
Stochastic Local Search Using the Search Space
Smoothing Meta-Heuristic：A Case Study*

Sheqin Dong Fan Guo Jun Yuan Rensheng Wang Xianlong Hong

Department of Computer Science & Technology, Tsinghua University, Beijing China

Abstract
 In this paper, two smoothing effects are firstly
pointed out by analysis and by experiment on
Traveling Salesman Problem(TSP) instances. We
design a novel algorithm which runs stochastic local
search under the SSS framework. The function
determining the accepting probability of uphill
moves is designed so that the algorithm can take
advantage of the local smoothing effect ignored in
original SSS. Experimental results on TSPLIB
instances demonstrated that the performance of the
new algorithm is much superior to traditional SSS
approach.

Keywords: Solution Space Smoothing, Stochastic
Local Search, TSP

1. Introduction
Search Space Smoothing is a meta-heuristic in
combinatorial optimization first proposed by Jun Gu
in 1994 [1]. Unlike traditional iterated local search
method, the problem instance, so the search space, is
altered during every iteration. This alteration is
called smoothing operation. The ruggedness of the
search landscape is significantly lowered after a
smoothing operation is performed, while the
neighborhood graph remains the same. A parameter
α is introduced in the smoothing formula, and it
controls the smoothing strength, i.e. how much the
ruggedness of search landscape is lowered. Local
search under a series of smoothed search spaces
which corresponds to a decreasing sequence of α
can achieved better results than the original local
search algorithm. Gu attributes this improvement to
the fact that final solution of the previous search
space could guide local search in the current search
space. Schneider et al. [7] designed several new
smoothing function for SSS. They conducted
experiments on two larger instances of 442 and 532
cities each (The largest number of cities of test
instances in [1] is 100) and listed the results obtained
by different smoothing functions. The solutions of
minimum length for “hyperbolic” and “logarithmic”
functions are within 0.5% excess of optimal.
However, no running time information is provided in
this paper.
Two kinds of smoothing effects are identified and

discussed in this paper. After a smoothing operation,
probably the absolute value of energy difference of
two neighborhood solutions is lowered, with the sign
of the value unchanged. Probabilistic acceptance
rather than the greedy, deterministic one described in
[7] can make use of this kind of smoothing effect.
Previous publication uses similar techniques to solve
placement problem in VLSI physical design [2][3].
In this paper, we provide a systemic discussion on
the design of SSS based algorithm for Traveling
Salesman Problem. Our experiments is also TSP-
based so that we can compare our results with the
heuristics in [1].
The remainder of this paper is organized as follows.
In Section 2, basic ideas of search space smoothing
algorithm is introduced. In Section 3, we give formal
definitions of global smoothing and local smoothing,
and show the existence of them with numerical
experiments. In Section 4, we discuss how to
implement and design an efficient SSS variant. In
Section 5, experimental data on random and TSPLIB
instances were summarized. Finally in Section 6, we
give our conclusion remarks.

2. Basic idea of SSS
The general procedure of SSS algorithm in [1] could
be stated as follows:

Procedure SSS()
Begin
 distancematrix d,d1;
 readInstance(d);

tour t= initTour(d);
 float α=α0;

//Search
while (α > 0) do begin

d1= smooth(d, α);
t = localSearch(d1,t);
α = nextAlfa(α);

end;
t= localSearch(d1,t);

End;

Smoothing is operated on the distance matrix, which
represents a unique search space. The procedure
first generates a starting tour (usually by running a
tour construction heuristic). Then local search is
performed in each search space: the starting tour is
the final one in last iteration. Here α is called
smoothing factor, which corresponds to the strength
of the smoothing operation. For convenience, we
could think that the larger the factor α is, the

 __
*This paper is supported by the NSFC 60473126

smoother the search space becomes, and the search
space restores to the original one when α = 0.

3. The Smoothing Effect
3.1 Smoothing for Traveling Salesman
The Traveling Salesman Problem is one of the most
well-known combinatorial optimization problems. It
has been long served as a standard testbed for
algorithmic ideas. The problem can be simply stated
as follows: given a collection of cities, find the
shortest loop that visits each city exactly once.
TSP is known to be NP-hard. Its search space, i.e.
all the solutions (with different energy values) and
their neighborhood structure, is of exponential size
regarding to the number of cities.
One of the most simple yet efficient methods for
solving TSP are local search with exchange
neighborhood. Such as 2-exchange (also 2-opt)
move[1]. [7] also includes more complicated 3-opt
moves. However, we find that accepting probability
of 3-opt moves is less than one tenth of 2-opt moves.
And in practice, eliminating such moves in the
algorithm leads to little degeneration of the tour
quality while saving a lot running time. In our
implementation, only 2-opt moves are considered.

3.2 Global and Local Smoothing
We define the two kinds of smoothing effect
formally and perform numerical experiments to
show their existence. Here a solution (feasible tour)
is usually represented by s with proper subscript.
The search landscape is L := (S, N, g), S is the set of
all solutions, N is neighborhood function and g is the
objective function which evaluates the “energy” of a
solution. For a smoothed search landscape, S and N
remains the same, the objective function is denoted
by gα

.

Global Smoothing
Definition 1: A solution 0s is a local minimum, if
and only if

() () () ()()0 0s s N s g s g s∀ ∈ → ≤

After the smoothing operation, the local
minimum 0s is eliminated, if and only if

() ()() () ()()()0 0s s N s g s g sα α∃ ∈ ∧ >

Definition 2: If there is any local minima 0s that is
eliminated in the smoothed search space, the search
space is globally smoothed at 0s .
To demonstrate the existence of global smoothing
effect, we perform smoothing operations on small
and large instances. We randomly generate 10
instances with 12 cities and find all the local minima
by examining all the permutation of cities, then
compare the number and quality of local minima
before and after smoothing for each instance.
Results are listed in Table 1 below. The smoothing

function is the exponential one. “excess” is the
average percent excess of all local minima over the
global minimum.

Table 1. Statistics of local minima for small instances
Smoothing

Factor
0 1

Instance
local
minima

excess
local
minima

excess

1 5 8.8 2 0.2
2 2 0.3 2 0.1

3 5 3.2 2 1.0

4 3 5.5 2 1.8

5 5 1.8 5 0.7

6 3 4.6 2 0.4

7 1 0.0 1 0.0

8 3 2.0 4 1.1

9 10 5.5 10 0.5

10 8 11.4 12 2.5
For larger instances, it is not realistic to find all local
minima. The global smoothing effect is indirectly
shown as follows: randomly generate 100 solutions
and use 2-opt local search to find the nearest local
minimum under the 2-exchange neighborhood.
Calculate the average pairwise distance for all
solutions which approximates the density of local
minima. The distance between two solutions is the
total number of edges subtracted by the number of
edges that are shared by the two solutions. For
instances with the same number of cities, smaller
value for local minima density implies that the
number of local minima is also smaller. We
performed experiments on pcb442, a well-known
TSPLIB[5] instance. The result is in Table 2:

Table 2. Avg pairwise distance of 100 local minima for
pcb442

 Smoothing
Factor 0 6

Avg distance 182.87 204.76

Local Smoothing
Definition 3: For a solution 0s , denote the size of its

neighborhood set by ()0sN , thn the local

ruggedness at 0s is described by

() () () ()()()
()0

2
0 0

0

1
s N s

L R s g s g s
N s ∈

= −∑

Definition 4: Suppose the average energy of the
neighborhood of a solution s0 is

() () ()
{ } ()0 0

0
0

1
1 s s N s

AVGE s g s
N s ∈ ∪

=
+ ∑

For the smoothed search space under parameter α,
the local ruggedness and average energy of the

neighborhood at s0 are denoted by adding a subscript
α, if the following formula holds,

()
()

()
()

0 0

0 0

LR s LR s
AVGE s AVGE s

α

α

<

then the search space is locally smoothed at 0s .
To demonstrate the existence of local smoothing
effect, we calculate the () ()0 0/LR s AVGE sα α

values for
pcb442 when α = 0,1 and 2. The values listed in
Table 3 is the average value for 100 randomly
generated tours(“random solution”) and their nearest
local minimum under 2-exchange neighborhood
(“random minima”) respectively. The values
decrease sharply as smoothing factor increases,
indicating significant local smoothing effect.

Table 3. Normalized local ruggedness for pcb442
Smoothing Factor 0 1 2
random solution 1.9*10-3 2.1*10-4 2.7*10-5

random minima 6.0*10-2 8.5*10-4 7.6*10-5

3.3 Stochastic Local Search for SSS

()

() ()

() () () ()

1 0

exp 0

j i

t
ij j i

j i

g s g s

A g s g s
g s g s

kt

⎧ − ≤
⎪⎪= ⎛ ⎞−⎨

⎜ ⎟ − >⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

The formula above is the accepting probability of the
transition

i js s→ of Simulated Annealing[7], t is the
temperature and k is the constant to normalize
different energy levels of various search spaces.
Such stochastic local search can make use of local
smoothing effect. By replacing the greedy accepting
strategy of [7] by the following function, with the
temperature t substituted by smoothing factor α, we
can introduce probability to original SSS so that it is
sensitive to both global and local smoothing effect.
This is the basic idea of our SSS variant. Details
about the algorithm design are proposed in the next
section.

4. Algorithm Design
we employ exponential smoothing function which is
sensitive to distances with small deviation from the
average distance even for a small smoothing factor.
Other three elements of algorithm design is
discussed in the remainder of this section.

Neighborhood Structure and Pruning
We choose 2-exchange neighborhood for the
neighborhood structure. Its greatest advantage is
low time cost in generating a neighborhood solution.
Although for 3-exchange or more complicated
neighborhood there are less local minima in a search
space, the average level of the barrier around a local

minimum is much higher, leading to a significant
lower acceptance probability. Therefore,
complicated neighborhood is not always efficient.

Previous SSS implementations actually do not have a
sampling rule and pick up a solution from the whole
neighborhood set. We employ the neighborhood
pruning introduced in [4] (originally it is a speedup
technique for Simulated Annealing, which includes
the basic idea of fast 2-opt implementation, refer to
pp. 268). The subset selected from the neighborhood
set contains all the improving neighborhood solution
and its size is ()NΘ compared to the ()2NΘ 2-

exchange neighborhood. As a result, the probability
of acceptance after neighborhood pruning is higher.
So the max_count variable, i.e. the total number of
times of repeating the “pick up”, can have a smaller
value, saving the running time for SSS. We set
max_count to be 20N in our implementation, and N
is the number of cities.

Probability Accepting Function
The probability accepting function is similar to the
formula in Section 3.4 but is in a more general form
as follows:

()
() ()

() ()
() () ()

1 0

exp 0

j i

ij j i
j i

g s g s

A g s g s
g s g s

k p

α

α α

⎧ − ≤
⎪⎪= ⎛ ⎞−⎨

⎜ ⎟ − >⎪ ⎜ ⎟⎪ ⎝ ⎠⎩ g

The term k is to normalize different level of energies
for different instances with different smoothing
factors. A good estimation is

()
()

0
0

0 0

g s
k k

g s
α= g

k0 estimates the energy level of original search space
and is proportional to the tour length of a 2-opt with
a random nearest neighbor start. ()0g sα

 and ()0 0g s
are the length of the starting tour of local search in
the search space smoothed under the parameter α and
that of the same tour in the original search space
respectively. () ()0 0 0/g s g sα

 estimates the difference of
energy level between the smoothed search space and
the original one.

Although the idea of probabilistic acceptance is
inspired by Simulated Annealing, it is not
necessarily similar to the case of SA. For SSS,
adding a p(α) term to the power of α is able to
increase the accepting probability when α is small.
In our implementation, it is a multi-segmental
function and the value of k also varies with α to
make the function continuous.

5. Experimental Results
In the experiment, we demonstrate performances of
both the original SSS algorithm with 2-opt as the
local search algorithm(SSS-1) and the variant

proposed in Section 4 (SSS-2) for random Euclidean
TSP instances and those from TSPLIB95[5]. All
computations of the algorithm written in C++ are
compiled by g++ 3.3.3 and performed on an Intel
Pentium IV 3.2G PC with 2GB main memory) with
Windows XP and cygwin. Random instances are
generated using the “portgen” utility downloadable
from SGI challenge page[5].
All the SSS implementations use exponential
smoothing. For SSS-1, α is initially set to 6 and
reduced to zero at a step of 0.1. More subtle
evolving schedule of the smoothing factor is
unnecessary because the original SSS is rather robust
in this aspect. The initial solutions are obtained by
nearest neighbor tour construction heuristic with the
starting city randomly chosen.
Table 4 summarized the average tour quality and
running time of SSS algorithms(SSS-1, SSS-2) and
Simulated Annealing (SA, with low temperature start
and neighborhood pruning, α). The tour quality is
measured by percent excess over Held-Karp lower
bound. Running Time in Seconds is normalized to be
the predicted user seconds on Compaq ES40 6/500
alpha machine, 500 Mhz Processor, 2Gb of RAM.
Tour quality and running time data for SA is from pp.
270 in [4]. For SSS-1 and SSS-2, 5 random
instances are generated for each problem size and 5
runs are conducted for each instance.

Table 4. Experimental results for SSS algorithms(1)
Random Euclidean Instances

Average Percent

Excess
Running Time in

Seconds

 Algorithm 102 102.5 103 102 102.5 103

 SA2 α =100 1.1 1.3 1.6 56 2.6*102 7.6*102

 SSS-1 8.1 8.0 5.4 0.54 5.8 89

 SSS-2 3.1 1.5 1.2 16 1.5*102 2.0*103

Table 5 below summarized the average tour quality
and normalized running time data for six TSPLIB
instances. Their problem sizes range also range from
102 to 103. 5 runs are conducted for each instance
for SSS-1 and SSS-2. The tour quality is measured
by percent excess over optimality. Running Time in
Seconds is the original data without normalization.
We see a similar trend on these real-world instances,
i.e. SSS-2 takes more time but gets much better tours.
It is also interesting to see that SSS-2 performs better
in TSPLIB instances than random Euclidean ones.

6. Conclusion
Based on the observation that both local smoothing
and global smoothing effects exist in the meta-
heuristic Search Space Smoothing, an efficient
algorithm integrating stochastic local search is

proposed in this paper. By introducing improving
techniques for neighborhood generation, the new
algorithm is able to take the advantage of smoothing
effect efficiently. Experimental results on random
Euclidean and six TSPLIB instances demonstrated
that proposed approaches achieve better tour quality
than original SSS algorithm at the expense of
increased running time.

Table 5. Experimental results for SSS algorithms (2)
Six TSPLIB Instances

 Average Percent Excess

Algorithm kroA100 lin318pcb442att532 rat783 dsj1000

SSS-1 15.2 6.8 5.9 10.6 8.2 9.3

SSS-2 0.9 1.6 0.7 0.9 1.3 1.3

 Running Time in Seconds

Algorithm kroA100 lin318pcb442att532 rat783 dsj1000

SSS-1 0.2 0.7 2.9 5.3 12 26

SSS-2 4.6 43 85 130 270 550

7. References

[1] J. Gu and X. Huang. Search Space Smoothing:
A Case Study of the Traveling Salesman
Problem (TSP). IEEE Trans. Systems, Man, and
Cybernetics, 24(5):728-735, 1994.

[2] S. Dong et al. VLSI module placement with pre-
placed modules and considering congestion
using solution space smoothing. In Proc. 2003
Asia and South Pacific Design Automation
Conference(ASPDAC’03), pages 741-744, 2003.

[3] S. Dong et al. Solution Space Smoothing With
Five Smoothing Function for VLSI Module
Placement. In Proc. 5th Interational Conf. on
ASIC(ASICON’03), pages 132-135, 2003.

[4] D. S. Johnson and L. A. McGeoch.
Experimental analysis of heuristics for the STSP.
In G. Gutin and A. P. Punnen, editors, The
Traveling Salesman Problem and Its Variations,
pages 369-443, Kluwer Academic Publishers,
Boston, 2002

[5] D. S. Johnson. 8th DIMACS Implementation
Challenge: The Traveling Salesman Problem.
http://www.research.att.com/~dsj/chtsp/index.ht
ml. Latest Update: 16 November 2004.

[6] G. Reinelt. The Traveling Salesman Problem:
Computational Solutions for TSP Applications,
Lecture Notes in Computer Science 840,
Springer-Verlag, Berlin, 1994.

[7] J. Schneider et al. Search-space smoothing for
combinatorial optimization problems. Physica A,
243(1):77-112, 1999

