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Abstract

Based on multi-dominance discernibility matrices, a non-incremental algorithm RIDDM and an incre-
mental algorithm INRIDDM are proposed by means of Dominance-based Rough Set Approach. For the
incremental algorithm, when a new object arrives, after updating one row or one column in the matrix,
we could get the updated rule sets. Time complexity analysis and experimental results show that the in-
cremental algorithm INRIDDM is superior to some other non-incremental algorithms when dealing with
large data sets. This paper also explores the influence of data saturation and data concentration on rule
induction algorithms. We come to conclude that the data saturation and data concentration are important
for the performance analysis of one learning algorithm.

Keywords: Incremental rule induction, dominance-based rough set approach, data saturation, data con-
centration.

1. Introduction

It is typical to represent knowledge by rules1 and
rough set theory can be used to induce rules. The
classical rough set6 is induced by the equivalence
relation and can be generalized by considering any
binary relation7. The Dominance-based Rough Set
Approach(DRSA) employs ordering relations2.

In paper8,9,10, Yao and his colleagues proposed
that the form of rules falls into at least two types un-
der the generalized rough set: type 1 rules defined
on attribute level and attribute value level in type 2

rules. The two types of rules were defined as:

type1 rules: Ia(x) >a Ia(y)⇒ Id(x) >d Id(y);
type2 rules: Ia(x) >a va ⇒ Id(x) >d vd.

A type 1 rule states that “if two objects have the
same ordering relation on attributea, then they have
the same ordering relation on attributed” and a type
2 rule states that “if the value of an object is equal
to or larger thanva on attributea, then the value of
object is equal to or larger thanvd on attributed”.
While type 1 rules focus on a pair of objects, type
2 rules focus on a single object. Type 1 rules are
useful for the study of relationships between objects
and type 2 rules are useful for classification.
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In 8,9, the information table with ordering re-
lations was firstly transformed into a binary infor-
mation table, then standard machine learning and
data mining algorithms could be used to mine type
1 rules. Most rule induction algorithms generate
type 2 rules. Greco and Slowinski proposed rule in-
duction algorithms DOMLEM2 and AllRules3 in
DRSA for inducing type 2 rules. Both of them need
to check all attribute-value pairs in order to choose
proper pairs as the condition parts of the generated
rules. Their computational efficiency are low. In
this paper, we give an efficient incremental rule in-
duction algorithm INRIDDM for generating type 2
rules.

Generally, a set of attributes, which could be
used to classify two objects with different decision
class labels, can be computed from the discernibil-
ity matrix. For classical rough set theory, through
a single discernibility matrix we could get the dis-
cernibility attribute set because it is enough to ex-
press the discernibility of any two different objects.
Otherwise, as in DRSA, if we only consider the de-
cision labels, we will lose some other discernibility
information. For example, for an upward union of
objects, there may exist two objects with different
decision class labels while they are indiscernible for
the same upward union. So, if we want to get the
discernibility information from an information table
with ordering relations, one discernibility matrix is
insufficient. In this paper, we study the discernibility
of the dominance discernibility matrix and propose
a notion of multi-dominance discernibility matrices
for DRSA, which considers both the discernibility of
two different decision class labels and the discerni-
bility of two different upward or downward unions.
Based on multi-dominance discernibility matrices, a
non-incremental rule algorithm RIDDM4 and an in-
cremental algorithm INRIDDM are proposed.

For the incremental algorithm, when a new ob-
ject arrives, the updated rules can be induced by up-
dating one row or one column in the matrix only.
When evaluating the performance of an algorithm,
many researchers usually take account of its time us-
age and space usage only, but ignore the characteris-
tics of the given data. In this paper, we also explore
the relationship between algorithms and data. For

presented non-incremental and incremental rule in-
duction algorithms, three measurements of data sat-
uration, data concentration and data redundancy5

are considered. For two given data sets with the
same number of objects and attributes, a dealing al-
gorithm may produce different performance results
if these data sets have different data saturations and
data concentrations. Experimental results show that
the incremental algorithm INRIDDM is superior to
some other non-incremental algorithms on dealing
with large data sets.

The rest of this paper is organized as fol-
lows. Section 2 briefly introduces some preliminary
knowledge on DRSA, multi-dominance discernibil-
ity matrices and measurements of data. Section 3
gives the details of the non-incremental and incre-
mental rule induction algorithms. Section 4 presents
the influence of data saturation and data concentra-
tion on rule induction algorithms through the exper-
iments. Finally, Section 5 concludes.

2. Preliminary

2.1. Dominance-based Rough Set Approach

In this section, we present some basic definitions
used in DRSA. More details of DRSA can be found
in 2.

Assuming that learning examples are represented
in information tableDT = (U,C∪D), whereU is a
set of examples(objects),C is a set of condition at-
tributes describing objects andD is a set of decision
attributes,C∩D = /0. This kind of table can also be
called decision table. Letf (x,q) denotes the value
of attributeq∈C taken by objectx∈U , Vq is a do-
main ofq 2.

Let Cl = {Clt , t ∈ T}, T = {1, . . . ,n}, be a set
of classes such that eachx ∈U belongs to one and
only oneClt ∈ Cl. We suppose that the classes are
ordered, i.e., for allr,s∈ T, r > s, such that the ob-
jects fromClr are preferred to the objects fromCls.

The sets to be approximated areupward union
anddownward unionof classes, respectively:Cl>t =⋃

s>t Cls,Cl6t =
⋃

s6t Cls, t = 1, . . . ,n. Usually we
do not takeCl6n andCl>1 into consideration because
both of their values areU , it is useless for decision
maker.
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The equality relation is substituted by adomi-
nance relation. We say thatx dominates ywith re-
spect toP⊆C, denoted byxDPy, which means “x is
at least as good asy with respect toP”.

-a set of objects dominatingx, called P-
dominating set, D+

P (x) = {y∈U : yDPx},
-a set of objects dominated byx, called P-

dominated set, D−
P (x) = {y∈U : xDPy}.

Definition 1. UsingD+
P (x) andD−

P (x), P-lower and
P-upper approximation ofCl>t andCl6t are defined
as:

P(Cl>t ) = {x∈U : D+
P (x)⊆Cl>t },

P(Cl>t ) =
⋃

x∈Cl>t

D+
P (x), f or t = 1, . . . ,n.

P(Cl6t ) = {x∈U : D−
P (x)⊆Cl6t },

P(Cl6t ) =
⋃

x∈Cl6t

D−
P (x), f or t = 1, . . . ,n.

2.2. Multi-dominance discernibility matrices

In DRSA, the decision class union is considered.
The discernibility information between two objects
with different decision class labels can be obtained
from a single dominance discernibility matrix, but
for two different decision class unions, it is not
enough. For example, consider two different objects
x andy with decision class labelsCl1 andCl2 cor-
respondingly, it is obvious thatx andy are different
through a dominance discernibility matrix, but they
are indiscernible forCl63 . To solve this problem,
the notion of multi-dominance discernibility matri-
ces corresponding to multi-decision class unions in
DRSA is proposed . The matrices are defined as the
following:

Definition 2. For the given information tableDT,
the dominance discernibility matrix of decision class
unionCl>t is M = {mi j}, whereClt ∈ Cl.

mi j =




{q∈C : f (xi ,q)> f (x j ,q)},

xi ∈C(Cl>t )&x j ∈Cl6t−1;
/0, otherwise.

The matrix of decision class unionCl6t is de-
noted asM∗ = {m∗

i j}, which is constructed as fol-
lowing:

m∗
i j =




{q∈C : f (xi ,q)< f (x j ,q)},

xi ∈C(Cl6t )&x j ∈Cl>t+1;
/0, otherwise.

The matrices ofCl>1 andCl6n don’t be considered in
this paper, as their lower approximations are the do-
main of objectsU , which gives nothing to decision
makers. Different from common single discernibil-
ity matrix, (2∗n−2) matrices are constructed for all
decision class unions. In this definition, the rows of
matrices are labelled with the objects which belong
to the lower approximation of the union of decision
classes, and the columns are labelled with the neg-
ative set, which means those objects haven’t been
classified into the decision class union according to
their decision class labels.

Example 1. Table 1 is an information table with six
objects and four attributes, the set of the condition
attributes isC = {C1,C2,C3}, the decision attribute
presentedD with two values. Assume the larger val-
ues of all attributes are better for decision maker. We
will use this table for the rest of the paper.

Table 1. An information table.
U C1 C2 C3 D
x1 1 1 1 2
x2 1 1 1 1
x3 1 0 1 1
x4 0 0 1 1
x5 0 1 1 1
x6 2 1 2 2

For Table 1, we have following partitions defined
by the setC.

C(Cl>2 ) = {x6} Cl61 = {x2,x3,x4,x5}

C(Cl61 ) = {x3,x4,x5} Cl>2 = {x1,x6}
The following dominance discernibility matrices

are constructed forCl>2 andCl61 according to Defi-
nition 2, respectively:

M(Cl>2 ) =

x2 x3 x4 x5

x6 [{C1,C3} {C1,C2,C3} {C1,C2,C3} {C1,C3}]
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M∗(Cl61 ) =
x3

x4

x5

x1 x6


{C2} {C1,C2,C3}
{C1,C2} {C1,C2,C3}
{C1} {C1,C3}




So each matrix presents the discernibility informa-
tion to the corresponding decision class union but
not the whole information table.

2.3. Data saturation and data concentration

To estimate the characteristics of a data set, three
definitions of the data characteristics5 are intro-
duced. The data saturation of an information table is
a measurement of the data items’ capability relative
to a set of attributes. So the data saturation can be
considered as the largest number of data items that
the attributes set can contain. The data saturation of
an information table is defined as follows:

Definition 3. Data Saturation. In an information
table DT = (U,C∪D), C is the set of the condi-
tion attributes,D is the set of the decision attributes.
P⊆ (C∪D), hereP = {p1, p2, p3, . . . , pn}, the data
saturation ofP is denoted asξP, which can be calcu-
lated as

ξP =
n

∏
i=1

NPi ,

whereNPi is the number of the attribute values ofpi .
If P = /0, thenξP = 1. The definition of data satura-
tion represents the largest number of items that the
attributes setP contains. It can also be viewed as the
largest boundary relation in the information table.

A concept of data concentration is presented to
describe the percent of the equivalent in the data set.
The definition of data concentration is given as fol-
lowing:

Definition 4. Data Concentration. In an informa-
tion tableDT = (U,C∪D), the data concentration
of U is denoted asθ , which can be calculated as

θ =
|U/IND(C∪D)|

ξC∪D
,

whereIND(C∪D) is an equivalence relation with
respect toC∪D, U/IND(C∪D) means the partition

of U induced byIND(C∪D). Once the data setU
hasθ = 1,U is saturated.

Another concept can be well described by the
data concentration, which be called data redun-
dancy. The following is the definition of data re-
dundancy5:

Definition 5. Data Redundancy. In an information
tableDT = (U,C∪D), θ is the data concentration,
ξ is the data saturation. The data redundancy ofU
is denoted asγ, which can be calculated as

γ = 1− θ ∗ξ
|U | .

The redundancy means the repetition of the equa-
tion classes.

3. Rule induction algorithms

After constructing the multi-dominance discernibil-
ity matrices, the decision rules in terms of “if . . . then
. . . ” can be induced. The following is the details of
rule induction algorithms.

3.1. Non-incremental rule induction algorithm
RIDDM

The multi-dominance discernibility matrices ac-
cording to Definition 2 are constructed first, while
rows present the objects from the lower approxi-
mations of the decision classes unions, the columns
present the negative set of the union of decision
classes. Next the major-disjunctive normal form
of every row in the matrix is calculated, the result
is a set of condition attributes which can be used
to distinguish the objects with other negative ob-
jects. We call each conjunctive normal form in the
major-disjunctive normal formattributes candidate
set, and the set is not empty. If it were empty, the
object presented by the row will not belong to the
lower approximation union by the definition of the
matrix. After computing the major-disjunctive nor-
mal form of every row of the matrix, more than
oneattributes candidate setis obtained. Then the
most frequentattributes candidate setis chosen as
the rule condition part to generate a decision rule
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with those rows(objects) containing the correspond-
ing attributes candidate set. More than one rule
may be generated for thisattributes candidate setin
this procedure, then they are combined into a rule
set. After getting the rule set for the most frequent
attributes candidate set, those rows containing the
attributes candidate setare deleted from the matrix
and a new different matrix left. For this new ma-
trix, the same operations are applied to get other
new rule sets until the matrix is empty. At last the
set of all generated rule set is what we induced for
the decision union of classes, which is acomplete
set that cover all objects in lower approximations of
unions3. The general scheme of the algorithm is
presented below.

Algorithm 1. RIDDM(Rule Induction based on
Dominance Discernibility Matrix)
Input: (1)The lower approximation of decision
unionCl>t (Cl6t ): U1 = C(Cl>t )(U1 = C(Cl6t )),

(2)The negative set of decision union
Cl>t (Cl6t ): U2 = Cl6t−1(U2 = Cl>t+1).
Output: The dominance discernibility matrixM and
rule set ofCl>t (Cl6t ): Rule.
BEGIN
Step 1. get the matrixM with rows areU1 and
columns areU2 by Definition 2;
Step 2. Cond= /0;/*the set of the attributes candi-
date sets*/
Step 3.Rule= /0;/*the set of rule sets*/
Step 4. FOR each row ofM DO
Step 4.1. compute the major-disjunctive normal
form and get the set ofattributes candidate setsof
this rowC;/* sum up the frequency of eachattributes
candidate set*/
Step 4.2. FOR eachattributes candidate set c∈ C
DO
Step 4.2.1. IFc∈CondTHEN
Step 4.2.1.1. sum ofc plus 1;
Step 4.2.2. ELSE
Step 4.2.2.1.Cond= Cond∪{c};
Step 4.2.3. END IF
Step 4.3. END FOR
Step 5. END FOR
Step 6.Rule=generatethe rules (M,Cond);
Step7. RETURNRule;

END BEGIN

FUNCTION generatethe rules.
(Input: M andCond.
Output: Rule.)
BEGIN
Step 1.Rule= /0;
Step 2.M1 = M;
Step 3. WHILE matrixM1 is not empty DO
Step 3.1.Sort(Cond);/*sort all theattributes candi-
date setsin descending order*/
Step 3.2. bestC=Select(Cond);/*choose the most
frequentattributes candidate set bestC∈Cond*/
Step 3.3.R= GenerateRule(M1,bestC);/*generate
the rule set for those rows containingbestCin M1,
bestCis the condition part of each rule*/
Step 3.4.Rule= Rule∪R;
Step 3.5. delete those rows containingbestCfrom
M1;
Step 3.6. count allattributes candidate setsin new
M1;
Step 4. END WHILE
Step 5. RETURNRule;
END BEGIN

In the algorithm, a function namedgener-
ate the rules is applied to generate the rule set.
Some steps need to be explained in detail here. In
Step 4.1 of Algorithm 1, some optimization laws
are used to reduce the computation time when com-
puting the major-disjunctive normal form, such as
absorption laws, et.al. In Step 3.3 of FUNCTION
generatethe rules, if there is more than one rule
generated, merge them if one of them could be cov-
ered by other rules, otherwise, reserve them. For
a singleton decision class or other kind of decision
class unions likeClt ∪Clk, the steps are similar.

For decision class unionCl61 in Table 1, the
major-disjunctive normal forms are{C2},{C1} ∧
{C2},{C1}. The two attributes candidate sets
are: {C2} and {C1}, both of them appear twice,
we choose{C2} as the condition part of a rule
first, the generated rules for objectsx3 andx4 are:
“i f f (x,C2) 6 0,then x∈ Cl61 ”, “i f f (x,C2) 6
0,then x∈Cl61 ”. We merge the two rules into one
because they are same. For the rows containing
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{C2}, x3 and x4 are deleted, the new matrix con-
tains only one row, and only oneattributes candi-
date set{C1}. The new rule generated forx5 is
“i f f (x,C1) 6 0,then x∈Cl61 ”, the matrix is empty
after the row containing{C1} be deleted. Algo-
rithm ends. The final rule sets are “i f f(x,C2) 6
0,then x∈Cl61 ” and “i f f (x,C1) 6 0,then x∈Cl61 ”.

3.2. Incremental rule induction algorithm

An incremental rule induction algorithm based on
RIDDM algorithm will be presented in this sec-
tion. For simplification, we assume that the domain
of decision attribute(s)D are 1,2, . . . ,n unchanged
when information table increases dynamically. For
object x and objecty, we say they are inconsis-
tent when they have different dominance relations
on condition attributes and decision attribute(s), i.e.,
x is dominating(dominated by)y on condition at-
tributes and dominated by(dominating)y on deci-
sion attribute(s). Otherwise, they are consistent. For
a new added objectx, if ∀y∈U1, x andy are consis-
tent, thenx is consistent withU1. While if ∃y∈U1,
x andy are inconsistent, thenx is inconsistent with
U1.

The key idea of the incremental procedure is that,
for a new objectx and the matrixM generated by
algorithm RIDDM, we just get the updated matrix
M(x) of (U1∪U2∪{x}) instead of recomputing the
whole matrixM. When a new objectx arrives,x
is positive or negative for one decision class union.
According to the definitions ofU1 andU2 in a domi-
nance discernibility matrix, the updating methods of
M are presented as following:
(1) If x is positive for the decision class union and
there is no inconsistent relation betweenx with ob-
jects ofU2, thenx is classified to the lower approx-
imation of the decision class union,U1 = U1∪{x},
add a new row inM according to the definition of
matrix.
(2) If x is positive for the decision class union and
there exists inconsistent relation betweenx with
some objects ofU2, thenx is classified to the bound-
ary of the decision class union, andM remains un-
changed.
(3) If x is negative for the decision class union
and there exists inconsistent relation betweenx with

some objects ofU1, then find the inconsistent ob-
ject(s) y(maybe there exists more than oney) in
U1, delete the corresponding row(s) from the ma-
trix, U1=U1−{y}, and add the corresponding col-
umn(s) respectively,U2 = U2∪{x}.
(4) If x is negative for the decision class union and
there is no inconsistent relation betweenx with ob-
jects ofU1, then add corresponding column inM,
U2 = U2∪{x}.

Then the description of the incremental rule in-
duction algorithm is given as following:

Algorithm 2. INRIDDM(INcremental Rule Induc-
tion based on Dominance Discernibility Matrix)
Input: (1) dominance discernibility matrixM,

(2) U1 andU2 of M,
(3) the set ofattributes candidate sets Cond

of M,
(4) new added objectx.

Output: new matrix M(x) and the rule setRuleof
decision class unionCl>t (Cl6t ).
BEGIN
Step 1.Rule= /0;
Step 2. IFx is positive for decision class union
THEN
Step 2.1. IFx is consistent withU2 THEN
Step 2.1.1. add a row according to Definition 2 in
M, getM(x);
Step 2.1.2. updateCond;
Step 2.1.3.U1 = U1∪{x};
Step 2.2. ELSE
Step 2.2.1M(x) = M;
Step 2.3. END IF
Step 3. ELSE
Step 3.1. IF there exists inconsistent relation be-
tweenx with U1 THEN
Step 3.1.1. find the inconsistent object setY with x
in U1;
Step 3.1.2. FOR eachy∈Y DO
Step 3.1.2.1. delete the row corresponding toy from
M;
Step 3.1.2.2.U1 = U1−{y};
Step 3.1.3. END FOR
Step 3.1.4. add corresponding columnx in M, get
M(x);
Step 3.1.5.U2 = U2∪{x};
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Step 3.1.6. updateCond;
Step 3.2. ELSE
Step 3.2.1. add corresponding columnx in M, get
M(x);
Step 3.2.2.U2 = U2∪{x};
Step 3.2.3. updateCond;
Step 3.3. END IF
Step 4. END IF
Step 5.Rule= generatethe rules(M(x),Cond);
Step 6. RETURNRule;
END BEGIN

In this algorithm, the rules covering more ob-
jects are prior to those covering less objects. This
kind of greedy strategy may lead the solution into a
local optimal result, i.e., not the rule set with least
rules. The post-processing procedure can be ap-
plied into the result to get the global optimal rules,
as in DOMLEM 2. The post-processing procedure
needs to judge if the rule is minimal, which means
to scan the whole data table. The post-processing
do not be considered in algorithms RIDDM and IN-
RIDDM, because for most decision maker(s), both
more choices and less computation cost are better.

The following is an example of adding different
objects in Table 1, which shows the detail of the in-
cremental procedure.

a. For Table 1, add a new objectx(2,2,2,2),
thenx is positive forCl>2 , and it satisfies the updating
situation (1):U1 = {x6,x}, U2 remains unchanged,
andM(x) of Cl>2 is updated to:

x6
x

x2 x3 x4 x5[ {C1,C3} {C1,C2,C3} {C1,C2,C3} {C1,C3}
{C1,C2,C3} {C1,C2,C3} {C1,C2,C3} {C1,C2,C3}

]

Meanwhile, x is negative forCl61 , it satisfies
the updating situation (4):U1 remains unchanged,
U2 = {x1,x6,x}, M(x) of Cl61 is updated to:

x3

x4

x5

x1 x6 x


{C2} {C1,C2,C3} {C1,C2,C3}
{C1,C2} {C1,C2,C3} {C1,C2,C3}
{C1} {C1,C3} {C1,C2,C3}




b. For Table 1, add a new objectx(0,1,1,2),
thenx is positive forCl>2 , and it satisfies the updat-
ing situation (2):M(x) of Cl>2 remains unchanged.

Meanwhile,x is negative forCl61 , it satisfies the up-
dating situation (3):x is inconsistent withx5 in U1,
U1 = {x3,x4}, U2 = {x1,x6,x}, M(x) of Cl61 is up-
dated to:

x3

x4

x1 x6 x[ {C2} {C1,C2,C3} {C2}
{C1,C2} {C1,C2,C3} {C2}

]

Froma. andb. we know that we just need to up-
date the corresponding dominance discernibility ma-
trix when a new object arrives, and generate the rule
set from the updated matrix.

Let us discuss the computation complexity of the
algorithm briefly. For space complexity, the algo-
rithm requires multi-dominance discernibility matri-
ces. It means 2d−2 matrices(assuming there ared
different decision class labels in the information ta-
ble) need to be constructed, and the space of each
matrix is|U1| ∗ |U2|. For time complexity, letmde-
notes the number of attributes, in the worst case, it
needs at mostm∗ (|U1|+ |U2|+1) operations in or-
der to judge which set contains the new object. On
the other hand, updating matrix and generating rules
need justm∗max(|U1|, |U2|)+m∗ (|U1|+1) oper-
ations at most. Thus at mostn∗m∗ (2(|U1|+ 1)+
|U2|+ max(|U1|, |U2|)) operations are needed ifn
objects arrive incrementally. So, the complexity of
the algorithm is polynomial.

4. Experiments and analysis

4.1. Design of experiments

The aim of the experiments is to compare the incre-
mental algorithm with non-incremental algorithms.
Beyond comparing the algorithms, we want to find
how the distribution of training samples influence
the computation and performance of algorithms.
Here, the distribution of training samples are ex-
pressed by data saturation and data concentration.

With the experiments carried out in this work we
want to answer the following questions:

-How does the computational time grow with the
increasing number of objects?
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-How does the data saturation and data concen-
tration affect the running time? Are the distributions
of training samples important for all algorithms?

The following experiments are conducted on
a Pentium(R) D-2.8GHz CPU with 512MB main
memory running Windows XP. All algorithms are
implemented in C# and executed on the Visual Stu-
dio.NET 2005.

For simplification, the rule sets generated by all
algorithms only contain the decision class unions
like Cl>t andCl6t , not Clt ∪Clk. In these experi-
ments, four algorithms are implemented, including
DOMLEM 2, AllRules 3 and other two algorithms
proposed in this paper: RIDDM and INRIDDM.

4.2. Incremental vs non-incremental algorithms
analysis on data sets

Two kinds of data sets(artificial and real) are used
to analyze the performance of incremental and non-
incremental algorithms. The artificial data sets are
randomly generated according to pre-setting param-
eters, those parameters include the number of ob-
jects and attributes. The artificial data sets are used
mainly for experiments concerning the efficiency
and the affection of algorithms at the time when the
distributions of provided data sets are different.

Among the real data sets,iris, pimaindians
andmushroomare obtained from the repository of
Machine Learning databases at UCIa, homeprice
is from the data and story library of CMUb and
DOM DATA is from paper2. These data sets are
adapted for multi-criteria classification problems by
specifying the preference order on some regular at-
tributes.
Table 2. Characteristics of real data sets used for experiments.

Data Number of Number of decision
set objects attributes classes
iris 150 4 3

pimaindians 768 8 2
mushroom 8124 22 2
homeprice 117 7 3

DOM DATA 17 3 3

Firstly, all algorithms are compared on the real
data sets, the details are presented in Table 2.
For the data setsiris, pimaindians,homepriceand
DOM DATA, the numbers of objects are not large,
so we only run non-incremental algorithms on these
data sets. The results including the number of gen-
erated rules and the computation time are presented
in the following two tables.

Table 3. The number of generated rules by non-incremental al-
gorithms on real data sets.

Datasets DOMLEM AllRules RIDDM
iris 8 13 10

DOM DATA 8 13 9
homeprice 18 21 23

pimaindians 157 7 –

Table 4. The running time(in seconds) of non-incremental algo-
rithms worked in real data sets.

Datasets DOMLEM AllRules RIDDM
iris 0.546 5.312 0.328

DOM DATA 0.015 0.046 0.001
homeprice 0.937 25.015 0.203

pimaindians 733.78 1784.59 –

Comparing the number of generated rules,
RIDDM is not less than DOMLEM, the reason
is that RIDDM does not consider post-processing,
which we have discussed above. The rules generated
by AllRules are more than those by DOMLEM on
all data sets exceptpimaindians, because the rules
generated by AllRules are based onbasis rule3. For
data setpimaindians, the objects covered by the 7
“basis rules” are much less than those covered by
157 rules generated by DOMLEM. The symbol ”–”
means that the algorithm has exceeded the accepted
resources. There are only 8 attributes and 2 decision
class unions in data setpimaindians, but there are
too many values for each attribute and the number
of objects is large, it means the matrices constructed
by RIDDM may exceed the available memory re-
sources. This is the limitation of RIDDM. Except
the data setpinaindians, we can see that the time
cost of RIDDM is the lowest on other data sets from
Table 4.

ahttp://archive.ics.uci.edu/ml/
bhttp://lib.stat.cmu.edu/DASL/allsubjects.html
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Now we consider the performance of incremen-
tal algorithm on the large data sets. Table 5 is the
running time of all algorithms worked in data set
mushroom. In order to deal with data incrementally,
first 500 objects ofmushroomare taken as training
samples of the first non-incremental process part,
and the incremental algorithm is run with 500, 1000
and 1500 additional objects added each time. For
those non-incremental algorithms, take all given ob-
jects as the input of them.

Table 5. The running time(in seconds) of all algorithms worked
in mushroom.

Num of objects
Algorithms 500 1000 1500 2000
DOMLEM 27.70 191.01 570.43 1859.35
AllRules – – – –
RIDDM 4.56 20.53 44.34 79.03
INRIDDM 0 2.70 3.35 7.03

Fromthe Table 5 we can see that the incremen-
tal algorithm INRIDDM is much faster than other
non-incremental algorithms. In order to conduct a
further analysis on INRIDDM, the algorithm IN-
RIDDM is run on a group of artificial data sets, the
size of these sets are 10000,20000, . . . ,100000, with
7 condition attributes and 1 decision attribute. First
100 objects are taken to construct the matrices in the
non-incremental process part. The time of comput-
ing the 100 objects is too short to be considered in
the experiment.

Fig. 1. The running time(in seconds) of INRIDDM on large
data sets.

The experiment results detailed in Fig 1 show
that the computation complexity of INRIDDM

is polynomial. Comparing with DOMLEM,
INRIDDM with n ∗ m ∗ (2(|U1| + 1) + |U2| +
max(|U1|, |U2|)) operations needed is better, while
DOMLEM needs at mostn∗m∗ (n+1)∗ (m+1)/4
operations2. The advantage of the incremental algo-
rithm is that INRIDDM just needs to update the ma-
trices when new objects arrive, this is faster than re-
constructing new matrices. So, from the above anal-
ysis and Table 5 we can come to a conclusion that
while dealing with large data set, even small data set,
incremental algorithm INRIDDM is the best choice.

4.3. Incremental algorithm on data saturation
and data concentration

In this section, we try to investigate the relation-
ship between the data saturation, data concentration
and the running time of incremental algorithm IN-
RIDDM.

We have known that the time complexity
of INRIDDM is n ∗ m ∗ (2(|U1|+ 1) + |U2|+
max(|U1|, |U2|)), it depends on the object number
n, the attribute numberm and two object sets:U1
andU2. Generally most algorithms were only con-
cerned withn andm when they conducted a com-
plexity analysis, but the data distribution informa-
tion was neglected. Here, the data distribution infor-
mation is denoted by data saturation, data concen-
tration and data redundancy.

For the algorithm INRIDDM, the major opera-
tions are to update the existed matrices according to
the judgement of whether those new arrived objects
belong toU1 orU2. For saturated data set, theU1
andU2 of the given data set are remain unchanged
when a new object arrives, because the object which
has the same value with the new object can be eas-
ily found in U1 or U2. But for non-saturated data
set,U1 andU2 may changed because the new ob-
ject needs to be inserted intoU1 or U2, or incon-
sistent objects need to be deleted fromU1 or U2.
So, for saturated and non-saturated data set with the
same object number and attribute number, the run-
ning time of INRIDDM maybe different, and deal-
ing with saturated data is faster than non-saturated
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data. In order to verify the conclusion, another ex-
periment is conducted, the used data sets are detailed
in Table 6.

Table 6. Characteristics of artificial data sets used for experi-
ments, 2 groups of data sets

saturateddata non-saturated data
|C∪D| |U | NP1

∗NP2
∗ · · · ∗NPi θ NP1

∗NP2
∗ · · · ∗NPi θ

6 10000 5*7*6*5*2*3 1.0 8*7*6*5*3*3 0.53
6 20000 8*7*6*5*2*3 1.0 8*7*6*5*7*3 0.85
6 30000 8*7*6*5*3*3 1.0 8*7*6*6*6*3 0.83
6 40000 8*7*6*5*4*3 1.0 8*7*7*7*7*3 0.69
6 50000 8*7*6*5*5*3 1.0 8*8*8*8*8*3 0.51

In Table 6, |C∪D| denotes the number of at-
tributes,|U | denotes the number of objects,NPi de-
notes the number of values ati-th attribute,θ de-
notes the data concentration of data set. The data
saturation of the sample with 10000 objects in the
saturated data set isξ = 5∗7∗6∗5∗2∗3 = 6300,
respectively, the sample in non-saturated data sets is
ξ = 8∗7∗6∗5∗3∗3 = 15120. The experiment re-
sult is detailed in Fig 2.

Fig. 2. The computation time(in seconds) of INRIDDM on
saturated data sets and non-saturated data sets.

Now we concern the data concentration, the re-
dundancy of data set can be well described by the
data concentration5. The redundancy means the
repetition of decision classes, it is also concerned
with U1 andU2. According to the above analy-
sis on data saturation for INRIDDM, the data re-
dundancy, i.e., another form of data concentration,
should also affect the performance of INRIDDM.
The followed Table 7 is the detail of other artificial
data sets, which are used to test whether the data re-
dundancy affects the algorithm or not. Theγ denotes

the redundancy of the data set.

Table 7. Characteristics of artificial data sets with different re-
dundancy

|U | |C∪D| ξ γ θ
50000 6 4100 0.28 0.1
50000 6 4100 0.36 0.2
50000 6 4100 0.44 0.3
50000 6 4100 0.52 0.4
50000 6 4100 0.60 0.5
50000 6 4100 0.68 0.6
50000 6 4100 0.76 0.7
50000 6 4100 0.84 0.8
50000 6 4100 0.92 0.9

Fig 3 shows that INRIDDM needs less time to
update matrices when the data redundancy is larger,
because the data redundancy is related toU1 and
U2, which are two factors of the time consuming of
the incremental algorithm.

Fig. 3. The computation time(in seconds) of INRIDDM on
data sets with different redundancy.

From above analysis and experiments we can
answer the second question that the data saturation
and data concentration are important for the incre-
mental algorithm INRIDDM in performance, the
reason is that they are relevant toU1 andU2. For
those non-incremental algorithms, they don’t con-
siderU1 andU2, so there is not much connection
between the data distribution and the algorithm per-
formance.
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5. Conclusion

In this paper the rule induction algorithms are stud-
ied under the frame of Dominance-based Rough
Set Approach. The notion of constructing multi-
dominance discernibility matrices to deal with the
information table with ordering relations is pro-
posed, which can highlight the differences between
two decision classes. And then an incremental algo-
rithm INRIDDM and a non-incremental algorithm
RIDDM based on multi-dominance discernibility
matrices are introduced. For incremental dealing,
when a new object arrives, the updated rule sets can
be obtained after updating one row or one column
in the matrix. The analysis on INRIDDM and the
results of comparing experiments with other non-
incremental algorithms show the effectiveness of the
INRIDDM. For large data sets or small data sets, the
incremental algorithm INRIDDM is a better choice
even if it is a non-incremental problem.

Besides the performance analysis of INRIDDM
and experiments on it, the relationship between the
data distribution and the running time of the in-
cremental algorithm is also explored in this paper.
For saturated data, the cost of INRIDDM is less
than non-saturated data. If there exists redundancy
in data set, it will reduce the running time of IN-
RIDDM. So, we come to the conclusion that the al-
gorithm INRIDDM prefers saturated data with re-
dundancy.

In this paper we only consider generating the
classification rules that cover the objects of lower
approximations of the decision class unions, the fol-
lowing work will be on studying the rules which
covering the different objects and on inducing the
type 1 rules in the future.
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