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Abstract 

The loss of population diversity is one of main reasons which lead standard particle swarm optimization (SPSO) to 
suffer from the premature convergence when solving complex multimodal problems. In SPSO, the personal 
experience and sharing experience are processed with a completely random strategy. It is still an unsolved problem 
whether the completely random processing strategy is good for maintaining the population diversity. To study this 
problem, this paper presents a correlation PSO model in which a novel correlative strategy is used to process the 
personal experience and sharing experience. The relational expression between the correlation coefficient and 
population diversity is developed through theoretical analysis. It is found that the processing strategy with positive 
linear correlation is helpful to maintain the population diversity. Then a positive linear correlation PSO, PLCPSO, 
is proposed, where particles adopt the positive linear correlation strategy to process the personal experience and 
sharing experience. Finally, PLCPSO has been applied to solve single-objective and multi-objective optimization 
problems. The experimental results show that PLCPSO is a robust effective optimization method for complex 
optimization problems. 

Keywords: Particle swarm optimization; correlation coefficient; population diversity, multi-objective optimization. 

1. Introduction 

Particle swarm optimization (PSO) is the swarm 
intelligent model inspired by certain social bird flocking 

and fish schooling [1]. Due to its simple operator and few 
parameters, PSO has been applied to solve real-world 
optimization problems successfully [2-5], including 
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power system, image processing, economic dispatch, 
neural networks and some project applications, etc.  

PSO emulates the swarm behavior and the individuals 
represent points in the search space. Assume a D-
dimensional search space DS R⊂  and a swarm consisting 
of N particles. The current position of the i-th particle is a 
D-dimensional vector Xi = [xi1, xi2, . . . , xiD]T. The 
velocity of the i-th particle is also a D-dimensional vector 
Vi = [νi1, νi2, . . . , νiD]T. In every search-iteration, each 
particle is updated by following two “best” values, called 
Pi and Pg. Pi is the prior personal position of the i-th 
particle (also known as pbest), i.e. the personal 
experience. Pg is the best position found by particles in 
the swarm (also known as gbest), i.e. the sharing 
experience. The velocity Vid and position Xid of the d-th 
dimension of the i-th particle are updated with the 
following equations. 

1

2

( 1) ( ) 1 ( )( ( ) ( ))
2 ( )( ( ) ( ))

id id id id id

id gd id

V t wV t c r t P t X t
c r t P t X t

+ = + −

+ −
          (1) 

( 1) ( ) ( 1)id id idX t X t V t+ = + +                                   (2)  
where random factors r1id and r2id are two independent 
random numbers in the range [0, 1]; w is an inertia weight; 
c1 and c2 are acceleration coefficients reflecting the 
weighting of stochastic acceleration terms that pull each 
particle toward pbest and gbest position, respectively. 
The first part of Eq. (1) represents the previous velocity, 
which provides the necessary momentum for particles to 
roam across the search space. The second part, known as 
the cognitive component, represents the natural tendency 
of individuals to return to environments where they 
experienced their best performance. The third part is 
known as the social component, which represents the 
tendency of individuals to follow the success of other 
individuals. 

Although PSO has been applied to solve many 
optimization problems successfully, it may easily suffer 
from the premature convergence when solving complex 
problems. Many researchers have worked on improving 
the performance of PSO in various ways. To maintain the 
population diversity is a main objective of much work. 
Shi and Eberhart proposed a linearly decreasing inertia 
weight (LDIW) and a fuzzy adaptive inertia weight, 
which are used to balance the global and local search 
abilities [6-7]. To weaken the search density surrounding 
the historical best position found by the whole swarm in 
the early evolution, Asanga [8] developed the dynamic 
strategy that the cognitive coefficient decreases linearly 
from 2.5 to 0.5, while the social coefficient increases 

linearly from 0.5 to 2.5. Another active research trend in 
PSO is the design of different topological structures. 
Kennedy [9] claimed that PSO with a small neighborhood 
might perform better on complex problems, while PSO 
with a large neighborhood would perform better on 
simple problems. The ring topological structure and the 
von Neumann topological structure are proposed to 
restrict the information interaction among particles for 
relieving the loss of population diversity [10]. Suganthan 
[11] applied a dynamically adjusted neighborhood where 
the neighborhood of a particle gradually increases until it 
includes all particles. Parsopoulos and Vrahatis [12] 
combined the global version and local version together to 
construct a unified particle swarm optimizer (UPSO). 
Mendes et al. [13] proposed a fully informed particle 
swarm (FIPS), where the information of the entire 
neighborhood is used to guide the particles. To increase 
the population diversity, perturbation operator [14], 
evolution operator [15] and other search algorithms [16] 
are introduced to PSO. In addition, Xie and Zhang [17] 
presented a self-organizing PSO based on the dissipative 
system in which the negative entropy is introduced to 
improve the population diversity. Jie et al. [18] 
introduced a knowledge billboard to record varieties of 
search information and take advantage of multi-swarm to 
maintain the population diversity and guide their 
evolution by the shared information. 

However, these PSO algorithms follow the same 
principle that each particle adopts the completely random 
strategy for processing the pbest and gbest, which lets the 
cognitive and the social components of the whole swarm 
contribute randomly to the position of each particle in the 
next iteration. Although the original objective of the 
completely random processing strategy is to keep the 
randomness of search, it is still an unsolved problem 
whether this strategy is good for maintaining the 
population diversity. To study this problem, we propose a 
correlation PSO model in which a novel correlative 
processing strategy is used to process the pbest and gbest. 
Then the relationship between the degree of correlation 
and population diversity is presented, which shows that 
the processing strategy with positive linear correlation 
has advantage of maintaining population diversity. In 
order to improve the global optimization ability of PSO, a 
positive linear correlation PSO (PLCPSO) is proposed in 
the context of the correlation PSO model.  

Optimization plays a major role in the modern-day 
design and decision-making activities. Particularly, the 
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multi-objective optimization (MOO) becomes a 
challenging problem due to the inherent confliction 
nature of objective to be optimized. As evolutionary 
algorithm (EA) can deal simultaneously with a set of 
possible solutions in a single run, it is especially suitable 
to solve MOO problems. Many evolutionary multi-
objective optimization algorithms have been developed in 
the last few years, such as evolutionary computation, 
swarm intelligence [19-21]. As a new form of swarm 
intelligence, PSO has been used to solve MOO problems. 
To maintain the population diversity, several techniques 
[21-24] are introduced to PSO, e.g. an adaptive-grid 
mechanism, an adaptive mutation operation. In this paper, 
PLCPSO with the disturbance operation is used to solve 
MOO problems, where the correlative processing strategy 
is employed to maintain the population diversity. 

The remainder of this paper is organized as follows. 
A positive linear correlation PSO is introduced in section 
2. Simulation experiment results on some benchmark 
optimization problems are discussed in section 3. 
Conclusions are drawn in section 4. 

2. PLCPSO  

2.1. The correlation PSO Model 

In PSO, each particle follows the pbest and gbest to 
search for a better position. Therefore, the strategy for 
processing the pbest and gbest influences the course of 
search. From the aspect of cognitive study, if a particle 
considers that the pbest is important for the search toward 
the optimum solution, then the gbest should be also 
important because the gbest is the best among all pbests. 
Therefore, it should be discriminated to exploit the pbest 
and gbest. However, in SPSO, each particle adopts a 
completely random processing strategy, which makes no 
difference to exploit the pbest and gbest. Hence, it is 
concerned how to make proper use of the pbest and gbest. 
From Eq. (1), acceleration coefficients and random 
factors jointly affect the exploitation of pbest and gbest. 
Much work has focused on adjusting acceleration 
coefficients for balancing the global exploration and local 
exploitation, but the little attention is paid to random 
factors. In this paper, we are concerned about the effect 
of random factors on the performance of PSO. To study 
this problem, a correlation PSO model is presented, 
where random factors are correlated, and then particles 
adopt the correlative strategy to process pbest and gbest.  

In this paper, we focus on the linear correlation 
between random factors. The correlation coefficient 
Spearman’s ρX,Y is a useful tool for measuring the 
strength of the linear correlation between random 
variables X and Y [25]. Thereby the Spearman’s ρ is used 
to measure the correlation of random factors. The 
velocity of the i-th particle in the correlation PSO model 
is updated as follows: 

               (3)   

1 2

1

2

,

( 1) ( ) 1 ( )( ( ) ( ))
2 ( )( ( ) ( ))

( ) ,( 1 1)

id id id id id

id gd id
i
r r

V t wV t c r t P t X t
c r t P t X t

tρ α α

+ = + −⎧
⎪ + −⎨
⎪ = − ≤ ≤⎩

where
1 2,

is the correlation coefficient of the random 
factors of the i-th particle and a is a number in [0,1]. The 
position of each particle in the correlation PSO model is 
updated by Eq. (2). In Eq. (3), the different correlation 
coefficients can decide the different correlative strategies 
for processing the pbest and gbest. The range of the 
correlation coefficient is from -1 to 1. When a=0, the 
algorithm is the SPSO, where particles adopt the 
completely random strategy. SPSO is a special case of the 
correlation PSO model; When -1≤a<0, the algorithm is 
called the negative linear correlation PSO (NLCPSO), 
where the processing strategy with negative linear 
correlation denotes that particles enhance the exploitation 
of the one of the pbest and gbest, meanwhile weaken the 
exploitation of the other; If 0<a≤1, the algorithm is called 
the positive linear correlation PSO (PLCPSO), where the 
processing strategy with positive linear correlation 
denotes that particles enhance the exploitation of the one 
of the pbest and gbest, meanwhile enhance the 
exploitation of the other.  

( )i
r r tρ

The correlation PSO model extends the information 
processing mechanism of PSO. The population diversity 
affects the performance of PSO greatly. For different 
processing strategies, it is concerned which kind of 
strategy can improve the global optimization ability of 
PSO. In the next section, the relationship between the 
population diversity and processing strategies should be 
analyzed.  

2.2. The Analysis of population diversity of 
PLCPSO 

The high population diversity should directly imply that a 
large area of the search space is being explored [26]. 
Similarly, the low population diversity should imply that 
the particles are exploiting a small area of the search 
space. In SPSO, the loss of population diversity is one of 
main reasons which lead SPSO to suffer from the 
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premature convergence when solving complex 
multimodal problems. Therefore, maintaining population 
diversity is an important method for improving the global 
optimization ability of PSO. In this section, we discuss 
the relationship between the population diversity and 
correlation coefficient in the correlation PSO model.  

Generally, the degree of dispersion of the particles in 
the swarm is used to measure the population diversity. 
This measure is given in [27] by: 

2

1 1

1( ( )) [ ( ) ( )]
N D

id d
i d

div X t X t X t
ND = =

= −∑∑                     (4) 

where N is the swarm size, D is the dimensionality of the 
problem and Xid  is the d-th dimension of the i-th particle 
position. ( )dX t  is calculated by the following equation. 

1
( ) ( ) /

N

d id
i

X t X t
=

=∑ N                              (5) 

In the correlation PSO model, particles can adopt 
different strategies to process pbest and gbest. In order to 
obtain the relationship between different correlative 
strategies and population diversity, the change of 
population diversity at the next time step is studied in the 
context of the current state. The population diversity at 
the time step t+1 can be represented by  

2

1 1

1( ( 1)) [ ( 1) ( 1)]
N D

id d
i d

div X t X t X t
ND = =

+ = + − +∑∑         (6) 

where the position and velocity of each particle at the 
time step t and before the time step t are known. The 
positions of particles at the time step t+1 are calculated 
by the Eqs. (2) and (3). Obviously, Xid(t+1) and ( 1)dX t+  are 
random variables because r1id and r2id are random 
numbers. The population diversity div(X(t+1)) at the time 
step t+1 is also a random variable. 

For the randomness of the population diversity at the 
time step t+1, we take the maximization method of 
expected utility to decide which is favorable to maintain 
population diversity among the correlative strategies. The 
expectation of div(X(t+1)) is calculated by 

2

1 1

1[ ( ( 1))] [ ( 1) ( 1)]
N D

id d
i d

E div X t E X t X t
ND = =

+ = + − +∑∑       

2
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1 [ ( 1) ( ( 1)) ( ( 1)) ( 1)]
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= + − + + + −∑∑ +

2
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2
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N D
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E X t EX t E X t
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EX t X t EX t E X t EX t
= =

= + − + − + −

+ + − + + + − +
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1
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jd
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1 1{(1 ) [ ( 1)]} ( [ ( 1)])
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id
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                     (7) 

The expectation of Xid (t+1) can be calculated as follow: 
1

2

( ( 1)) ( ) 0.5 ( ( ) ( )
0.5 ( ( ) ( ))

id id id id id

gd id

E X t X wV t c P t X t
c P t X t

+ = + + −

+ −
      (8) 

Then the variance of Xid(t+1) can be obtained. 

   
2 2
1 1 2

2 2
2

1[ ( 1)] { [ ( ) ( )] 2 [ ( )
12

( )][ ( ) ( )] [ ( ) ( )] }

id id id id

id gd id gd id

Var X t c P t X t c c P t

X t P t X t c P t X t

ρ+ = − + −

− + −

      (9) 

Substituting Eq. (9) into Eq. (7), we get the expectation 
of div(X(t+1)). 

1 2
0

1 1
[ ( ( 1))] [ ( ( 1))] {[ ( )

6
( )][ ( ) ( )]}

N D

id
i d

id gd id

c cE div X t E div X t P t
ND

X t P t X t

ρ
= =

+ = + +

−

∑∑ −      (10)  

Where E0[div(X(t+1))] is the expectation of population 
diversity at the next time step t+1 in which the correlation 
coefficient is zero. Then E0[div(X(t+1))] is also the 
expectation of population diversity of SPSO at the next 
time step. E0[div(X(t+1))] is calculated by 

2 2 2
0 12

1 1
2

1[ ( ( 1)] { [ ( ) ( )] [ ( )
12

( )] } ( [ ( 1)])

N D

id id gd
i d

id

NE div X t c P t X t c P t
N D

X t div E X t
= =

−
2+ = − +

+ +

∑∑ −    (11) 

To make clear the relationship between the 
correlation coefficient and population diversity, it is 
crucial to analyze the sign of the value of the second term 
in Eq. (10). The second term ∑∑[Pid(t)-Xid(t)][Pgd(t)-Xid(t)] 
is the sum of ND products of (Pid(t)-Xid(t)) and (Pgd(t)-
Xid(t)). According to the relations of the positions among 
Pid(t), Xid(t) and Pgd(t), if Xid(t) is not in the middle of 
Pgd(t) and Pid(t), then [Pid(t)-Xid(t)][Pgd(t)-Xid(t)]>0. There 
exist the two possibilities, which is Xid(t) lie either the left 
or right side of Pgd(t) and Pid(t). If Xid(t) is in the middle 
of Pgd(t) and Pid(t), then [Pid(t)-Xid(t)][Pgd(t)-Xid(t)]<0. 
Hence, the probability of the inequality [Pid(t)-
Xid(t)][Pgd(t)- Xid(t)]>0 is equal to 2/3, i.e. P([Pid(t)-
Xid(t)][Pgd(t)-Xid(t)]>0)=2/3. For all particles in the swarm, 
at least there exists the particle which the best personal 
position Pid(t) should be equal to the best position 
Pgd(t)among all the particles in the swarm. Then, in this 
case, [Pid(t)-Xid(t)][Pgd(t)-Xid(t)]>0, and then P([Pid(t)-
Xid(t)][Pgd(t)-Xid(t)]>0)>2/3.   

Without loss of generality, assume |[Pid(t)-
Xid(t)][Pgd(t)-Xid(t)]|=θ+η, where θ is a positive constant, 
η~N(0,δ) is a white noise. Then µ=E[Pid(t)-Xid(t)][Pgd(t)-
Xid(t)]>0. 

According to the law of large numbers in probability 
theory, for any given number ε>0, the following equation 
can be obtained. 
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1 1

1lim ( {[ ( ) ( )][ ( ) ( )]} ) 1
N D

id id gd idND i d
P P t X t P t X t

ND
µ ε

→∞ = =

− − − <∑∑ =      (12)                       

Eq. (12) can deduce Eq. (13), thereby 

1 1

1lim ( {[ ( ) ( )][ ( ) ( )]} 0) 1
N D

id id gd idND i d
P P t X t P t X t

ND→∞ = =

− − >∑∑ =    (13) 

Synthesize Eq. (10) and (13), the conclusion is obtained 
that the expectation of the population diversity increases 
with the increasing of the correlation coefficient. The 
conclusion shows that PLCPSO is helpful for maintaining 
the population diversity, which makes particles in 
PLCPSO have more chance to get away from the local 
optima than SPSO and NLCPSO. From Eq. (10), it is 
obvious that the NLCPSO is easier to lose the population 
diversity than SPSO. When the correlation coefficient is 
set to be 1, the expectation of the population diversity can 
reach the maximum value. Likewise, when the correlation 
coefficient is set to be -1, the expectation of the 
population diversity can reach the minimum value. In this 
paper, we only consider two special cases, i.e. the 
correlation coefficient set to be -1 and 1. In the following 
contents, NLCPSO and PLCPSO specially denote the 
PSO algorithms in which the correlation coefficients are 
set to be -1 and 1, respectively. 

In order to test the above analysis of the population 
diversity, PLCPSO, SPSO and NLCPSO are run 20 times 
on a (unimodal) sphere function and a (multimodal) 
Rastrigin function defined in Section 3. The changes of 
population diversity with iterations for each function are 
shown in Fig.1. 

As can been seen from Fig.1, PLCPSO maintains the 
higher population diversity than SPSO and NLCPSO. 
The population diversity of SPSO and NLCPSO decrease 
with the increasing iteration, which makes SPSO and 
NLCPSO easily get trapped in local optima in later 
evolution. Meanwhile, the population diversity of SPSO 
decreases more slowly than NLCPSO. The experimental 
results are agreed with the analysis of the population 
diversity. 

2.3. Implementation of search velocity  

To enhance the speed of the search, a small modification 
is introduced to the velocity of the particle. If the velocity 
of a particle is zero, then the velocity of this particle is set 
to be a random number in the range from the lower bound 
to the upper bound of the velocity. The bounds of the 
velocity are specified by the user and applied to clamp 
the maximum velocity of each particle. Usually, the 

bounds of the velocity are set as the search bounds of the 
position. 
 

 
                                           (a) 

 
                                          (b) 

 
Fig.1 Comparison of SPSO’s, PLNPSO’s and NLSPSO’s  
population diversity. (a) Curve of population diversity for  
Shpere function. (b) Curve of population diversity for  

Rastrigin function 
 

3. Applications 

3.1. Experiment 1: single-objective optimization 

In order to test the effectiveness of PLCPSO, six 
famous single-objective benchmark functions were 
optimized by PSO with linearly decreased inertial weight 
(PSO-LDIW), PSO with time-varying acceleration 
coefficients (PSO-TVAC), the fully informed particle 
swarm (FIPS), NLCPSO and PLCPSO.  

3.1.1. Test Functions 

The six benchmark functions include three unimodal 
functions (f1~f3) and three multimodal functions (f4~f6). 
The multimodal functions have complex multimodal 
distribution with one or multiple global optima enclosed 
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3.1.2. Parameters Setting for PSO Algorithms  by many local minimizations. All test functions have to 
be minimized. The properties and the formulas of 
functions are presented below. 

Parameters setting for PSO-LDIW, PSO-TVAC and 
FIPS come form Refs. [6], [8] and [13]. In FIPS, the ring 
topology structure is implemented with weighted FIPS 
for higher successful ratio, as recommended in [13].  In 
PSO-LDIW, FIPS, NLCPSO and PLCPSO, the inertia 
weight is decreased linearly from 0.9 to 0.4, and c1= c2=2. 
In PSO-TVAC, the cognitive coefficient decreases 
linearly from 2.5 to 0.5, while the social coefficient 
increases linearly from 0.5 to 2.5. For a fair comparison 
among all the PSO algorithms, they are tested using the 
same population size of 40. Further, the maximum fitness 
evaluation (FE) is set at 200000 for each test function. 
For the purpose of reducing statistical errors, each 
function is independently simulated 30 times, and their 
mean results are used in the comparison.  

Sphere’s function 
 , ∑

=

=
D

i
ixxf

1

2
1 )(

 x∈[-100,100] , D=30,min(f1)= f1(0,0,…,0)=0. 
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2
2

1 1

( ) ( )
D i
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i k

f x x
= =
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 x∈[-5.12,5.12], D=30, min(f4)= f4(0,0,…,0)=0. 3.1.3. Experiment Results and Discussions 
Noncontinuous Rastrigin’s function   

Table 1 presents the means and standard deviations of 
the 30 runs of the five algorithms on the six test functions. 
The best results among the five algorithms are shown in 
bold. Fig.2 presents the comparison in terms of the 
convergence characteristics of the evolutionary processes 
of each algorithm for each test function. 

 

⎩
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x∈[-100,100] , D=30, min(f6)= f6(0,0,…,0)=0. 
 

Table 2  Results of different PSO algorithms 

 
Functions PSO-LDIW PSO-TVAC FIPS NLCPSO PLCPSO 

Mean 7.321×10-140 6.628×10-81 5.4662×10-6 2.243×10-191 8.371×10-101

f1 Std. Dev 2.011×10-137 9.538×10-79 1.387×10-5 2.739×10-194 9.426×10-105

Mean 3.455×10-42 6.390×10-22 7.882×10-3 4.990×10-119 1.982×10-13

f2 Std. Dev 5.330×10-36 9.816×10-20 6.001×10-2 3.221×10-120 1.012×10-14

Mean 29.82 13.84 21.99 1.102 2.239 
f3 Std. Dev 20.53 18.77 23.32 5.628 1.872×10-3

Mean 28.56 26.72 51.29 48.97 1.414×10-9

f4 Std. Dev 17.35 24.93 22.87 10.76 8.322×10-8

Mean 31.66 25.12 46.99 45.89 3.947×10-5

f5 Std. Dev 11.57 13.81 21.13 10.12 6.445×10-4

Mean 7.857 8.531×10-1 25.91 2.379 7.548×10-2

f6 Std. Dev 9.891 1.676 13.64 5.967 2.126×10-3
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g.2  The convergence curve of test function for different function. (a) Sphere’s function. (b) Quadric’s function 
)Rosenbrock’s function (d) Rastrigin’s function (e) Noncontinuous Rastrigin’s function (f) Schaffer’s function 
 
unimodal functions, from the results, NLCPSO 
 the best means because the low population 
 enhances the local search ability of NLCPSO; 
 has the good results, especially for the difficult 

ock’s function. For multimodal functions, 
 surpasses all other algorithms, and avoids 

into the premature convergence, which benefits 

from the high population diversity. The experimental 
results show that the low population diversity is helpful 
for simple unimodal functions, while the high population 
diversity is good for complex multimodal problems. 

Comparing the results and the convergence graphs, 
among these five algorithms, PSO-LDIW, PSO-TVAC 
and NLCPSO get trapped in the local optima for the 
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difficult unimodal functions (e.g. Rosenbrock’s function 
f3) and the multimodal functions because of the rapid loss 
of the population diversity. FIPS with a ring topology has 
a local neighborhood, which can avoid falling into the 
premature convergence. However, the local 
neighborhood leads FIPS to converge slowly, and FIPS 
cannot achieve the satisfied results. 

Since PLCPSO has the high population diversity, it 
could not converge as fast as NLCPSO for unimodal 
functions. Hence PLCPSO does not perform the best for 
simple unimodal functions. According to the theorem of 
“no free lunch” [28], one algorithm cannot offer better 
performance than all the others on every aspect or on 
every kind of problem. Therefore, we may not expect the 
best performance on all classes of problems, as the 
proposed PLCPSO focuses on improving the 
performance of PSO on complex multimodal problems.  

3.2. Experiment 2: multi-objective optimization 
(MOO) 

3.2.1. Basic concepts on MOO  

In general, many real-world applications involve 
complex optimization problems with various competing 
specifications and constraints. Without loss of generality, 
we consider a minimization problem with decision space 
Y which is a subset of real numbers. For the minimization 
problem, it tends to find a parameter set y for  

( ) D

y Y
Min F y y R
∈

∈                                  (14) 

where y = [y1, y2, . . . , yD] is a vector with D decision 
variables and F = [f1, f2, . . . , fM] are M objectives to be 
minimized. 

In the absence of any preference information, a set of 
solutions is obtained, where each solution is equally 
significant. The obtained set of solutions is called non-
dominated or Pareto optimal set of solutions. Any 
solution y = [y1, y2, . . . , yD] dominates z = [z1, z2, . . . , zD] 
if and only if y is partially less than z, i.e.,  1, ,i D∀ ∈ L

( ) ( ) {1, , }: ( ) ( )i i i if y f z i D f y f z≤ ∧∃ ∈ <L              (15) 
The front obtained by mapping the Pareto optimal set 

(OS) into the objective space is called POF 
1{ ( ( ), , ( )) | }D SPOF f f x f x x O= = ∈

uv
L                   (16) 

The determination of a complete POF is a very 
difficult task, owing to the presence of a large number of 
suboptimal Pareto fronts. By considering the existing 
memory constraints, the determination of the complete 
Pareto front becomes infeasible and, thus, requires the 

solutions to be diverse covering its maximum possible 
regions. 

3.2.2. Performance metrics  

The knowledge of Pareto front of a problem provides 
an alternative for selection from a list of efficient 
solutions. It thus helps in taking decisions, and also, the 
knowledge gained can be used in situations where the 
requirements are continually changing. In order to 
provide a quantitative assessment for the performance of 
MO optimizer, two issues are taken into consideration, i. 
e. the convergence to the Pareto-optimal set and the 
maintenance of diversity in solutions of the Pareto-
optimal set. In this paper, convergence metric γ [22] and 
diversity metric δ [22] have as qualitative measures. 
Convergence metric is used to measure the extent of 
convergence of the obtained set of solutions. The smaller 
is the value of γ, the better is the convergence toward the 
POF. Diversity metric is used to measure the spread of 
solutions lying on the POF. For the most widely and 
uniformly spread out set of non-dominated solutions, 
diversity metric δ would be very small. 

3.2.3. Description of PLC-MOPSO  

This section describes PLCPSO to MOO problem, 
called PLC-MOPSO. The motivation is to attain better 
convergence to the Pareto-optimal front. In PSO, the term 
gbest represents the best solution obtained by the whole 
swarm. Often the conflicting nature of the multiple 
objectives involved in MOO problems makes the choice 
of a single optimum solution difficult. To resolve this 
problem, the concept of non-dominance is used and an 
archive of non-dominance solutions is maintained, from 
which a solution is picked up as the gbest in PLC-
MOPSO. The historical archive stores non-dominance 
solutions to prevent the loss of good particles. The 
archive is updated at each cycle, e.g., if the candidate 
solution is not dominated by any members in the archive, 
it will be added to the archive. Likewise, any archive 
members dominated by this solution will be removed 
form the archive. To obtain more solutions, the 
disturbance operation was adopted for randomly selected 
non-dominance solutions in the archive. PLC-MOPSO is 
described in Fig.3. 

3.2.4 Benchmark problems and PLC-MOPSO 
performance 
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In the context of MOO, the benchmark problems must 
pose sufficient difficulty to impede searching for the 
Pareto optimal solutions. 

In this paper, four benchmark problems are selected to 
test the performance of the proposed PLC-MOPSO. 
Many researchers such as the authors in [21], [23] and 
[24] have applied these problems to examine their 
proposed algorithms. The definition of these test 
functions is summarized in Table 2. 

In this experiment, the maximum fitness evaluation 
(FE) is set at 10000. The population size is set at 100 for 
all problems. 

Results for the convergence metric obtained using 
PLC-MOPSO, are given in Table 3, where results of 
MOPSO and IPSO come form Ref. [24]. From the results, 
they are evident that PLC-MOPSO converges better than 

Table 2 Definition of the MOO problems 
/Ns: size of the swarm; MaxIter: maximum member
of iterations; d: the dimensions of the search space./ 
(1) t = 0, randomly initialize S0; /St: swarm at 
iteration t / 
• initialize xi,j, i∈{1, . . . ,Ns} and j∈{1, . . . ,d} 
/ xi,j: the j-th coordinate of the i-th particle / 
• initialize vi,j, i∈{1, . . . ,Ns} and j∈{1, . . . ,d} 
/vi,j: the velocity of i-th particle in j-th dimension / 
•  Pi ← xi, i∈{1, . . . ,Ns} / Pi: the coordinate of 
the personal best of the i-th particle / 
(2)Evaluate each of the particles in S0. 
(3)A0←non_dominated(S0) /returns the non-
dominated solutions from the swarm; At: archive at 
iteration t / 
(4) for t = 1 to t = MaxIter:, 
•     for i = 1 to i = Ns / update the swarm / 
/ updating the velocity of each particle / 
•     vi= w vi + c1r1(Pi -xi) + c2r2(Regb-xi) 
•    ρt=1; r1=rand( ); r2= r1 
/ Regb is a value that is randomly taken form the 
archive/ 
/updating coordinates / 
•    xi = xi + vi 
(5) Evaluate each of the particles in St. 
(6) /updating the archive / 
At←non_dominated(St). 
(7)/disturbance operation to the randomly selected 
solutions in At/ 
  At←Selected (non_dominated(St))(1+0.5*rand( )); 
(8) END while  
  Return At 

Test  problem    Definition 

Schaffer’s 
study(SCH) 

Minimize F=(f1(x),f2(x)), where  
2

1
2

2
3 3

( )

( ) ( 2)

[ 10 ,10 ]

f x x

f x x

x

=

= −

∈ −

 

Fonseca’s and 
 Fleming’s study 
(FON) 

Minimize F=(f1(x),f2(x)), where 

( )
( )

23
1 1

23
2 1

( ) 1 exp( 1/ 3 )

( ) 1 exp( 1/ 3 )

[ 4,4], 1,2,3

ii

ii

i

f x x

f x x

x i

=

=

= − − −

= − − +

∈ − =

∑

∑
 

Poloni’s study  
(POL) 

Minimize F=(f1(x),f2(x)), where 
2 2

1 1 1 2 2
2 2

2 1 2

1

2

1 1 1 2

2 1 1 2

( ) [1 ( ) ( ) ]

( ) [( 3) ( 1) ]
0.5sin1 2cos1 sin 2 1.5cos 2
1.5sin1 cos1 2sin 2 0.5cos 2
0.5sin 2cos sin 1.5cos
1.5sin cos 2sin 0.5cos

[ , ], 1,2i

f x A B A B

f x x x
A
A
B x x x
B x x x
x iπ π

= + − + −

= + + +
= − + −
= − + −
= − + −
= − + −
∈ − =

2

2

x
x

 

Kursawe’s study  
(KUR) 

Minimize F=(f1(x),f2(x)), where 
2 2 2

1 11
3 0.8 3

2 1

( ) [ 10exp( 0.2 )]

( ) [| | 5sin( )]

[ 5,5], 1, 2,3

i ii

i ii

i

f x x x

f x x x

x i

+=

=

= − − +

= +

∈ − =

∑
∑

 

Table 3 Results of the convergence metric for test problems 

 γ MOPSO IPSO PLC-MOPSO
Best 2.941e-3 2.258e-3 2.612e-3 
Mean 3.242e-3 2.638e-3 2.567e-3 
Worst 3.799e-3 3.430e-3 3.031e-3 

SCH 

Std 4.900e-4 4.410e-4 4.562e-4 
Best 1.506e-03 1.378e-03 1.234e-03 
Mean 1.806e-03 1.517e-03 1.448e-03 
Worst 2.418e-03 2.437e-03 2.123e-03 

FON 

Std 1.100e-03 3.000e-04 2.900e-04 
Best 1.540e-02 9.431e-03 9.960e-03 
Mean 1.694e-02 1.253e-02 1.254e-02 
Worst 1.820e-02 1.343e-03 1.270e-03 

POL 

Std 2.300e-06 1.400e-06 1.100e-06 
Best 2.136e-02 2.634e-02 2.156e-02 
Mean 2.647e-02 3.128e-02 3.045e-02 
Worst 3.242e-02 3.715e-02 3.167e-02 

KUR

Std 2.700e-04 4.500e-04 3.800e-04 

Fig.3 Pseudo code of PLC-MOPSO 

 
MOPSO in all of test functions. For SCH and POL, the 
performance of PLC-MOPSO is very close to that of 
IPSO in converges metric. PLC-MOPSO converges 
slightly better than IPSO for FON and KUR. PLC-
MOPSO and IPSO have the better diversity than MOPSO 
for SCH, POL and FON. However, for KUR, MOPSO 
has higher performance in diversity metric than PLC-
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Table 5 Results of the diversity metric for test problems MOPSO and IPSO. In order to clearly visualize the 
quality of solutions obtained, figures have been plotted 
for the obtained Pareto fronts with POF. As can been 
seen form Fig. 4, the front obtained from PLC-MOPSO 
has the high extent of coverage and uniform diversity for 
all test problems. In a word, the performance of PLC-
MOPSO is better than that of MOPSO, and is nearly 
close to that of IPSO in converges metric and diversity 
metric. It must be noted that MOPSO adopts an adaptive 
mutation operator and an adaptive-grid division strategy 
to improve its search potential, while IPSO adopts search 
methods including an adaptive-grid mechanism, a self-
adaptive mutation operator, and a novel decision-making 
strategy to enhance balance between the exploration and 
exploitation capabilities. PLC-MOPSO only adopts 
disturbance operation to solve MOO problems, and no 
other parameters are introduced. This shows that the 
correlative strategy in PLC-MOPSO plays an important 
role in the global search for MOO problems. 

 δ MOPSO IPSO PLC-MOPSO 
Best 3.847e-01 3.385e-01 3.134e-01 
Mean 4.524e-01 4.388e-01 4.412e-01 
Worst 5.319e-01 5.189e-01 4.819e-01 

SCH

Std 3.570e-03 3.430e-03 3.541e-03 
Best 2.987e-01 2.751e-01 2.856e-01 
Mean 3.729e-01 3.162e-01 3.098e-01 
Worst 4.527e-01 3.794e-01 3.527e-01 

FON

Std 8.500e-03 1.140e-04 9.800e-03 
Best 2.896e-01 2.962e-01 2.755e-01 
Mean 3.726e-01 3.140e-01 3.041e-01 
Worst 4.826e-01 3.419e-01 3.154e-01 

POL

Std 2.435e-03 1.980e-04 2.000e-04 
Best 3.725e-01 3.927e-01 3.913e-01 
Mean 4.106e-01 4.541e-01 4.408e-01 
Worst 4.286e-01 4.939e-01 4.912e-01 

KUR

Std 8.470e-04 1.200e-03 1.500e-03 
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Fig. 4  Nondominated solutions with PLCPSO for four MOO problems. (a)SCH, (b)FON, (c) POL, (d)KUR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Published by Atlantis Press 
    Copyright: the authors 
                  109

http://www.iciba.com/equal/


1 

4. Conclusions 

The contribution of this paper includes three parts. Firstly, 
a correlation PSO model is proposed, which extends 
information processing mechanism of particles and opens 
new avenues to improve the performance of PSO. 

Secondly, the relational expression between the 
correlation of random factors and population diversity is 
presented through theoretical analysis. An important 
conclusion is obtained that the processing strategy with 
positive linear correlation is helpful for maintaining the 
population diversity. Thirdly, PLCPSO is presented in 
which particles adopt the positive linear correlation 
strategy to process the personal experience and sharing 
experience. This strategy is used to maintain the 
population diversity for improving the global search 
ability of PSO. 

Experimental results show that PLCPSO is competitive 
in terms of performance, compared to the SPSO for the 
complex multimodal single-objective and multi-objective 
optimization problems. Another attractive property of 
PLCPSO is that it does not introduce any complex 
operations and new parameters to PSO framework. 
Thereby PLCPSO is also simple and easy to be 
implemented like the SPSO. Except for PLCPSO, it is 
interesting that NLCPSO surpasses other algorithms for 
unimodal functions though it may easily suffer from the 
premature convergence.  

In order to improve the performance of PSO in 
complexly dynamic environment, our future research will 
be devoted to dynamic processing strategy. 
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