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Abstract 

General multi-objective optimization methods are hard to obtain prior information, how to utilize prior information 
has been a challenge. This paper analyzes the characteristics of Bayesian decision-making based on maximum 
entropy principle and prior information, especially in case that how to effectively improve decision-making 
reliability in deficiency of reference samples. The paper exhibits effectiveness of the proposed method using the 
real application of multi-frequency offset estimation in distributed multiple-input multiple-output system. The 
simulation results demonstrate Bayesian decision-making based on prior information has better global searching 
capability when sampling data is deficient.   

Keywords: Multi-Objective Optimization, Prior Information, Maximum Entropy Principle, Distributed multiple 
inputs and multiple outputs. 

1. Introduction 

Bayesian statistics is one of key branches in modern 
statistics has its origin of the famous paper ‘Discussion 
on the Problem of Problem of a Chance or an 
Opportunity’ authored by British scholar Thomas Bayes 
(1702-1761) which proposed the Bayesian formulation 
and the corresponding reasoning method. 
The basic point of view in Bayesian statistics study is 
that any unknown parameter should be regarded as a 
statistics variable which can be described by a 

probability distribution, a prior distribution which 
represents the knowledge of the event before proceeding 
sampling investigation.1-3 This is what the difference 
lies between Bayesian statistics and classic statistics. 
Classic statistic scholars didn’t recognize the prior 
information and advocates the statistical deduce using 
sample information, but that situation has changed and 
prior information has gained acknowledge in classic 
statistics. The focal argument is how to obtain and 
utilize the prior information to determine the prior 
distribution appropriately. 
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Bayesian decision obtains the conditional distribution 
density (prior distribution) of unknown parameters in 
condition of known sampling distribution. Since this 
sampling distribution is obtained after the sampling 
process is complete, it is called posteriori distribution.  
The key to Bayesian deduction is that any results must 
and can only rely on posteriori distribution. 
Multi-objective decision-making method focuses on 
simultaneous optimization of multiple targets, different 
targets can’t use uniform measuring criteria and more 
usually than not these targets are contradictory.3 So in 
this sense multi-objective decision-making gives rise to 
a set of trade-off optimal solutions, instead of a single 
optimum solution.4

From Bayesian statistics perspective, Bayesian multi-
objective decision-making deals with the multi-risk 
problem using multi-objective decision-making 
principles. Bayesian decision-making which falls into 
the conventional decision-making field focuses on 
single objective decision. However, multi-objective 
decision-making theory has neglected the benefits of 
Bayesian decision-making to handle multi-objective 
decision-making problem with uncertainties.5,6

Bayesian decision-making estimates probabilities of 
partly unknown parameters and rectify the probability 
using Bayesian formula, and in last step, making 
decision according to the expectation value and rectified 
probabilities.7  
Suppose that θ  is the objective parameter, then the 
optimization proceeds using maximum posteriori 
distribution based on Bayesian Criterions, which makes 

 ( )ˆ arg max xp
θ

θ θ=              (1) 

Where is the data vector including the information of x
θ . To get maximum value of ( xp θ ) , we observe 

 ( ) ( ) ( )
( )

x
x

x
p p

p
p
θ θ

θ =                      (2) 

So maximum value of ( ) ( )xp pθ θ  is equivalent to (1). 
According to (2), other than the existence of prior 
probability density function (PDF), ( ) ( )xp pθ θ  is 
tantamount to maximum likelihood examination. 
Therefore, 

 ( ) ( )ˆ arg max xp p
θ

θ θ θ=                 (3) 

Or 

( ) ( )ˆ arg max ln lnxp p
θ

θ θ θ⎡ ⎤= +⎣ ⎦   (4) 

The PDF of prior information is more “abrupt”, more 
important influence it will put on the estimation. 
Information is more included on the sampling data, 
more effects sampling data will exert on the estimation, 
at the same time the influence of prior information will 
wane. ,8 9

 Put it in another way, when information provided by 
sampling data is deficient, the performance of 
optimization strategy will be compromised. Making 
appropriate use of prior information to make up for this 
deficiency is of great importance to improve the effect 
of strategic optimization.10,11

Previous study based on Bayesian Criterions deals with 
the situation that Bayesian Criterions is relevant to prior 
probability and cost function when prior probability and 
cost function are known. But in a real setting, prior 
probability and cost function may stay unknown and 
fuzzy; in that case, how they take effect on the system 
performance remains a challenge to the academia 
worthy of further research.12

2. System Model 

Distributed multiple inputs and multiple outputs (MIMO) 
system is an important application area of future 
communication technique. It uses multiple parallel 
channels transmission method so that it can achieve 
higher transmission efficiency. After applied the 
distributed antenna configuration, the original single-
objective optimization problem become a typical multi-
objective optimization problem because transmitting 
antennas or receiving antennas located in different 
geographic locations and using different crystal lead to 
different transmitting antennas to the same receiving 
antennas has different frequency offset. Even a general 
distributed MIMO system that transmitting antenna 
located in a different location, the mobile service also 
uses a distributed antenna. At this point, we could 
consider that the time delay and frequency offset 
between different receiving antenna and transmitting 
antenna will different too. Under such assumptions, the 
time matrix offset and frequency offset matrix could 
extended to 
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Where
, ,i jθ

 
denotes time offset between receiving 

antenna i and receiving antenna j, ,i jε  denotes   
normalized frequency offset between receiving antenna 
i and receiving antenna j. 
(6) indicates when both transmitting antennas and 
receiving antennas employ distributed model, frequency 
offset estimation is transformed into the problem of 
multi-parameter estimation.  
Analysis on maximum posteriori estimation has inspired 
us to utilize prior information of frequency offset to 
estimate multi-frequency offset in distributed MIMO 
system. Especially in the environment of low signal-
noise-ratio (SNR), analysis on maximum posteriori 
estimation of multi-frequency offset has great applicable 
value on improving the performance of frequency 
synchronization. 
Considering the case of distributed MIMO system 
with TM transmitting antennas and RM receiving 
antennas, which is tantamount to RM  distributed multi-
input single-output (MISO) systems. Without loss of 
generality, this paper focuses on the kth MISO system, 
the receiving signal can be represented by 

                 (7) 1

1
y E X ω

TM
N

k l l l
l

h ×

=

= + ∈∑ C

1,2, , Tk ∈ Elwhere ,  is diagonal matrix with 
elements of  

{ }M

 [ ] 2
,

E lj n
l n n

e πε=                              (8) 

lε  is the frequency offset produced by lth transmitting 
antenna.  is the sequence send by l1X N

l C ×∈ th 
transmitting antenna and  is flat 
fading channel coefficient.  is complex 
Gaussian noise vector. 

{ }, 1, 2, ,l Th l M∈
( 2,ω 0 ICN σ∈

2.1.  Obtaining strategy of prior information based 
on the principle of maximum entropy 

According to the description of the previous section, 
prior information in Bayesian decision played an 
important role, especially when the sample collection of 
event is inadequate, the prior information could reflect 
its effect on decision-making optimization. 
Assuming the probability of discrete random variable x  
is  

( ) , 1, ,i ip x a p i N= = =             (9) 

when its value equal to , 1, , Na a

( )
1

ln
N

i
i

iH x p
=

= −∑ p                    (10) 

Represents the entropy of x , similarly, if x  is a 
continuous random variable, its probability density 
function is ( )p x , and 

( ) ( ) ( )lnH x p x p x= −∫ dx              (11) 

(11) is finite integrable, similarly, it represents the 
entropy of x . 
According to the definition, the entropy only link with 
random variable’s probability density function, which 
means related to the distribution of random variables. 
In 1957, Jaynes ET Jaynes first proposed the maximum 
entropy principle: among all the compatible 
distributions, choose some distributions which can make 
the information entropy reach to its maximum under the 
situation that suffices some constraint conditions. In 
case of part of information has gained, therefore, 
deduction of distribution can be made only if it takes the 
probability distribution conform to constraints but 
entropy has the maximum values. Any other options 
means we add some other constraints or conditions 
which are unavailable based on the information has 
already gained. Maximum entropy principle13 is that 
when priori information distribution is not determined 
the selected priori information should have maximums 
entropy distribution. 
Accordingly, Johnny pointed out that some important 
real-world probability distributions which comply with 
the maximums entropy principle under some constraints. 
When the value of random variable is continuous, 
meanwhile, if the expectation and variance are known, 
the maximum entropy distribution is the normal 
distribution. This paper will prove the results that the 

)
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maximum entropy distribution is Gaussian distribution 
as random variables’ mean and variance are known. 
First, there are two lemmas.13

Lemma 1: Suppose  is a convex function that the 
domain is (a, b), which is accountable for random 
variables 

( )tϕ

ξ , ( )Eϕ ξ , (E )ϕ ξ , then 

( ) ( )E Eϕ ξ ϕ ξ≥                  (12) 

Obviously, if  

( ) lnt tϕ = t

t

t

)
)E

                               (13) 

We can get 

( ) 1 lntϕ′ = +                             (14) 

( ) 1/tϕ′′ =                                (15) 

hence, is a convex function when , then,  ( )tϕ (0,t∈ +∞

( ) ( ) (ln lnE Eξ ξ ξ≥ ξ                 (16) 

can be deduced by(12). 
Lemma 2: For the distribution probability density 
function 

( ) , 1,2if x i =                             (17) 

 if both ends of (18) have meanings, then, (19)is 
available  

( ) ( ) ( ) ( )1 1 1 2ln lnf x f x dx f x f x≥∫ ∫      (20) 

Proof: Let 

( ) ( ) ( )1 2 2/ ,f f fζ λ λ λ= x∈              (21) 

Because 

( ) ( )
( )
( ) ( )

1 2

1
2

2

/

     

     1

E E f f

f
f d

f

ζ λ λ

λ
λ λ

λ

= ⎡ ⎤⎣ ⎦

=

=

∫                    (22) 

Then 

( )ln 0Eζ =                                (23) 

According to Lemma 1, we can proof 

( )
( )

( )
( ) ( )

( ) ( ) ( ) ( )

1 1
2

2 2

1 1 1 2

0 ln

     ln

     ln ln

E

f f
f d

f f

f f d f f d

ζ ζ

λ λ
λ λ

λ λ

λ λ λ λ λ λ

≤

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

= −

∫

∫ ∫

    

(24) 

Based on Lemma 2, if a random variable’s mean and 
variance are limited, then the maximal entropy 
distribution is the Gaussian distribution.  
Proof: Consider set  

( ) ( )

( )

( )2 2

: 0,

0,

p p

P p d

p d ε

ε ε

ε ε ε

ε ε ε σ

+∞

−∞

+∞

−∞

⎧ ⎫≥⎪ ⎪
⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪=⎩ ⎭

∫
∫

                
(25) 

Obviously, the probability density function of 
( )20,N εε σ∈  is  

( ) 2 2/2 2
0 / 2p e εε σ

εε π− Pσ= ∈            (26) 

According to Lemma 2, ( )1p ε P∀ ∈ , then  

( ) ( ) ( ) ( )1 1 1 0ln ln 0p p d p p dε ε ε ε ε ε
+∞ +∞

−∞ −∞
− ≥∫ ∫

 (27) 

Further deduction of (27), then  

( ) ( )

( )

( ) ( )

1 1

2
1 22

0 02

ln

1 1                ln
22

1 1                = ln ln
22

p p d

p d

p p

εε

ε

ε ε ε

ε ε
σπσ

d

ε

ε ε ε
πσ

+∞

−∞

+∞

−∞

+∞

−∞

≥

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

− =

∫

∫

∫
 (28) 

Therefore, the mean 0 and variance of random variables, 
the maximum entropy distribution is normal distribution. 
The usual frequency offset estimation is doesn’t 
consider to use the frequency offset prior information, 
so the maximum likelihood (ML) estimation method is 
the most optimal detection algorithm. As previously 
discussed, the actual frequency offset can be changed as 
the temperature, humidity and other environmental 
factors’ change, the Refs. 14 regards the frequency 
offset as random variables to study the synchronization 
problem. If you can get frequency offset prior 
information reasonably, then, it will play an important 
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role for improving the frequency synchronization under 
low SNR environment. 
Refs. 15 proposed a synchronization algorithm in 
cooperative communication system which based on 
frequency offset prior information. In low SNR region, 
it can improve the performance of frequency 
synchronization. Although the literature proposed the 
application of frequency offset prior information in 
collaborative communication environment, however, 
how to choose the distribution of prior information and 
obtain the deviation of the prior information and 
practicing it in a multi-frequency offset estimation of 
distributed MIMO systems is still a valuable researching 
direction. 
Can be realizable in the physical system, frequency 
offset is often distributed in a limited range, 
namely ( , )ε η η∈ − . The former literature regards 
frequency offset as random variables which mean is 0 
and variance is 2

εσ . Based on this and combined with 
the analysis of prior information above, according to the 
principle of maximum entropy, furthermore, this paper 
argue that frequency offset obeys normal distribution, ie: 

， . ( )20,
kk ε

After determining the prior information, the question 
how to get more reasonable values for the variance 
parameters is worthy of further study. 

Nε σ∈ 1, 2, , Tk M=

According to the Three times standard deviation 
principle16

{ } ( )3 2 3 1 0.9974P ξξ μ σ− < = Φ − ≈
    

(29) 

As a results, the vast majority of Random variable’s 
sample will distribute in ( )3 , 3ξ ξμ σ μ σ− + , As for the 
other areas, we can regard as small probability event, 
therefore, prior information’s variance can be 
determined by the Three times standard deviation 
principle. If frequency offsets’ maximums can be 
get, , then ( ), , 1, 2, ,k k k k Mε η η∈ − = T

2 2 / 9
k kεσ η=                             (30)  

According to the Three times standard deviation 
principle, using frequency offsets distribution range to 
do estimation for frequency offsets prior variance in 
distribution MIMO system is a reasonable method. 

2.2.  Bayesian decision algorithm based on prior 
information  

The current frequency offset estimation algorithms 
basically regarded frequency offset as a fixed parameter, 
however, the facts it becomes a random variable 
because of the influence of environmental change 
factors such as temperature, humidity etc is often 
overlooked. A few literatures (Refs. 14, 15 and 17) had 
begun to research multi-frequency offset estimation 
algorithm as the frequency offset change to variable. If 
prior information of frequency offset can be gained 
reasonably, it will improve the frequency 
synchronization performance, especially when sampling 
data is deficient. Main research of this paper is 
distributed MIMO system’s maximum posteriori multi-
frequency estimation algorithm based on frequency 
offset priori information. 

2.2.1 Optimal Maximum a Posteriori Algorithm  

According to Eq.(3), maximum multi-frequency offset 
estimation of distributed MIMO system is to obtain18

 ( ) ( )ˆ arg max
ε

ε y ε εp p=                    (31) 

Where, ( )y εp  is conditional distribution density of 
received sampling data and  is distribution density 
of prior information, they are respectively 

( )εp

( )
2

2 2
1

1 1expy ε y E X
TM

l l lN N
l

p h
π σ σ =

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑    (32) 

 ( )
( ) ( )

1
1
2

1 1exp
2

2 det
ε ε R ε

R

T

N
p

π

−⎧ ⎫= ⎨ ⎬
⎩ ⎭

   (33) 

Taking the logarithm of objective function ( ) ( )y ε εp p  

 
( ) ( ) ( )

2
1

2
1

, ln ln

1 1             
2

y ε y ε ε

y E X ε R ε
TM

T
l l l

l

L p p

h
σ

−

=

= + ∝

− − −∑
(34) 

Note  

 1 1 2 2, , ,Z E X E X E X
T TM M⎡ ⎤= ⎣ ⎦     (35) 

 and estimate maximum likelihood (ML) of channel in 
case of known frequency offset 

 2ˆ min
H

H y ZH= −             (36) 
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Further simplify and get 

                      (37) ( ) 1
H Z Z Z yH H
∧ −
=

Substitute (37) into (34) and simplify the result to get 

 ( ) 2 1
2

1 1,
2

y ε y ZH ε R εTL
σ

−∝ − − −       (38) 

With the Eq.(31), then MAP estimation of multi-
frequency offset is obtain by 

 

( )( )
221 1

ˆ

  arg min
2ε

ε

I Z Z Z Z y ε R εH H Tσ− −

=

⎧ ⎫
− +⎨ ⎬

⎩ ⎭

 (39) 

(39) indicates the first term of objective function is 
maximum likelihood estimation and second term is 
produced by prior information. When prior information 
is not considered, objective function is converted to ML 
estimation 

 ( )( ) 21
ˆ arg min

ε
ε I Z Z Z Z yH H

ML

−⎧ ⎫
= −⎨ ⎬

⎩ ⎭
(40) 

In essence (40) is same as ML estimation, that is 
equivalent to 

 ( ) 1
ˆ arg max

ε
ε y Z Z Z Z yH H H

ML

−
=         (41) 

It is evident that maximum a posteriori (MAP) 
estimation of multi-frequency offset combines sampling 
information of receiving data and prior information of 
frequency offset. The general ML estimation can only 
be based on data sampling information, so if 
interference is relative large (for example, low SNR) or 
training sequence is short, received signal sample can’t 
provide sufficient useful information that results in 
worse performance of frequency offset estimation. MAP 
estimation introducing prior information combines 
information of data sample and prior information of 
frequency offset to make up the deficiency of 
insufficient useful information of data sample. 

2.2.2 Suboptimum Quasi Maximum a Posteriori 
algorithm 

Analysis in section 2.2.1 obtains objective function of 
multi-frequency offset MAP estimation and indicates 
there is internal correlation between MAP estimation 
and ML estimation. So borrowing from the insights of 

ML estimation algorithm (for example, Expectation 
Conditional Maximum (ECM) algorithm) MAP 
estimation based on prior information can be obtained, 
but complexity will increase in direct solving objective 
function due to introduction of prior information.  
Next, the paper will propose a suboptimum MAP 
estimation algorithm, that is, quasi maximum a 
posteriori (QMAP) algorithm.  
Since ML estimation is an unbiased estimation,  

 ˆ( ) ,1,2, ,l lE TMε ε=           (42) 

The mean square error can be represented by 

                  (43) ( ) ( )2ˆ ˆl l lMSE Eε ε ε⎡= −⎣
⎤
⎦

Eq. (43) is equivalent to  

( ) ( )( ) ( )( )( )2
ˆ ˆ ˆ ˆl l l l lMSE E E Eε ε ε ε ε⎡ ⎤= − + −⎢ ⎥⎣ ⎦

(44) 

Simplify Eq.(44) and get 

    (45) ( ) ( ) ( )( )2ˆ ˆ ˆvarl l l lMSE E Eε ε ε ε⎡ ⎤= + −⎣ ⎦

Where ( )ˆvar lε  is variance of the estimator l̂ε . 
According to the analysis, theoretically MAP estimation 
will get better estimation performance, which is smaller 
MSE. 
Suppose that MAP estimation is19  

,l̂ MAP l l̂ε α ε=                            (46) 

and substitute this estimator into (45), that will make 
MSE smaller, that is 

( ) ( ) ( )( )2
,ˆ ˆ ˆvarl MAP l l l l lMSE E Eε α ε α ε⎡ ⎤= + −

⎣ ⎦
ε (47) 

Simplify Eq.(47) and get 

( ) ( ) ( )22
,ˆ ˆvarl MAP l l l l lMSE Eε α ε α ε ε⎡ ⎤= + −⎣ ⎦ (48) 

Doing the derivation over parameter lα  in (48) and set 
the results equal to zero 

( ) ( ) ( ) ( )2
,ˆ ˆ2 var 2 1

                          0

l MAP l l l l
l

MSE E ˆε α ε α ε
α
∂

= + −
∂

=
 (49) 

Then, we can get the lα  that can satisfy the condition 
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( )

( ) ( )

2

2

ˆ

ˆ ˆvar
l

l
l l

E

E

ε
α

ε ε
=

+
                 (50) 

Combining the statistical characteristics of prior 
information, when SNR gradually increases, 

ll( )2ˆ 2E εε σ→  and at the same time ( )ˆvar lε  will 
gradually approach cramer–rao low bound (CRLB). 
However, exact CRLB of ML estimation is dependent 
on information channel and frequency offset. If ( )ˆvar lε  
is substituted by approaching CRLB, this will produce 
result that it is only related to power of training 
sequence 

( )
2

2 33

6 6
l̂

ll l

asCRLB
N P SNRN P h

σε = ∝
i ii i

 (51) 

Where  

 ( ){ }2
, 1,2, ,lP E x l l N= =  (52) 

According to this, the paper gets the approximate 
corrected value 

 
( )

2

2 ˆ
l

l

l
lasCRLB

ε

ε

σ
α

σ ε
=

+
                 (53) 

In summary, ML estimator of frequency offset can be 
obtained by only using information of the data sample. 
So when prior information is taken into consideration, 
approximate estimator of MAP can be obtained by 
multiplying corrected value calculated by Eq. (53) with 
ML estimator and the result doesn’t introduce extra 
complexity. 

3. Simulation Results and Analysis 

Fig.1 provides low limit performance curve of 
frequency estimation based on maximum likelihood and 
maximum posterior principle. Assuming that average 
value of frequency offset is zero, variance of frequency 
offset is decided by hardware characteristics of crystal 
oscillator. According to recent study, variance of 
frequency offset can be estimated by certain algorithms. 
Suppose that instability of crystal oscillator with exact 
estimation will cause standard deviation of prior 
distribution of frequency offset  0.01εσ =
Relevant simulation parameters are listed in table1. 
10000 Monte-Carlo simulation tests proceed at each 
SNR situation. 

Table 1.Simulation condition for CRLB based on 
maximum likelihood and maximum posterior principle 

System includes 4 transmitting antennas and 2 receiving 
antennas 

Normalized frequency offset value 
between Transmitting antenna 1 and 

Receiving antennas 1 
2 0.01π ⋅

Normalized frequency offset value 
between Transmitting antenna 2 and  

Receiving antenna 1 
2 0.015π ⋅

Normalized frequency offset value 
between Transmitting antenna 3 and  

Receiving antenna 1 
2 0.015π ⋅

Normalized frequency offset value 
between Transmitting antenna 4 and  

Receiving antenna 1 
2 0.015π ⋅

System includes 4 transmitting antennas and 2 receiving 
antennas 

Normalized frequency offset value 
between Transmitting antenna 1 and 

Receiving antennas 1 
2 0.01π ⋅

Normalized frequency offset value 
between Transmitting antenna 2 and  

Receiving antenna 1 
2 0.015π ⋅

Fig1 indicates when the SNR is low and with known 
prior information, CRLB of multi-frequency estimation 
based on maximum posterior estimation is better than 
that based on maximum likelihood estimation, which 
provides theoretical basis for frequency estimation using 
prior information. 
Then, the paper will provide the simulation results and 
analysis and makes comparison between two maximum 
posterior multi-frequency offset algorithms in 
distributed MIMO systems in the following. 
Specifically, the paper will explore mean square error 
performance of optimum MAP estimation and 
suboptimum QMAP estimation and improvement of 
frequency synchronization performance in the low SNR 
environment through Monte-Carlo simulation tests and 
theoretical analysis. Prior distribution of frequency 
offset is Gaussian distribution with average value of 
zero and variance of frequency offset is obtained by 
estimation of distribution range ( ),η η− . 
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Fig.1. CRLB based on ML and MAP 

3.1. Optimal Maximum a Posteriori Algorithm 

Here, the paper will make comparison between MAP 
estimation algorithm and ML estimation algorithm in 

 and  distributed MISO systems and analyze 
relevant CRLB. To ML estimation, the paper still 
choose expectation maximum algorithm to get the 
solution

2 1× 4 1×

20, specific simulation condition is listed in 
table2. 

Table 2. Simulation condition of MAP estimation algorithm 

Parameters 
Distributed 

MISO 

2 1×  

Distributed 
MISO 

4 1×  

Length of orthogonal 
training sequence 32N =  32N =  

Range of normalized 
frequency offset（1） ( )2 0.05,0.05π −i  ( )2 0.05,0.05π −i

 

Range of normalized 
frequency offset（2） ( )2 0.1,0.1π −i  ( )2 0.1,0.1π −i

Information channel flat Rayleigh 
fading 

flat Rayleigh 
fading 

Number of simulation 10000 10000 

Due to introduction of prior information of frequency 
offset, the performance of ML estimation is worse 
below 0dB. There are two reasons for this:  
• Algorithm of ML estimation is sensitive at low 

SNR and induces the problem of convergence.  

• Considering prior information, the frequency offset 
is no longer set value in conventional estimation, so 
performance of ML estimation will become worse 
in strong noise environment. 

Fig2 and Fig3 indicates the pperformance comparison in 
2 1×  distributed MISO system 
Fig4 and Fig5 indicates the pperformance comparison in 
4 1×  distributed MISO system 

 

Fig.2.Performance comparison between MAP and ML in 2 1×  
system ( 0.05η = ) 

 

Fig.3.Performance comparison between MAP and ML in 2 1×  
system ( 0.1η = ) 
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Fig.4.Performance comparison between MAP and ML in 4 1×  
system ( 0.05η = ) 

 
Fig.5.Performance comparison between MAP and ML in 4 1×  

system ( 0.1η = ) 

To MAP estimation, in different frequency offset range 
and  and  distributed MISO systems, the 
performance stays stable. 

2 1× 4 1×

At , in 2  distributed MISO system, 
MAP estimation obtains performance gain 5dB more 
than that of ML estimation; in 4  distributed MISO 
system, MAP estimation obtains performance gain 5dB 
smaller than that of ML estimation. This difference 
results from multi-antenna interference. 

5SNR dB= − 1×

1×

When entering the area of , performance of 
ML and MAP is approaching the same. This is mainly 
because diminish of noise interference makes enhanced 
the effective information of sampling data, the effect of 
prior information is waning, PDF function of sampling 

data becomes acute and influence of local convergence 
is decreasing. 

5SNR dB>

Simulation results indicate MAP estimation 
significantly improves performance frequency 
synchronization in low environment. Besides, from 
Fig.2 to Fig.5, it can be observed that CRLB of MAP 
estimation based on prior information is a little bit lower 
than that of ML estimation, and they are approaching 
the same. This observation is consistent with the rules of 
real estimation performance. 
Since length of training sequence is 32, ideally 
information provided by sample data is dominant which 
results insignificant difference between two methods. It 
is worth mentioning that range of frequency offset is 
smaller, so is variance. So prior information play bigger 
role that cause better performance, otherwise, 
performance becomes worse. 

3.2.  Suboptimum Quasi Maximum a Posteriori 
algorithm 

In previous simulation, relatively longer sequence is 
employed. Here, the paper will use shorter sequence to 
make comparison between optimum MAP estimation 
algorithm and suboptimum QMAP estimation algorithm 
and meanwhile further demonstrate the influence of 
number of sample data to CRLB. Due to previous 
mentioned different range of frequency offset, here, 
only one range of frequency offset is adopted.  
Relevant simulation parameters are listed in table3. 

Table 3. Simulation condition of MAP estimation algorithm 

Parameters 
Distributed 

MISO 

2 1×  

Distributed 
MISO 

4 1×  

Length of orthogonal 
training sequence N=16 N=16 

Range of normalized ( )0.05,0.05−  ( )0.05,0.05−

Information channel flat Rayleigh 
fading 

flat Rayleigh 
fading 

Number of simulation 10000 10000 

Fig.6 and Fig.7 indicates the performance comparison 
results in 2 1×  and 4 1×  distributed systems. 
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Fig.6.Performance comparison between optimum and 

suboptimum in 2  system (1× 0.05η = ) 

 

Fig.7.Performance comparison between optimum and 
suboptimum in 4  system (1× 0.05η = ) 

According to Fig.6 and Fig.7, even if suboptimum 
QMAP estimation can reach the performance of optimal 
MAP estimation, but it still can improve performance 
frequency synchronization in low environment. It is real 
advantage of suboptimum QMAP estimation that 
without introduction of extra complexity, suboptimum 
QMAP estimation can approach performance of optimal 
MAP estimation.  
As for comparison with ML estimation, it is the same 
situation with optimum MAP, so the discussion is 
omitted here. Besides, with previous simulation results, 
it can be observed that when the length of sample data 
becomes shorter, prior information will play a bigger 

role in low SNR environment. At the same time, 
influence of prior information in 4  system is larger 
than that in 2

1×
1×  system. At , performance 

gain provided by prior information approach 5dB 
because enhanced multi-antenna interference increase 
its influence over sample data that cause weaker 
information effectiveness. In high SNR environment, 
influence of sample data is enhanced and performance is 
approaching CRLB. 

5SNR dB= −

4. Conclusion 

Bayesian decision-making estimates parameters 
utilizing existing data and prior information. This paper 
mainly discussed the priori information based 
distribution MIMO system’s system multi-frequency 
offset MAP estimation. Firstly, it discussed how to 
choose frequency offset prior information. Secondly, the 
paper deduced CRLB of MAP algorithm when prior 
information was taken into consideration. Meanwhile, it 
also deduced a suboptimal QMAP estimation algorithm 
which only needs a related corrected value. Finally, this 
paper compares the performance of ML, MAP and 
QMAP by using simulation. The simulation results 
demonstrated that maximum a posteriori multi-
frequency estimation based on priori information can 
significantly improve frequency synchronization 
performance especially when sampling data is deficient. 
 
Appendix A.  CRLB of the performance of Bayesian 

Decision Theory Based on Prior Information in 
the Multi-Objective Optimization Problem 

Firstly, defining object parameter 

( ) ( )Re , Im ,θ H H εT TT T⎡ ⎤= ⎣ ⎦          (A.1) 

 where  

1 2, , ,H
T

T
Mh h h⎡ ⎤= ⎣ ⎦                         (A.2) 

1 1, , ,ε
T

T
Mε ε ε⎡ ⎤= ⎣ ⎦                         (A.3) 

( )Re H , ( )Im H represent the real component and 
empty component of channel matrix, parameter’s Fisher 
information matrix is   

 ( )θ ε θ ε εFIM E FIM FIM= +          (A.4) 

The noise variance and the target parameter are 
statistically independent, therefore 
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( ) ( ) ( )1

,
2Re ωθ ε

u θ u θ
C θ

H

i j
i j

FIM
θ θ

−
⎡ ⎤∂ ∂⎡ ⎤ = ⎢⎣ ⎦ ∂ ∂⎢⎣ ⎦

⎥
⎥

(A.5) 

( )ωC θ  Represents covariance matrix of noise,  

( )u θ y ω= −                     (A.6) 

furthermore 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

Re Im Im
2 Im Re Re

Im Re Re
ε θ ε

U U
U U T

T T VT T

E FIM
σ

⎡ ⎤− −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
−⎢⎣

T

⎥⎦

0H

H

}

⎥
⎥⎦

   (A.7) 

Where,  

ε εU Z ZH=                     (A.8) 

02 ε εT Z DZ HHπ=                     (A.9) 

2 2
04 ε εV H Z D ZH Hπ=            (A.10) 

( )0H diag=                    (A.11) 

{1,2, ,D diag N=               (A.12) 

and 

 

 (A.13) 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

1 2

1 2

1 2

22 2
1 2

44 4
1 2

22 2
1 2

1 1 1

2 2 2
εZ

MT

T

MT

T

MT

T

jj j
M

jj j
M

j Nj N j N
M

x e x e x e

x e x e x e

x N e x N e x N e

πεπε πε

πεπε πε

πεπε πε

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢
⎢⎣

Additionally, the second part of (A.4) can  

 ( )
2

ε ε ε
θ θTFIM E L

⎛ ⎞∂
= − ⎜ ∂ ∂⎝ ⎠

⎟  (A.14) 

Where, 

 ( ) ( )lnεL p= ε                         (A.15) 

 is logarithm probability density function of frequency 
offset prior information, there are the last TM  non-zero 
elements in the diagonal of matrix εFIM . As  

                      (A.16) ( ) 1 = θθCRB FIM −

( )εCRB  of frequency offset can be obtained by matrix 
decomposition of 1

θFIM −  

( ) ( )
1

1
2

2 Reε V T U T RHCRB
σ

−
−⎧ ⎫= − +⎨ ⎬

⎩ ⎭
(A.17) 

where， 

( )
{ }1 2

2 2 2   1 / ,1/ , ,1 /

R ε ε

MT
T T

T

M M

E

diag ε ε εσ σ σ
×

=

=
(A.18) 

According to (A.16)， CRLB with prior information 
adds one term R  and because  is diagonal positive R
definite matrix, theoretically MAP estimation based on 
prior information can be proved better performance, 
since Eq. (A.18) always holds 

 

( ) ( )
1 1

1 1 1
2 2

2 2Re ReV T U T R V T U TH H

σ σ

− −
− − −⎧ ⎫ ⎧ ⎫− + < −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
 (A.19) 
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