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Abstract 
  In this paper, two smoothing effects are firstly 
pointed out by analysis and by experiment on 
Traveling Salesman Problem(TSP) instances.  We 
design a novel algorithm which runs stochastic local 
search under the SSS framework.  The function 
determining the accepting probability of uphill 
moves is designed so that the algorithm can take 
advantage of the local smoothing effect ignored in 
original SSS.  Experimental results on TSPLIB 
instances demonstrated that the performance of the 
new algorithm is much superior to traditional SSS 
approach.   
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1. Introduction 
Search Space Smoothing is a meta-heuristic in 
combinatorial optimization first proposed by Jun Gu 
in 1994 [1].  Unlike traditional iterated local search 
method, the problem instance, so the search space, is 
altered during every iteration.  This alteration is 
called smoothing operation.  The ruggedness of the 
search landscape is significantly lowered after a 
smoothing operation is performed, while the 
neighborhood graph remains the same.  A parameter 
α is introduced in the smoothing formula, and it 
controls the smoothing strength, i.e. how much the 
ruggedness of search landscape is lowered.  Local 
search under a series of smoothed search spaces 
which corresponds to a decreasing sequence of  α 
can achieved better results than the original local 
search algorithm.  Gu attributes this improvement to 
the fact that final solution of the previous search 
space could guide local search in the current search 
space.  Schneider et al. [7] designed several new 
smoothing function for SSS. They conducted 
experiments on two larger instances of 442 and 532 
cities each (The largest number of cities of test 
instances in [1] is 100) and listed the results obtained 
by different smoothing functions.  The solutions of 
minimum length for “hyperbolic” and “logarithmic” 
functions are within 0.5% excess of optimal.  
However, no running time information is provided in 
this paper. 
Two kinds of smoothing effects are identified and 

discussed in this paper.  After a smoothing operation, 
probably the absolute value of energy difference of 
two neighborhood solutions is lowered, with the sign 
of the value unchanged.  Probabilistic acceptance 
rather than the greedy, deterministic one described in 
[7] can make use of this kind of smoothing effect. 
Previous publication uses similar techniques to solve 
placement problem in VLSI physical design [2][3].  
In this paper, we provide a systemic discussion on 
the design of SSS based algorithm for Traveling 
Salesman Problem.  Our experiments is also TSP-
based so that we can compare our results with the 
heuristics in [1]. 
The remainder of this paper is organized as follows. 
In Section 2, basic ideas of search space smoothing 
algorithm is introduced. In Section 3, we give formal 
definitions of global smoothing and local smoothing, 
and show the existence of them with numerical 
experiments. In Section 4, we discuss how to 
implement and design an efficient SSS variant. In 
Section 5, experimental data on random and TSPLIB 
instances were summarized.  Finally in Section 6, we 
give our conclusion remarks. 

2. Basic idea of SSS 
The general procedure of SSS algorithm in [1] could 
be stated as follows: 

Procedure SSS() 
Begin  
 distancematrix d,d1; 
    readInstance(d); 

tour t= initTour(d); 
 float α=α0; 

//Search 
while (α > 0) do begin 

d1= smooth(d, α); 
t   = localSearch(d1,t); 
α  = nextAlfa(α); 

end; 
t= localSearch(d1,t); 

End; 

Smoothing is operated on the distance matrix, which 
represents a unique search space.  The procedure 
first generates a starting tour (usually by running a 
tour construction heuristic). Then local search is 
performed in each search space: the starting tour is 
the final one in last iteration.  Here α is called 
smoothing factor, which corresponds to the strength 
of the smoothing operation. For convenience, we 
could think that the larger the factor α is, the 
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smoother the search space becomes, and the search 
space restores to the original one when α = 0.  

3. The Smoothing Effect 
3.1 Smoothing for Traveling Salesman 
The Traveling Salesman Problem is one of the most 
well-known combinatorial optimization problems.  It 
has been long served as a standard testbed for 
algorithmic ideas.  The problem can be simply stated 
as follows: given a collection of cities, find the 
shortest loop that visits each city exactly once.   
TSP is known to be NP-hard.  Its search space, i.e. 
all the solutions (with different energy values) and 
their neighborhood structure, is of exponential size 
regarding to the number of cities.   
One of the most simple yet efficient methods for 
solving TSP are local search with exchange 
neighborhood.  Such as  2-exchange (also 2-opt) 
move[1].  [7] also includes more complicated 3-opt 
moves.  However, we find that accepting probability 
of 3-opt moves is less than one tenth of 2-opt moves.  
And in practice, eliminating such moves in the 
algorithm leads to little degeneration of the tour 
quality while saving a lot running time.  In our 
implementation, only 2-opt moves are considered. 

3.2 Global and Local Smoothing 
We define the two kinds of smoothing effect 
formally and perform numerical experiments to 
show their existence.  Here a solution (feasible tour) 
is usually represented by s with proper subscript.  
The search landscape is  L := (S, N, g), S is the set of 
all solutions, N is neighborhood function and g is the 
objective function which evaluates the “energy” of a 
solution. For a smoothed search landscape, S and N 
remains the same, the objective function is denoted 
by gα

. 

Global Smoothing 
Definition 1: A solution 0s is a local minimum, if 
and only if 

( ) ( ) ( ) ( )( )0 0s s N s g s g s∀ ∈ → ≤  

After the smoothing operation, the local 
minimum 0s is eliminated, if and only if 

( ) ( )( ) ( ) ( )( )( )0 0s s N s g s g sα α∃ ∈ ∧ >  

Definition 2: If there is any local minima 0s  that is 
eliminated in the smoothed search space, the search 
space is globally smoothed at 0s . 
To demonstrate the existence of global smoothing 
effect, we perform smoothing operations on small 
and large instances.  We randomly generate 10 
instances with 12 cities and find all the local minima 
by examining all the permutation of cities, then 
compare the number and quality of local minima 
before and after smoothing for each instance.  
Results are listed in Table 1 below.  The smoothing 

function is the exponential one.  “excess” is the 
average percent excess of all local minima over the 
global minimum. 

Table 1. Statistics of local minima for small instances 
Smoothing 

Factor
0 1 

Instance
# local 
minima

excess 
# local 
minima 

excess

1 5 8.8  2 0.2 
2 2 0.3  2 0.1 

3 5 3.2  2 1.0 

4 3 5.5  2 1.8 

5 5 1.8  5 0.7 

6 3 4.6  2 0.4 

7 1 0.0  1 0.0 

8 3 2.0  4 1.1 

9 10 5.5  10 0.5 

10 8 11.4  12 2.5 
For larger instances, it is not realistic to find all local 
minima.  The global smoothing effect is indirectly 
shown as follows: randomly generate 100 solutions 
and use 2-opt local search to find the nearest local 
minimum under the 2-exchange neighborhood.  
Calculate the average pairwise distance for all 
solutions which approximates the density of local 
minima.  The distance between two solutions is the 
total number of edges subtracted by the number of 
edges that are shared by the two solutions.  For 
instances with the same number of cities, smaller 
value for local minima density implies that the 
number of local minima is also smaller.  We 
performed experiments on pcb442, a well-known 
TSPLIB[5] instance.  The result is in Table 2:  

Table 2. Avg pairwise distance of 100 local minima for 
pcb442 

 Smoothing 
Factor 0 6 

Avg distance 182.87 204.76 

Local Smoothing 
Definition 3: For a solution 0s , denote the size of its 

neighborhood set by ( )0sN , thn the local 

ruggedness at 0s  is described by 

( ) ( ) ( ) ( )( )( )
( )0

2
0 0

0

1
s N s

L R s g s g s
N s ∈

= −∑  

Definition 4: Suppose the average energy of the 
neighborhood of a solution s0 is 

( ) ( ) ( )
{ } ( )0 0

0
0

1
1 s s N s

AVGE s g s
N s ∈ ∪

=
+ ∑  

For the smoothed search space under parameter α, 
the local ruggedness and average energy of the 



neighborhood at s0 are denoted by adding a subscript 
α, if the following formula holds, 

( )
( )

( )
( )

0 0

0 0

LR s LR s
AVGE s AVGE s

α

α

<   

then the search space is locally smoothed at 0s . 
To demonstrate the existence of local smoothing 
effect, we calculate the ( ) ( )0 0/LR s AVGE sα α

values for 
pcb442 when α = 0,1 and 2.  The values listed in 
Table 3 is the average value for 100 randomly 
generated tours(“random solution”) and their nearest 
local minimum under 2-exchange neighborhood 
(“random minima”) respectively.  The values 
decrease sharply as smoothing factor increases, 
indicating significant local smoothing effect. 

Table 3. Normalized local ruggedness for pcb442 
Smoothing Factor 0 1 2 
random solution 1.9*10-3 2.1*10-4 2.7*10-5

random minima 6.0*10-2 8.5*10-4 7.6*10-5

  

3.3  Stochastic Local Search for SSS 
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The formula above is the accepting probability of the 
transition 

i js s→ of Simulated Annealing[7], t is the 
temperature and k is the constant to normalize 
different energy levels of various search spaces.  
Such stochastic local search can make use of local 
smoothing effect.  By replacing the greedy accepting 
strategy of [7] by the following function, with the 
temperature t substituted by smoothing factor α, we 
can introduce probability to original SSS so that it is 
sensitive to both global and local smoothing effect.  
This is the basic idea of our SSS variant.  Details 
about the algorithm design are proposed in the next 
section. 

4.  Algorithm Design 
we employ exponential smoothing function which is 
sensitive to distances with small deviation from the 
average distance even for a small smoothing factor.  
Other three elements of algorithm design is 
discussed in the remainder of this section. 

Neighborhood Structure and Pruning 
We choose 2-exchange neighborhood for the 
neighborhood structure.  Its greatest advantage is 
low time cost in generating a neighborhood solution.  
Although for 3-exchange or more complicated 
neighborhood there are less local minima in a search 
space, the average level of the barrier around a local 

minimum is much higher, leading to a significant 
lower acceptance probability. Therefore, 
complicated neighborhood is not always efficient. 

Previous SSS implementations actually do not have a 
sampling rule and pick up a solution from the whole 
neighborhood set.   We employ the neighborhood 
pruning introduced in [4] (originally it is a speedup 
technique for Simulated Annealing, which includes 
the basic idea of fast 2-opt implementation, refer to 
pp. 268).  The subset selected from the neighborhood 
set contains all the improving neighborhood solution 
and its size is ( )NΘ  compared to the ( )2NΘ  2-

exchange neighborhood. As a result, the probability 
of acceptance after neighborhood pruning is higher.  
So the max_count variable, i.e. the total number of 
times of repeating the “pick up”, can have a smaller 
value, saving the running time for SSS.  We set 
max_count to be 20N in our implementation, and N 
is the number of cities. 

Probability Accepting Function 
The probability accepting function is similar to the 
formula in Section 3.4 but is in a more general form 
as follows: 
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The term k is to normalize different level of energies 
for different instances with different smoothing 
factors.  A good estimation is  

( )
( )

0
0

0 0

g s
k k

g s
α= g  

k0 estimates the energy level of original search space 
and is proportional to the tour length of a 2-opt with 
a random nearest neighbor start.  ( )0g sα

 and ( )0 0g s  
are the length of the starting tour of local search in 
the search space smoothed under the parameter α and 
that of the same tour in the original search space 
respectively.  ( ) ( )0 0 0/g s g sα

 estimates the difference of 
energy level between the smoothed search space and 
the original one. 

Although the idea of probabilistic acceptance is 
inspired by Simulated Annealing, it is not 
necessarily similar to the case of SA.  For SSS, 
adding a p(α) term to the power of α is able to 
increase the accepting probability when α is small.  
In our implementation, it is a multi-segmental 
function and the value of k also varies with α to 
make the function continuous.   

5. Experimental Results 
In the experiment, we demonstrate performances of 
both the original SSS algorithm with 2-opt as the 
local search algorithm(SSS-1) and the variant 



proposed in Section 4 (SSS-2) for random Euclidean 
TSP instances and those from TSPLIB95[5].  All 
computations of the algorithm written in C++ are 
compiled by g++ 3.3.3 and performed on an Intel 
Pentium IV 3.2G PC with 2GB main memory) with 
Windows XP and cygwin.  Random instances are 
generated using the “portgen” utility downloadable 
from SGI challenge page[5].   
All the SSS implementations use exponential 
smoothing.  For SSS-1, α is initially set to 6 and 
reduced to zero at a step of 0.1.  More subtle 
evolving schedule of the smoothing factor is 
unnecessary because the original SSS is rather robust 
in this aspect. The initial solutions are obtained by 
nearest neighbor tour construction heuristic with the 
starting city randomly chosen.   
Table 4 summarized the average tour quality and 
running time of SSS algorithms(SSS-1, SSS-2) and 
Simulated Annealing (SA, with low temperature start 
and neighborhood pruning, α).  The tour quality is 
measured by percent excess over Held-Karp lower 
bound. Running Time in Seconds is normalized to be 
the predicted user seconds on Compaq ES40 6/500 
alpha machine, 500 Mhz Processor, 2Gb of RAM.  
Tour quality and running time data for SA is from pp. 
270 in [4].  For SSS-1 and SSS-2, 5 random 
instances are generated for each problem size and 5 
runs are conducted for each instance.  

Table 4. Experimental results for SSS algorithms(1) 
Random Euclidean Instances 

  
Average Percent 

Excess 
Running Time in 

Seconds 

 Algorithm   102   102.5    103    102     102.5        103 

 SA2  α =100   1.1    1.3     1.6    56      2.6*102   7.6*102

 SSS-1   8.1    8.0     5.4    0.54   5.8           89 

 SSS-2   3.1    1.5     1.2    16     1.5*102    2.0*103

Table 5 below summarized the average tour quality 
and normalized running time data for six TSPLIB 
instances.  Their problem sizes range also range from 
102 to 103.  5 runs are conducted for each instance 
for SSS-1 and SSS-2.  The tour quality is measured 
by percent excess over optimality.  Running Time in 
Seconds is the original data without normalization.  
We see a similar trend on these real-world instances, 
i.e. SSS-2 takes more time but gets much better tours.  
It is also interesting to see that SSS-2 performs better 
in TSPLIB instances than random Euclidean ones.   
 
6. Conclusion 
Based on the observation that both local smoothing 
and global smoothing effects exist in the meta-
heuristic Search Space Smoothing, an efficient 
algorithm integrating stochastic local search is 

proposed in this paper.  By introducing improving 
techniques for neighborhood generation, the new 
algorithm is able to take the advantage of smoothing 
effect efficiently. Experimental results on random 
Euclidean and six TSPLIB instances demonstrated 
that proposed approaches achieve better tour quality 
than original SSS algorithm at the expense of 
increased running time. 

Table 5. Experimental results for SSS algorithms (2) 
Six TSPLIB Instances 

 Average Percent Excess 

Algorithm kroA100 lin318pcb442att532 rat783 dsj1000

SSS-1 15.2   6.8     5.9    10.6    8.2     9.3 

SSS-2 0.9   1.6     0.7      0.9    1.3     1.3 

 Running Time in Seconds 

Algorithm kroA100 lin318pcb442att532 rat783 dsj1000

SSS-1 0.2     0.7     2.9    5.3     12       26

SSS-2 4.6   43     85    130    270     550
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