.1.2. Immune optimization operators 

According to clonal selection theory, the classical clonal 
selection algorithm mainly relates to simple immune 
operators such as selection, clone, mutation and so on.18 

In the process of the prediction modelling of chaotic 
time series based on immune optimization theory, this 
paper proposed corresponding immune optimization 
operators used for solving time series prediction 
problem, which are immune selection, clonal 
proliferation, antibody mutation, memory antibody 
evolution and gene evolution. Using these operators to 
realize immune evolution operation, they can not only 
improve the global search capability but also expedite 
the convergence speed of antibody evolution. 

3.1.2.1. Immune selection 
To solving the optimization problem of some 
application engineering areas using clonal selection idea, 
the classical clonal selection algorithm usually use 
affinity between antigen and antibody to change the 
population diversity so as to find the global optimization 
solution of a specific problem. The classical clonal 
selection algorithm mainly adopts two immune 
optimization operations, namely hypermutation and 
receptor editing, to improve the population diversity in 
order to enhance the recognizing capability of antibody 
for antigen. Due to immune selection operation being 
the precondition of immune evolution, the suitable 
immune selection operation has a guiding effect for 
immune evolution. For evolution selection mechanism, 
the traditional selection methods mainly include roulette 
algorithm, elite selection, bipolar selection, level-based 
selection and so on.14 To realize the clonal proliferation 
operation, de Castro et al. proposed to select n high 
antigen-affinity antibodies from population18; Nitesh 
Khilwani et al. introduced a power based roulette 
selection algorithm to select antibodies from 
population24; Gong et al. proposed to select high 
antigen-affinity antibodies proportionally from 
population21. 

Inspired by immune network theory14, 15, 19, a new 
immune selection operator is proposed. Due to this 
operator introducing antigen-affinity and antibody-
affinity at the same time, this operator can provide 
chance to select not only high antigen-affinity 
antibodies but also low antigen-affinity antibodies in 
order to realize the diversity of population; and 
simultaneously can avoid the phenomenon of repeated 
operations for the similar antibody to some extent. From 
definition 4, population is divided into multiple sub-
populations according to the similarity of antibody, and 
the stimulated level of antibody in population is 
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calculated using the concentration of similar antibodies 
in sub-population. Therefore, the probability of antibody 
selected is related to the stimulated level of antibody 
and the antigen-affinity. 

Supposing Abs indicates population; atb indicates 
antibody; n indicates the population size; α  indicates 
the threshold of similar antibody, then the stimulated 
level of antibody atbs(∈Abs) is calculated by Eqs. (10) 
and (11). 

{ | ( , )
}

sub atb s

s s

Abs atb Aff atb atb
atb Abs atb Abs atb

α= ≥

∧ ∈ ∧∀ ∈ −
.   (10) 

|( ) |sub
s

AbsSti atb
n

= .                                (11) 

(

1

( , )
( )

( , )
)satg s Sti atb

select s n
atg ii

Aff atb atg
P atb e
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−

=

=
∑
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Where Eq. (10) is used for searching a sub-
population Abssub from population Abs, and the 
antibody-affinity between each antibody of Abssub and 
antibody atbs is not less thanα ; Eq. (11) is used for 
calculating the stimulated value Sti of atbs in Abssub. 
From Eq. (12), the selection expectation value Pselect for 
atbs which is selected to the next step evolution 
operation is directly proportional to the antigen-affinity 
and inversely proportional to the stimulated value Sti, 
where |Abssub| represents antibody number of Abssub. In 
population, an antibody holding higher the antigen-
affinity and lower the stimulated value Sti has more 
chance being selected to the next step evolution 
operation, reversely, it will be restrained. And 
meanwhile lower antigen-affinity antibodies have 
chance being selected to the next step evolution 
operation too. The immune selection algorithm (ISA) is 
depicted in Algorithm 1. 
 
Algorithm 1. The immune selection algorithm (ISA).  

Step 1: Use Eq. (8) to calculate the antigen-affinity of 
population Abs; 

Step 2: Calculate the stimulated value Sti of population Abs; 

Step 2.1: Use Eq. (10) to obtain a sub-population Abssub from 
population Abs, and each antibody of Abssub hold 
same antibody-affinity with antibody atbs; 

Step 2.2: Use Eq. (11) to calculate the stimulated value Sti of 
antibody atbs in population Abs; 

Step 2.3: If existing an antibody that its stimulated value Sti 
has not being calculated in population Abs, go to Step 
2.1; 

Step 3: Use Eq. (12) to calculate the selection expectation 
value Pselect of population Abs being selected to the 
next step evolution operation. 

3.1.2.2. Clonal proliferation 
In clonal proliferation operation, antibody being sorted 
as descending order according to its selection 
expectation value Pselect , and then selecting m antibodies 
from current generation population, which hold higher 
Pselect, to be used for clonal proliferation in terms of the 
clone ratio Rc(0< Rc<1), viz., constituting a selection 
antibody population Absselect that include m antibodies. 
Known from ISA, the clonal proliferation operation can 
ensure that not only the higher antigen-affinity 
antibodies in population are cloned but also the lower 
antigen-affinity antibodies have chance to be cloned too, 
so that enlarging the searching space and improving the 
searching speed for population. Eqs. (13) and (14) 
represent respectively antibody clonal number Nclone and 
clonal antibody population Absclone. 

1
( ) /m

clone i
N n i i

=
= −⎡⎢ ⎤⎥∑ .                     (13) 

{ |
, 1, 2, , }

clone i i

i select

Abs e atb
atb Abs i m

= ×

∈ = "
.     (14) 

Where n is the antibody population size; i is the 
index value of the selected antibody in Absselect, the 
smaller the number i, the bigger the antigen-affinity and 
the more the clonal number of antibody; Nclone is the 
sum of clonal antibody for m higher antigen-affinity 
antibodies; ei is a ( ) /n i i⎡ ⎤−⎢ ⎥ -dimensional identify 
column vector; Absclone is the clonal antibody population 
generated by m selected antibodies. 

3.1.2.3. Antibody mutation 
Antibody mutation operation is the most critical part of 
immune evolution. Antibody mutation can not only 
maintain the diversity of population but also guide the 
global optimization of population in immune evolution. 
Mutation operation can occur in any position within 
antibody encoding. The optimization antibody solution 
associated with the given problem can be quickly found 
by effective mutation operation. 

During immune evolution, to avoid convergence 
early or local optimization for population, we need 
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consider the diversity of population from the whole of 
antibody encoding; reversely, to search the superior 
antibody from local optimization space to suffice the 
specific problem, we need consider the micro-variability 
of antibody from the part-specified of antibody 
encoding.14, 30 According to the characteristics of 
antibody encoding in definition 2, we adopt two 
mutation strategies: local mutation and global mutation. 
The local mutation only considers to mutate the 
hypervariable region of lower antigen-affinity antibody, 
and to improve the antigen-affinity of antibody by the 
global searching of antibody space. For the higher 
antigen-affinity antibody, the global mutation can 
improve the antigen-affinity of antibody by local 
searching of antibody space so as to finding the 
optimization antibody. The global mutation only 
considers mutating slightly the framework region and 
constant region of antibody, the mutation operation does 
not cause seriously deviation to antigen-affinity of 
antibody. 

For antibody mutation process, using Eq. (15) to 
select the mutation strategy in terms of the antigen-
affinity of antibody in Absclone, where β  in Eq. (16) 
represents the average antigen-affinity of m selected 
antibodies in Absselect. If antigen-affinity is less than β , 
Mt=1 indicates the local mutation of antibody; reversely, 
the mutation strategy of antibody is regarded as the 
global mutation. The difference between global 
mutation and local mutation is exhibited by the different 
mutation regions within antibody encoding. If the 
mutation operation happens on hypervariable region of 
antibody relating to the local mutation, the structure of 
prediction model within antibody will be changed and 
meanwhile the antigen-affinity of antibody will be 
mutated too. Moreover, to the framework region and 
constant region relating to the global mutation, the aim 
of mutation operation makes the antigen-affinity of 
antibody obtaining a little rising. To realize the mutation 
operation of antibody, using the mutation probability 
defined by Eq. (17) to mutate a gene within antibody 
encoding, so that enhancing the population diversity and 
improving the antigen-affinity of antibody. The mutated 
antibodies constitute a mutation antibody population 
Absmutation, and the antibody mutation algorithm (AMA) 
is depicted in Algorithm 2. 

1 ( )
( )

0
atg i

i

Aff atb
Mt atb

otherwise
β<⎧

= ⎨
⎩

.            (15) 

1
1

(m
atg ii

m Aff atβ −
=

= )b∑i .                  (16) 

(( )m
Affinity atbP atb e )−= .                  (17) 

Theorem 2. For antibody mutation operation, the 
probabilit  that the clonal antibody 
population Abs

( clone mutationP Abs Abs→ )
clone is translated into the mutation 

antibody population Absmutation is greater than 0. 
Proof. Supposing Absclone={ai|i∈m}, Absmutation={bi|i∈
m}, known from Eqs. (7) and (17), Pm(ai)≡ 
Pm(Affatg(ai,atg))＞0. From definition 2, let the length of 
binary encoding both ai and bi equals l, the hamming 
distance between ai and bi is d, known from Ref. 31, the 
mutation probability that is from ai to bi is: P{ai→bi}≡
Pm(ai)d(1- Pm)l-d>0. Hence, there must being a constant 

(0 1)ζ ζ< <  can suffice: 

1
( ) {m

clone mutation i ii
P Abs Abs P a b} ζ

=
→ = →∏ ≥ .     (18) 

Therefore, the transformation probability from 
Absclone to Absmutation is greater than 0.                           □ 

 
Algorithm 2. The antibody mutation algorithm (AMA). 

Step 1: Obtain a clonal antibody population Absclone being 
used for antibody mutation operation; 

Step 2: Use Eqs. (15) and (16) to determine antibody 
mutation strategy; 

Step 3: Mutation operation for Absclone; 

Step 3.2: If antigen-affinity of antibody is less than β, antibody 
is mutated by local mutation method, viz., the gene 
bit within hypervariable region of antibody is mutated 
by Eq. (17); 

Step 3.2: If antigen-affinity of antibody is not less than β, 
antibody is mutated by global mutation method, viz., 
the gene bit within the framework region and constant 
region of antibody is mutated by Eq. (17); 

Step 4: Get a mutation antibody population Absmutation by 
Absclone. 

3.1.2.4. Memory antibody evolution 
Compared with the genetic evolution mechanism, the 
significant merits of immune memory operation are that 
the superior antibodies of population will be stored. By 
the local optimization to superior antibody, the 
convergence capability of population is improved. The 
memory antibody can obtain higher antigen-affinity 
after clonal proliferation and antibody mutation for 
current generation population. Memory antibody 
warehouse Absmemory is used for storing some selected 
optimization antibodies from each generation evolution 
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population. With the evolution of antibody continually, 
the antigen-affinity of antibodies in Absmemory increase 
gradually, so the optimization antibody according with 
the specific problem is found finally. Consider antigen-
affinity of antibody in population may be degenerated 
after immune evolution operations such as clonal 
proliferation, antibody mutation, firstly incorporating 
the selection antibody population Absselect to the 
mutation antibody population Absmutation, viz., 

{ |Abs Abs atb atb Abs atbmutation mutation select= ∪ ∈ ∧

}

}

 
, and then calculating renewedly 

antigen-affinity of Abs
}Absmutation∉

mutation and sorting its antibodies 
as descending order. A part of antibodies selected from 
Absmutation constitute an update antibody population 
Absupdate being used for updating Absmemory in terms of 
the memory antibody selection ratio Rm. By memory 
antibody evolution operation, the higher antigen-affinity 
antibody in Absupdate will be substituted for the lower 
antigen affinity antibody in Absmemory. The basic model 
of memory antibody evolution is described as follows: 

( ) ( )

( 1), ( | ( )|)
{ | ( 1), 1,2, , | ( )|},

memory new

memory new

i i memory new

Abs t Abs t

Abs t iff ml mn Abs t
atb atb Abs t i ml Abs t otherwise

= ∪

− ≥ +⎧
⎨ ∈ − = −⎩ "

. 

 (19) 

( ) { | ( )

( ) ( ) ( 1)
new update

atg atg memory

Abs t atb atb Abs t

Aff atb Aff x x Abs t

= ∈ ∧

> ∧∃ ∈ −
.  (20) 

For Eqs. (19) and (20), t is the number of evolution 
generation, the memory antibody warehouse Absmemory(t) 
is set to ∅  at time t=0. In current generation, Absnew(t) 
is a memory antibody update population, and its 
antibodies are a part of higher antigen-affinity 
antibodies of Absupdate(t) that are not less than the lowest 
antigen-affinity antibody of Absmemory(t-1). In the course 
of each generation evolution for population, we should 
consider two evolution methods for Absmemory(t): If 
ml>mn+|Absnew(t)|, Absmemory(t) is a union of Absmemory(t-
1) and Absnew(t); reversely, substituting |Absnew(t)| 
antibodies of Absnew(t) for the lower antigen-affinity 
antibodies of Absmemory(t-1), i.e. obtaining Absmemory(t). 
When an optimization antibody to adapt the specific 
antigen has no being found, a part of antibodies selected 
from Absmemory(t) will be inherited to next generation 
population so that the optimization antibody can quickly 
be sought by memory antibody evolution operation. 

3.1.2.5. Gene evolution 
Definition 5. Gene gen=<g, cnt> represents a segment 
within antibody encoding, where  
represents an excellent gene molecular, cnt

{ , ,g Funs Vars⊂ \
∈`  

represents the using frequency of g being used for 
vaccination during immune evolution. 

The reason that gene being introduced into 
population is gene within antibody encoding possessing 
some genetic merits. The superior genes can rapidly 
spread in population and accelerate the convergence 
speed of population. Gene evolution mainly relate to the 
gene extraction, the gene warehouse update and the 
gene vaccination. The gene extraction objectives 
consider only the superior antibodies which have been 
updated to memory antibody warehouse, and the 
extracted gene is a part of excellent encoding segment 
coming from the hypervariable region of higher antigen-
affinity antibody. On the other hand, for gene 
vaccination operation, during update next generation 
population, we select a part of excellent genes from 
gene warehouse being used for gene vaccination for a 
part of new antibodies so that the antigen-affinity of 
antibody is improved. It is noteworthy that gene 
vaccination operation happens only on the hypervariable 
region and the framework region of antibody. The 
function of gene evolution is that excellent gene is 
extracted continually from superior antibodies and the 
gene warehouse is updated dynamically so as to 
realizing gene warehouse evolution. The basic model of 
gene evolution is shown as following: 
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From Eqs. (21), (22), (23) and (24), the initial gene 
warehouse Gnd(t) is ∅  at time t=0; Tempd is the 
temporary gene warehouse and is used for accumulating 
the using frequency cnt for genes of previous generation 
gene warehouse which have been used by some 
antibodies of current generation population Abs(t). If a 
gene in Gnd(t-1) is found in p antibodies of Abs(t), cnt 
associated with a specific gene add p, reversely, cnt 
subtract 1; Gndnew(t) is used for storage superior genes 
of antibody extracted from Absnew(t), and its gene using 
frequency is set to the highest gene using frequency of 
Gnd(t-1) so that the added new gene will not be early 
deleted from gene warehouse; Gnddead(t) is used for 
storage the lower using frequency genes deleted from 
Gnd(t-1). Finally, we ought to notice the uniqueness of 
gene in Gnd. 

3.2. PIOT algorithm 

Immune optimization theory based chaotic time series 
prediction algorithm is depicted in Algorithm 3, this 
algorithm includes four parts: original time series data 
normalization, time series phase space reconstruction, 
prediction modelling and time series prediction. 
 
Algorithm 3. The algorithm of PIOT. 

Step 1: Obtain and normalize original chaotic time series;  

Step 2: Analyze time series using phase space reconstruction 
method, and then get reconstructed time series sample 
space; 

Step 2.1: Obtain corresponding parameters for time series 
prediction by C-C method: time delay, embedding 
dimension and sample window; 

Step 2.2: Reconstruct a reasonable time series sample space by 
Eq. (1); 

Step 3: Establish prediction model for chaotic time series; 

Step 3.1: Get multiple samples before prediction sample point, 
the sample number equal the sample window size; 

Step 3.2: Establish chaotic time series prediction model sufficing 
the user-specified problem by immune optimization 
theory based prediction modelling method; 

Step 4: Predict chaotic time series. 

 
From Algorithm 3, the key parts of this algorithm 

mainly include chaotic time series analysis based on 
phase space reconstruction and the time series 
prediction modelling based on immune optimization 
theory. For time series analysis, we use C-C method 
obtaining phase space reconstruction parameters, 

namely time delay and embedding dimension, and then 
reconstructing a high dimension phase space of time 
series in order to obtain an efficient time series 
prediction model. In the course of the prediction 
modelling of time series, we establish an appropriate 
prediction model using corresponding immune 
optimization operators such as clonal proliferation, 
antibody mutation, memory antibody evolution and 
gene evolution etc. In this paper, we adopt respectively 
single-step prediction and multi-step prediction to 
demonstrate the validity of Algorithm 3, where the 
single-step prediction method is defined as predicting 
only one data of the future time sequence according to 
the past and current time sequence data; the multi-step 
prediction method is defined as predicting multiple data 
of the future time sequence, and the prediction values of 
all former prediction points will be viewed as history 
time sequence data when the corresponding prediction 
values of latter prediction points are calculated. 

4. Simulation and Results 

4.1. Data preprocessing and evaluation criterion 

In the process of simulation experiments, this paper use 
Eq. (25) to normalize original chaotic nonlinear time 
series, where xmax and xmin indicate respectively the 
maximum value and the minimum value of time series, 
the variation range of normalized time series values is 
between [0, 1]. 

min

max min

( )( ) x t xx t
x x

−
=

−
.                          (25) 

To demonstrate the accuracy of PIOT, we 
introduce three prediction evaluation criterions: the 
absolute error (AE), the root mean square error (RMSE) 
and the mean absolute error (MAE). The corresponding 
definitions are respectively Eqs. (26), (27) and (28). 

ˆ| ( ) ( ) |AE x t x t= − .                           (26) 

1

1 ˆ( ) ( )n

t
MAE x t x t

n =
= −∑ .                     (27) 

2
1

1 ˆ( ( ) ( ))n

t
RMSE x t x t

n =
= −∑ .               (28) 
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Fig. 5. Lorenz time series. 
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Fig. 6. Mackey-Glass time series. 

0 50 100 150

0

0.2

0.4

0.6

0.8

1

t

x(
t)

Fig. 7. Henon time series. 
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Fig. 8. C-C method analyzing x component of Lorenz time 
series. 

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

t

S
(t)

△

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

t

S
co

r(t
)

Fig. 9. C-C method analyzing Mackey-Glass time series. 
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Fig. 10. C-C method analyzing x component of Henon time 
series. 

Where n is the number of time series prediction 
point, x(t) and ˆ( )x t  are the target value and the 
prediction value of the tth prediction point respectively. 
AE reflects directly the deviation of target value and 
prediction value; MAE reflects the average value of 
prediction errors; and RMSE is used for evaluating the 
predicting performance of different prediction methods 
for same prediction objective. 

4.2. Data sets used 

In this paper, we use three typical chaotic time series as 
benchmark problems, which are Lorenz time series27, 

Mackey-Glass time series8 and Henon time series12, to 
validate the effectiveness of PIOT. 
Lorenz time series 

4.2.1. Lorenz time series 

Lorenz system is a deterministic system holding chaotic 
phenomenon that is found in 1963, the Lorenz system 
can be described as follows: 

( ) ( ( ) ( ))
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t a y t x t
y t bx t y t x t z t
z t x t y t cz t

= −⎧
⎪ = − −⎨
⎪ = −⎩

�
�
�

.           (29) 
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Where x represents the amplitude of convection 
motion and is directly proportional to the motion 
intensity; y represents the temperature between the 
ascending and descending currents; z represents the 
distortion of the vertical temperature profile from 
linearity. When a, b and c equal respectively 16, 45.92 
and 4, the system possess chaotic features. Supposing 
initial condition x(0)=-1, y(0)=0, z(0)=1, the integral 
time step equal 0.01s, we use the standard fourth-order 
Runge-Kutta method to solve Eq. (29) and generate 
chaotic time series by the x component of Eq. (29). For 
Lorenz time series prediction, we select 8300 data 
according to Eq. (29), where the first 8000 data are 
discarded; the rest 300 data are considered as 
experiment data and its normalized results is shown in 
Fig. 5. 

4.2.2. Mackey-Glass time series 

Mackey-Glass equation is a delay dynamical system 
holding chaotic phenomenon that is discovered in 1977 
by Mackey and Glass, the Mackey-Glass equation can 
be described as follows: 

( ) ( ) ( )
1 ( )c

dx t ax t bx t
dt x t

τ
τ

−
= −

+ −
 .                (30) 

Where τ  represents the delay parameter, Eq. (30) 
possess chaotic behavior when 17τ > , and τ  is 
directly proportional to the chaotic intensity of Eq. (30). 
The parameters, a, b, c andτ , are set to 0.2, 0.1, 10 and 
17, respectively. For Mackey-Glass time series 
prediction, we select 8000 data generated by Eq. (30), 
where the first 7700 data are discarded; the rest 300 data 
are considered as experiment data, and its normalized 
results is shown in Fig. 6. 

4.2.3. Henon time series 

Henon mapping is one of the most famous simple 
dynamical systems. Henon mapping equation can be 
described as follows: 

2( 1) 1 ( ) ( )
( 1) ( )

x t Ax t y
y t Bx t

⎧ + = − +
⎨

+ =⎩

t .              (31) 

When the parameters, A and B, are respectively 
fixed at 1.29 and 0.3, Henon mapping equation shows 
chaotic behavior. Let initial condition x(0)=0 and 
y(0)=0, we take the x component of Eq. (31) as chaotic 
time series. For Henon time series prediction, we select 

4450 data generated by Eq. (31), where the first 4300 
data are discarded; the rest 150 data are considered as 
experiment data, and its normalized results is shown in 
Fig. 7. 

4.3. Experiment parameter settings 

In the process of chaotic time series prediction 
modelling based on immune optimization theory, the 
simulation experiment mainly relate to two class 
parameters: the phase space reconstruction parameters 
and the antibody evolution parameters. The 
corresponding parameters associated with chaotic time 
series prediction are analyzed and set as following. 

4.3.1. Parameters of phase space reconstruction 

For Lorenz time series, Mackey-Glass time series and 
Henon time series, we use C-C method to obtain 
corresponding phase space reconstruction parameters: 
time delayτ and embedding dimension d. By calculating 
the statistics average deviation ( )S tΔ and the desired 
value Scor(t) using C-C method, the variations of ( )S tΔ  
and Scor(t) for the three time series are shown in Fig. 8, 
Fig. 9 and Fig. 10 respectively, where the time t 
corresponding with the first local minimum value of 

( )S tΔ  is regarded as time delay τ ; the time t 
corresponding with the global minimum value of Scor(t) 
is regarded as sample window w. Therefore, known 
from the embedding dimension , the phase 
space reconstruction parameters of the three time series 
are given in Table 1. 

/d w τ=⎡ ⎤⎢ ⎥ 1+

 
Table 1.  The phase space reconstruction parameters. 

Time series Time delay τ  
Embedding 
dimension d 

Sample 
window w 

Lorenz  3 3 6 

Mackey-Glass 4 4 9 

Henon  2 5 7 

4.3.2. The parameters of antibody evolution 

For chaotic time series prediction modelling, the 
required immune evolution parameters of PIOT are 
listed in Table 2. These parameter settings reasonably 
will affect the search capability of the optimal antibody. 
The evolution process of antigen-affinity and the 
sensitivity analysis of antibody evolution parameters are 
described in the following section, respectively. To 
avoid bias, the prediction results of chaotic time series 
equal to the average forecasting results of T independent 
trials. 
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Table 2.  The antibody evolution parameters. 
Parameter Value 

Number of runs T 50 

Number of generations η 500 

Population size N 60 

Antibody hypervariable region length Lh 25 

Antibody framework region length Lf 26 

Antibody constant region length Lc 9 

Antigen-affinity threshold value γ 0.98 

Antibody similarity threshold value α 0.80 

Clonal rate Rc 0.1 

Memory antibody selection rate Rm 0.3 

4.3.3. Evolution of affinity 

We select the x component of Lorenz time series to 
analyze the evolution of antigen-affinity of PIOT. 
According to the value of antibody evolution parameters 
listed in Table 2, Fig. 11 gave the evolution process of 
antigen-affinity in order to obtain an optimal antibody 
which relates to the prediction model of time series. 
When the number of generationsη=44, the antigen-
affinity is 0.9858, and reach to the threshold value of 
antigen-affinityγ, that is, an optimal antibody is found; 
When the number of generationsη≥137, the maximum 
antigen-affinity is 0.9948. The experiment results 
reveals PIOT holds better approximation capability for 
chaotic time series. 

50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Generations

A
nt

ig
en

-A
ffi

ni
ty

Maximum Affinity
Average Affinity

 
Fig. 11. Evolution of antigen-affinity in PIOT algorithm. 

4.3.4. Sensitivity analysis 

To examine the sensitivity of antibody evolution 
parameters of PIOT, we select the x component of 
Lorenz time series to analyze the sensitivity of the 
corresponding parameters. Known from Table 2, the 
parameters that produce biggish impact for the 

convergence rate of PIOT mainly include population 
size, antibody hypervariable region length, clonal rate 
and memory antibody selection rate. So, we consider 
studying the sensitivity of these parameters below. 

4.3.4.1. Effect of population size 
In order to examine the effect of population size N for 
the convergence rate of PIOT, its value is varied from 
20 to 500 with an increment of 10. Fig. 12 show the 
number of generations required to produce an optimal 
solution which relates to the prediction model of time 
series is plotted against the population size. The 
iteration times used for searching an optimal solution 
will decrease gradually when the population size 
increase, that is to say, the convergence rate of PIOT is 
improved effectively. But when the population size is 
larger than 50, the iteration times is not exceed to 30 in 
the worst case and the convergence rate of PIOT is 
relatively stable. 
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Fig. 12. Sensitivity of Population Size N. 
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Fig. 13. Sensitivity of Antibody Hypervariable Region Length 
Lh. 

4.3.4.2. Effect of antibody hypervariable region length 
To demonstrate the effect of antibody hypervariable 
region length Lh for the convergence rate of PIOT, its 
value is varied from 2 to 60 with an increments of 2. Fig. 
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Table 3.  The prediction error comparison of chaotic time series. 
Time series Lorenz Mackey-Glass Henon 

Prediction step  1 20 50 1 20 50 1 20 50 

PIOT 0.0081 0.0205 0.0297 0.0084 0.0173 0.0227 0.0562 0.0698 0.1052 
RMSE 

PGA 0.0192 0.0221 0.0309 0.0165 0.0631 0.0406 0.1605 0.2078 0.2487 

PIOT 0.0053 0.0160 0.0256 0.0069 0.0157 0.0167 0.0400 0.0517 0.0725 
MAE 

PGA 0.0123 0.0192 0.0273 0.0135 0.0269 0.0348 0.1162 0.1485 0.2183 

13 show the number of generations required to produce 
an optimal solution which relates to the prediction 
model of time series is plotted against the antibody 
hypervariable region length. Known from Fig. 13, the 
variation curve of the number of generations was of a 
“U” shape, and when the value of antibody 
hypervariable region length is varied from 6 to 36, the 
PIOT hold better convergence rate. 

4.3.4.3. Effect of antibody clonal rate 
For the clonal rate Rc of population, its value is varied 
from 0.1 to 0.99 with an increment of 0.01. Fig. 14 
show the number of generations required to produce an 
optimal solution which relates to the prediction model 
of time series is plotted against the clonal rate. Known 
from Fig. 14, the number of generations was inapparent 
increased according to the variation of clonal rate, but 
we can see the variation curve of the number of 
generations was overall upward tendency. The 
experiment results show that the convergence rate of 
PIOT would be reduced because of the ascending of the 
clonal rate. 
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Fig. 14. Sensitivity of Clonal Rate Rc. 

4.3.4.4. Effect of memory antibody selection rate 
This session examines the effect of memory antibody 
selection rate Rm for the convergence rate of PIOT; and 
its value is varied from 0.1 to 0.5 with an increment of 
0.01. Fig. 15 show the number of generations required 
to produce an optimal solution which relates to the 
prediction model of time series is plotted against the 
memory antibody selection rate. Known from Fig. 15, 
with the growth of memory antibody selection rate, the 
variation curve of the number of generations was overall 
downward tendency. The experiment results show that 
the convergence rate of PIOT would be enhanced due to 
the ascending of the memory antibody selection rate. 
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Fig. 15. Sensitivity of Memory Antibody Selection Rate Rm. 

4.4. Results and analysis 

The three chaotic time series, namely Lorenz time series, 
Mackey-Glass time series and Henon time series, are 
considered as experiment test objectives, their variation 
curves are shown respectively in Fig. 5, Fig. 6 and Fig. 
7. Using the corresponding values of the delay time and 
the embedding dimension listed in Table 1 to 
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Fig. 16. The prediction value and the deviation value of Lorenz time series. 
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Fig. 17. The prediction value and the deviation value for Mackey-Glass time series. 
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Fig. 18. The prediction value and the deviation value for Henon time series. 

reconstruct respectively the phase spaces for 
corresponding time series, and the sample space scales 
of three time series are respectively 291,284 and 140. In 
the process of time series experiments, we select 
respectively 100, 100 and 50 last sample points from 
three sample spaces as a prediction sample subset to 
demonstrate the effectiveness of PIOT, and the rest of 
sample spaces are considered as a training sample 

subset, namely selecting a part of training samples being 
close to a prediction point to build time series prediction 
model according to sample window w given by Table 1. 
Fig. 16, Fig. 17 and Fig. 18 show respectively the 
prediction values and the corresponding prediction 
deviation values of three time series in the case of the 
single-step prediction, where the prediction deviation 
value is calculated by Eq. (26). Table 3 show the 
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prediction error comparison for the PIOT and the 
genetic algorithm based prediction approach (namely, 
PGA) provided by Ref. 6, and meanwhile list the 
corresponding prediction errors of two prediction 
approaches when three time series are forecasted in 
terms of single-step prediction, 20 steps prediction and 
50 steps prediction, respectively. 

The prediction value and the deviation value of 
Lorenz time series are shown in Fig. 16. The experiment 
results show that PIOT holds excellent prediction 
precision for Lorenz time series, in addition, the 
maximum deviation between target value and prediction 
value is not exceed 0.0313. At same time, Table 3 lists 
the single-step prediction results of Lorenz time series, 
compared with PGA, the prediction precision of PIOT 
raise one order of magnitude, and its prediction errors, 
namely RMSE and MAE, are respectively 0.0081 and 
0.0053. For the multi-step prediction of Lorenz time 
series, we consider two prediction strategies: 20 steps 
prediction and 50 steps prediction, the experiment 
results listed in Table 3 show that the prediction errors 
of PIOT are lower than that of PGA; and the maximum 
deviations between target value and prediction value of 
PIOT for two strategies are respectively 0.0472 and 
0.0544. 

Fig. 17 depicts the single-step prediction value and 
the corresponding deviation value of Mackey-Glass 
time series. Known from the prediction deviation curve 
in Fig. 17, the deviation value is affected easily by the 
variation amplitude of Mackey-Glass time series. 
Compared with the deviation curve of Lorenz time 
series, the variation amplitude of deviation value for 
Mackey-Glass time series is big relatively, and its 
prediction precision is slightly lower than Lorenz time 
series. However, known from the prediction error given 
by Table 3, the both prediction errors have same order 
of magnitude 10-3 when two time series are predicted by 
PIOT according to single-step prediction method; and 
the variation range for both prediction errors can keep 
the order of magnitude from 10-2 to 10-3 when two time 
series are predicted by PIOT in terms of 20 steps 
prediction and 50 steps prediction respectively, so the 
prediction errors show that PIOT has a good forecasting 
performance for multi-step prediction. In general, the 
prediction effectiveness of PIOT is better than that of 
PGA. 

Known from Fig. 7, Henon time series has higher 
chaotic behavior than the two above-mentioned time 
series, so its variation rule is more coverable. Fig. 18 
depicts the single-step prediction value and 
corresponding deviation value of Henon time series, the 
prediction precision of Henon time series is lower 
relatively than that of Lorenz time series and Mackey-
Glass time series. But its prediction results can 

accurately reflect the variation situation of Henon time 
series in terms of Fig. 18, but simultaneously its 
prediction errors can keep same order of magnitude with 
the two above-mentioned time series. In the case of the 
multi-step prediction, the prediction precision of Henon 
time series is evidently lower than that of the Lorenz 
time series and Mackey-Glass time series. Therefore, 
when using the single-step or multi-step prediction 
strategies, the prediction effectiveness of PIOT is 
superior to that of PGA according to the prediction 
errors given in Table 3. 

From the above-mentioned simulation results, 
PIOT has better the modelling and predicting capability 
for Lorenz time series, Mackey-Glass time series and 
Henon time series. Compared with PGA, PIOT holds 
good prediction effectiveness for not only single-step 
prediction but multi-step prediction. 

5. Conclusion 

The combination of chaotic time series prediction 
principle and immune optimization learning method, 
this paper propose PIOT prediction approach being used 
for solving time series prediction problem. In order to 
obtaining a reasonable prediction model, PIOT use 
phase space reconstruction method to analyze time 
series, and use immune optimal method to learn a part 
of history time series being close to prediction point. In 
the process of simulation experiments, we select three 
typical time series, which are Lorenz time series, 
Mackey-Glass time series and Henon time series, as 
experimental simulation objectives, and use the single-
step and multi-step prediction method to predict 
corresponding time series, respectively. The 
experimental results show that PIOT holds better 
prediction effectiveness for chaotic time series 
prediction problem. For single-step prediction situation, 
compared with PGA, the prediction errors of PIOT 
decrease one order of magnitude. In addition, the 
prediction precision of PIOT is easily affected by the 
time variation of time series in the case of multi-step 
prediction situation; with the prediction steps increasing, 
its prediction precision gradually decreasing; but the 
prediction errors of PIOT are evidently lower than that 
of PGA under the same conditions. 
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