
Experimental Comparison of Iterative Versus Evolutionary Crisp and Rough
Clustering

Pawan Lingras 1 Manish Joshi 2

1 Department of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3, Canada.

E-mail: pawan@cs.smu.ca
2 Department of Computer Science, North Maharashtra University,

Jalgaon, Maharashtra, 425 001, India
E-mail: joshmanish@gmail.com

Abstract

Researchers have proposed several Genetic Algorithm (GA) based crisp clustering algorithms. Rough
clustering based on Genetic Algorithms, Kohonen Self-Organizing Maps, K-means algorithm are also
reported in literature. Recently, researchers have combined GAs with iterative rough clustering algorithms
such as K-means and K-Medoids. Use of GAs makes it possible to specify explicit optimization of cluster
validity measures. However, it can result in additional computing time. In this paper we compare results
obtained using K-means, GA K-means, rough K-means, GA rough K-means and GA rough K-medoid
algorithms. We experimented with a synthetic data set, a real world data set, and a standard dataset
using a total within cluster variation, average precision, and execution time required as the criteria for
comparison.

Keywords: Rough Clustering, Crisp Clustering, GA based Clustering, Cluster Quality.

1. Introduction

Grouping of large number of objects into a smaller
number of manageable groups makes it easier to for-
mulate planning strategies. The grouping is usually
based on a similarity measure. For example, cus-
tomers to a supermarket can be grouped based on
their buying patterns. The store can then design mar-
keting campaigns for various groups, instead of indi-
vidual customers. Two of the most well-known and
commonly used partitioning methods are K-means
and K-medoids. Given D, a data set of n objects, and
k, the number of clusters to form, K-means and K-

medoid algorithms organize the objects into k parti-
tions (k 6 n), where each partition represents a clus-
ter. The K-means as well as the K-medoid clustering
partition the input data set into k clusters to optimize
an objective partitioning criterion, such as dissimi-
larity function based on distance. A minimized to-
tal within cluster variation ensures that the objects
within a cluster are ‘similar’. However, the objec-
tive partitioning criterion is not explicitly optimized.
Another drawback of K-means and K-medoid clus-
tering is that it can fall in local optima.

Deterministic local search always converges to
the nearest local optimum from a starting position of

International Journal of Computational Intelligence Systems, Vol.4, No. 1 (February, 2011).

Published by Atlantis Press
 Copyright: the authors
 12

zegerkarssen
Texte tapé à la machine
Accepted: 19-11-2009
Received: 20-09-2010

Lingras, Joshi

Input:
k: the number of clusters,
D(n,m): a data set containing n objects where each object has m dimensions,
δ :an input parameter that stands for a small acceptable change in the subsequent centroid values,
iter: an input parameter indicating number of consecutive iterations for which

difference in subsequent centroid values should be less than δ ,
Output:

A set of clusters.
Steps:

arbitrarily choose k objects from D as the initial cluster centers (centroids);
repeat

(re)assign each object to the cluster based on the distance of an
object from the centroid of the cluster;

update the cluster centroids using the number of objects assigned to each cluster;
until no change;

Figure 1: The K-means algorithm for crisp clustering

the search, hence K-means result largely depends on
the initial cluster centers. On the contrary, stochastic
search heuristics inspired by evolution and genetics
has the ability to cope with local optima by main-
taining, recombining and comparing several candi-
date solutions simultaneously. GA’s are believed to
be effective on global optimization problems, and
they can provide good near-optimal solutions in rea-
sonable time. Hence, to minimize a total within
cluster variation and overcome the trap of falling
into local optima, use of genetic algorithms (GA’s)
is proposed. 1,2,3,4,5

The conventional clustering categorizes an ob-
ject into precisely one cluster. Whereas, fuzzy
clustering6,7,8 and rough set clustering 9,10,11,12,13,14

provide ability to specify the membership of an
object to multiple clusters, which can be useful
in real world applications. Clustering in relation
to rough set theory is attracting increasing inter-
est among researchers.13,14,15,16,17,18 Lingras19 de-
scribed how a rough set theoretic clustering scheme
can be represented using a rough set genome. Rough
set genomes were used to find an optimal bal-
ance between rough within-group-error and preci-
sion. However, the space requirement for rough set
genomes as well as the convergence of the evolu-

tionary process can be an issue for a large dataset.
In subsequent publications,10,20 modifications of K-
means and Kohonen Self-Organizing Maps (SOM)
were proposed to create intervals of clusters based
on rough set theory. Rough K-means algorithm
and its variations13,16 have been most popular meth-
ods for rough set clustering due to their simplicity
and efficiency. However, rough K-means has not
been shown to explicitly find an optimal clustering
scheme for a particular cluster quality measure.

In this paper we discuss various aspects of crisp,
rough set based, and evolutionary clustering algo-
rithms. We discuss and present appropriate modifi-
cations required to the basic K-means and K-medoid
algorithms so that these algorithms adapt to rough
and evolutionary clustering. In particular, we ex-
plain K-means, GA K-means, rough K-means, GA
rough K-means,12 and GA rough K-medoid21 algo-
rithms and their corresponding fitness functions.

Section 2 describes a K-means crisp clustering
algorithm. Section 3 describes how rough set the-
ory is embedded with a K-means algorithm. Sec-
tion 4 discusses the inclusion of GA to K-means,
rough K-means, and rough K-medoid algorithms.
The genome sizes of the rough K-means and rough
K-medoids are compared favorably with the original

Published by Atlantis Press
 Copyright: the authors
 13

Evolutionary Rough Clustering

rough set genome. We also discuss the formulation
of a fitness function for GA based crisp and rough
clustering in this section. The discussion of apply-
ing these algorithms to a synthetic data set, a real
world library data set, a standard data set and anal-
ysis of resulting cluster quality thereof is presented
in section 5, 6 and 7 respectively. Conclusions are
reported in section 8.

2. Crisp Clustering

The conventional clustering techniques group ob-
jects into separate clusters. Each object is assigned
to only one cluster. The term crisp clustering refers
to the fact that the cluster boundaries are strictly de-
fined and object’s cluster membership is unambigu-
ous.

2.1. Partitioning Algorithms

Algorithms of this category identify homogeneous
groups of objects by finding similarities among ob-
jects. Objects are represented by their characterizing
attributes. Clustering is considered as an optimiza-
tion problem for which the objective is to maximize
the similarities among objects within the same clus-
ters while minimizing the dissimilarities between
different clusters.

A clustering algorithm is desired to be simple,
efficient and should deal with huge datasets. It
should be able to detect different cluster shapes.
Even though K-means is one of the popular partition
clustering algorithms, it converges to arbitrary lo-
cal optima and can not deal well with non-spherical
shaped clusters22. We describe procedural steps for
the K-means algorithms.

K-means Algorithm. K-means clustering is
one of the most popular statistical clustering
techniques.23,24 The K-means algorithm partitions
the objects into clusters so that the resulting intra-
cluster similarity is high but the inter-cluster similar-
ity is low. For this algorithm, the cluster similarity
is measured using the mean value of the objects in
a cluster. This mean value is called the cluster cen-
troid. Fig. 1 summarizes the K-means procedure.

We modeled the ‘until no change condition’ of
the algorithm (Fig. 1) using two parameters δ and
iter. The minimum accepted variance among all
centroid values for iter number of consecutive itera-
tions is specified by the value of δ . If Centroidt(ci)
gives a centroid value of a cluster i of the tth iter-
ation, then for consecutive iter number of iterations
Centroidt(ci)−Centroidt−1(ci) 6 δ , where 1 6 i 6 k
and t > 1. We have set the values of δ and iter to
0.0001 and 50 respectively.

The objects are iteratively assigned to appropri-
ate clusters based upon its distance from the cen-
troids of the clusters. For an object v , let d(v,ci) be
the distance between itself and the centroid of clus-
ter. An object is assigned to a cluster if it follows the
condition d(v,c j) = min16i6kd(v,ci), where distance
between a vector and a cluster centroid is given by:

d(v,ci) =

√
m

∑
j=1

(v j− ci j)2. (1)

It is possible that K-means algorithm may fall in
local optima. Moreover, K-means algorithm can not
assign an object to multiple clusters. Hence, in or-
der to overcome the problem of local optima and to
manage the multiple membership issue, Genetic Al-
gorithms (GA) and rough set theory are combined
with K-means algorithm. In the next section, we will
first discuss the rough set theory based extensions
of the crisp clustering using an iterative rough K-
means algorithm. Subsequent sections will present
GA based enhancements.

3. Rough Clustering

In addition to clearly identifiable groups of objects,
it is possible that a data set may consist of several
objects that lie on the fringes. The conventional
clustering techniques mandate that such objects be-
long to precisely one cluster. Such a requirement
is found to be too restrictive in many data mining
applications25. In practice, an object may display
characteristics of different clusters. In such cases,
an object should belong to more than one cluster,
and as a result, cluster boundaries necessarily over-
lap. Fuzzy set representation of clusters, using al-
gorithms such as fuzzy C-means, makes it possible

Published by Atlantis Press
 Copyright: the authors
 14

Lingras, Joshi

Input:
k: the number of clusters,
D(n,m): a data set containing n objects where each object has m dimensions,
p: a threshold value (1.4),
w lower: relative importance assigned to lower bound (0.75),
w upper: relative importance assigned to upper bound (0.25),
δ , iter: as described in Fig. 1

Output:
A set of clusters. Each cluster is represented by the objects in the lower region
and in boundary region (upper bound)

Steps:
arbitrarily choose k objects from D as the initial cluster centers (centroids);
repeat

(re)assign each object to lower/upper bounds of appropriate clusters by
determining its distance from each cluster centroid,

update the cluster means (centroids) using the number of objects assigned
and relative importance assigned to lower bound and upper bound of the cluster;

until no change;

Figure 2: The K-means algorithm for rough clustering

for an object to belong to multiple clusters with a
degree of membership between 0 and 17. In some
cases, the fuzzy degree of membership may be too
descriptive for interpreting clustering results. Rough
set based clustering provides a solution that is less
restrictive than conventional clustering and less de-
scriptive than fuzzy clustering.

Lingras and West10 provided an efficient al-
ternative based on an extension of the K-means
algorithm.23,24 Incorporating rough sets into K-
means clustering requires the addition of the con-
cept of lower and upper bounds. The incorpora-
tion required redefinition of the calculation of the
centroids to include the effects of lower and upper
bounds. The next step was to design criteria to de-
termine whether an object belonged to the lower and
upper bounds of a cluster.

The rough K-means approach has been a subject
of further research. Peters13 discussed various re-
finements of Lingras and West’s original proposal10.
These included calculation of rough centroids and
the use of ratios of distances as opposed to differ-
ences between distances similar to those used in the

rough set based Kohonen algorithm described in20.
The rough K-means10 and its various extensions12,13

have been found to be effective in distance based
clustering. However, there is no theoretical work
that proves that rough K-means explicitly finds an
optimal clustering scheme. Moreover, the quality of
clustering that is maximized by the rough cluster-
ing is not precisely defined. We compare crisp and
rough clustering algorithm results.

Rough K-means Algorithm. We 26 represent
each cluster ci,1 6 i 6 k, using its lower A(ci) and
upper A(ci) bounds. All objects that are clustered
using the algorithm follow basic properties of rough
set theory such as:

(P1) An object~x can be part of at most one lower bound
(P2) ~x ∈ A(~ci) =⇒~x ∈ A(~ci)
(P3) An object~x is not part of any lower bound

m
~x belongs to two or more upper bounds.

Fig. 2 depicts the general idea of the algorithm.

Published by Atlantis Press
 Copyright: the authors
 15

Evolutionary Rough Clustering

An object is assigned to lower and/or upper bound of
one or more clusters. For each object vector, ~v, let
d(~v,~c j) be the distance between itself and the cen-
troid of cluster ~c j. Let d(~v,~ci) = min16 j6k d(~v,~c j).
The ratios d(~v,~ci)/d(~v,~c j), 1 6 i, j 6 k, are used
to determine the membership of ~v. Let T = { j :
d(~v,~ci)/d(~v,~c j) 6 threshold and i 6= j}.

1. If T 6= /0,~v∈ A(~ci) and~v∈ A(~c j),∀ j ∈ T . Fur-
thermore, ~v is not part of any lower bound.
The above criterion guarantees that property
(P3) is satisfied.

2. Otherwise, if T = /0,~v ∈ A(~ci). In addition, by
property (P2),~v ∈ A(~ci).

It should be emphasized that the approximation
space A is not defined based on any predefined re-
lation on the set of objects. The lower and up-
per bounds are constructed based on the criteria de-
scribed above.

The values of p (a threshold), w lower, w upper
are finalized based on the experiments described
in27.

4. Evolutionary Clustering Algorithms

This section contains some of the basic concepts of
genetic algorithms as described in1. A genetic algo-
rithm is a search process that follows the principles
of evolution through natural selection. The domain
knowledge is represented using a candidate solution
called an organism. Typically, an organism is a sin-
gle genome represented as a vector of length n:

g = (gi | 1 6 i 6 n) , (2)

where gi is called a gene.
A group of organisms is called a population.

Successive populations are called generations. A
generational GA starts from initial generation G(0),
and for each generation G(t) generates a new gener-
ation G(t +1) using genetic operators such as muta-
tion and crossover. The mutation operator creates
new genomes by changing values of one or more
genes at random. The crossover operator joins seg-
ments of two or more genomes to generate a new
genome.

Fig. 3 describes the evolutionary procedure. The
evaluation process of a genome i.e. evaluate G(t), is
a combination of two steps. The first step determines
membership of all objects to corresponding clusters.
As described in earlier section, appropriate calcula-
tions for crisp and rough clustering figures out the
members of each cluster. In the next step, fitness
of the genome is determined. The intuitive distance
measure is used to decide the fitness of the genome.
There is an obvious difference between the fitness
calculations for crisp clustering and rough cluster-
ing. The fitness formulas used for both clustering
are described below.

Genome Fitness Function for Crisp Clustering.
The fitness is calculated based on the allocation of
all objects to the clusters. It is given by:

Fitness =
k

∑
i=1

∑
u∈ci

d(u,xi). (3)

Fitness is the sum of the Euclidean distances for
all objects in the cluster; u is the point in space repre-
senting a given object; and xi is the centroid/medoid
of cluster ci (both u and xi are multidimensional).
The function d provides the distance between two
vectors. The distance d(u,x) is given by:

d(u,x) =

√
m

∑
j=1

(u j − x j)2. (4)

Here, the value of m indicates the total number
of dimensions.

Genome Fitness Function for Rough Cluster-
ing. The Fitness function has to change to adapt
to the rough set theory by creating lower and upper
versions of the Fitness as:

Fitness =
k

∑
i=1

∑
u∈A(ci)

d(u,xi), (5)

Fitness =
k

∑
i=1

∑
u∈A(ci)

d(u,xi), (6)

where A(ci) and A(ci) represents lower and upper
bound of cluster ci. The distance function d does not

Published by Atlantis Press
 Copyright: the authors
 16

Lingras, Joshi

Input:
All the parameters present in Fig 1 (for crisp clustering) and

Fig. 2(for rough clustering)
population: The number of organisms to be generated,
generations: The number of successive populations to be generated,

Output:
A set of clusters. Each cluster is represented by the objects in the lower region
and in boundary region (upper bound)

Steps:
generate initial population, G(0);
evaluate G(0);
for (t=1; t 6 generations; t ++)

generate G(t) using G(t−1);
evaluate G(t);

Figure 3: Steps used in the GA based Evolutionary algorithms

change. The Fitness value for the rough clustering
is calculated as

Fitness = w lower×Fitness+w upper×Fitness.
(7)

where w lower and w upper are relative importance
assigned to lower and upper bound of the clusters.

Thus evolutionary algorithms for clustering dif-
fer mostly in the genome representation and the fit-
ness calculation. The variations of GA based algo-
rithms for crisp and rough clustering are described
in next subsections. All these GA based algorithms
follow steps depicted in Fig. 3.

4.1. GA K-means

The K-means algorithm discussed in section 2 is
modified to adapt the principles of GA. The organ-
ism has a total of k×m genes. A batch of every
m genes represents centroids of corresponding clus-
ters. The population size and generation values are
input parameters.

4.2. Rough set genome

Before studying the GA Rough K-means, we will
look at the first attempt at rough clustering using

GAs proposed by Lingras19 in 2001 using rough set
genome.

A rough set genome consists of n genes, one
gene per object in U . A gene for an object is a string
of bits that describes which lower and upper approx-
imations the object belongs to. Properties (P1)-(P3)
provide certain restrictions on the memberships. An
object u ∈U can belong to the lower approximation
of at most one class xi. If an object belongs to the
lower approximation of xi then it also belongs to the
upper approximation of xi. If an object does not be-
long to the lower approximation of any xi, then it
belongs to the upper approximation of at least two
(possibly more) xi.

Based on these observations the string for a gene
can be partitioned into two parts, lower and upper.
Both the lower and upper parts of the string consist
of k bits each. The ith bit in lower/upper string tells
whether the object is in the lower/upper approxima-
tion of xi.

If u ∈ A(xi), then based on the property (P2),
u ∈ A(xi). Therefore, the ith bit in both the lower
and upper strings will be turned on. Based on the
property (P1) all the other bits must be turned off.

If u is not in any of the lower approximations,
then according to property (P3), it must be in two or
more upper approximations of xi,1 6 i 6 k, and cor-

Published by Atlantis Press
 Copyright: the authors
 17

Evolutionary Rough Clustering

Valid genes

Lower Upper

A(x3) A(x2) A(x1) A(x3) A(x2) A(x1)

gene1 0 0 0 0 1 1

gene2 0 0 0 1 0 1

gene3 0 0 0 1 1 0

gene4 0 0 0 1 1 1

gene5 0 0 1 0 0 1

gene6 0 1 0 0 1 0

gene7 1 0 0 1 0 0

Some examples of invalid genes

Lower Upper

A(x3) A(x2) A(x1) A(x3) A(x2) A(x1)

invalidGene1 0 0 1 0 0 0

invalidGene2 0 1 0 1 1 0

invalidGene3 1 0 1 0 0 0

invalidGene4 0 0 0 0 0 1

Figure 4: Genes in a rough set genome

Published by Atlantis Press
 Copyright: the authors
 18

Lingras, Joshi

responding ith bits in the upper string will be turned
on.

Fig. 4 shows examples of all the valid and some
of the invalid genes for k = 3. Genes gene1 to gene7
are all the acceptable values of genes for k = 3. An
object represented by gene1 belongs to A(x1) and
A(x2). An object represented by gene6 belongs to
A(x2), and by property (P2) to A(x2).

Any other value not given by gene1 to gene7
is not valid. Fig. 4 also shows four of the 57 in-
valid values. The invalidGene1 is invalid because
an object cannot be in A(x1) and not be in A(x1).
The invalidGene2 is invalid because an object can-
not be in A(x2) and in A(x3) at the same time. The
invalidGene3 is invalid because an object cannot be
in A(x1) and in A(x3) at the same time. Since the
object represented by invalidGene4 only belongs to
A(x1), according to property (P3) it is invalid.

A genetic algorithm package such as the one
used in the study28 makes it possible to describe a set
of valid gene values or alleles. All the standard ge-
netic operations will then only create genomes that
have these values. Therefore, the conventional ge-
netic operations can be used with rough set genomes
in such a package. Lingras19 evolved a rough set
clustering by optimizing the cluster validity measure
such as the one given by “Eq. 7”. One of the major
drawbacks of the rough set genome was the fact that
the size of the genome was directly proportional to
the number of objects. Therefore, the approach was
feasible for a relatively small number of objects. The
following sections describe two approaches that are
based on the rough K-means algorithm that progres-
sively reduce the size of the genome.

4.3. GA Rough K-means

Mitra12 proposed an evolutionary rough clustering
algorithm that used the genomes whose size was
proportional to the number of clusters, k. Since
the number of clusters k are significantly smaller
than the number of objects n, it is possible to ap-
ply the algorithm to large datasets. In this section,
we present a similar approach described in26, which
is essentially an evolutionary modification of the
rough K-means algorithm. The objective of the ap-
proach was to explicitly evolve an optimal clustering

scheme. The proposed genome for the evolutionary
algorithm has a total of k×m genes, where k is the
desired number of clusters and m is the number of
dimensions used to represent objects and centroids.
The first m genes represent the first centroid. Genes
m+1, . . . ,2×m give us the second centroid, and so
on. Finally, ((k−1)×m)+1, . . . ,k×m corresponds
to the kth centroid. We apply this genome configu-
ration in an algorithm that is used for comparison.
The cluster assignment is similar to rough K-means
defined in Fig. 2. The rough fitness measure given
by “Eq. 7” is minimized.

4.4. GA Rough K-medoid

The size of the genome used for rough clustering
can be further reduced with the help of a modified
K-medoid algorithm as was proposed by Peters, et
al.13 Unlike K-means algorithm where mean value
is used as a centroid of a cluster, in K-medoid algo-
rithm actual object is used as a reference point of a
cluster. One object is used to represent a cluster and
remaining objects clustered based on their similarity
with the representative object.

A medoid is the most centrally located object in a
given cluster. For k clusters, we will have k medoids.
A genetic algorithm can be used to search for the
most appropriate k medoids. The genome will con-
tain k genes, each corresponding to a medoid. This
reduces the size of a genome from k×m by a factor
of m to k. The steps in this algorithm are similar to
that of GA rough K-means. The major difference is
the use of medoids instead of centroids of the clus-
ters.

Lingras29 describe theoretical and experimental
comparison between GA based rough K-means and
rough K-medoids algorithms. The gene values for
rough K-medoids are discrete values corresponding
to object IDs as opposed to continuous real variables
used for centroids in the rough K-means evolution.
This results in a restricted search space for the pro-
posed rough K-medoids leading to further increase
in the chances of convergence. This paper provides
a more elaborate experimental testing of this hypoth-
esis.

Published by Atlantis Press
 Copyright: the authors
 19

Evolutionary Rough Clustering

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Figure 5: Synthetic data

5. Comparative Results - Synthetic Data set

We used the synthetic data set developed by Lingras
et al.30 to test the validity of the evolutionary rough
K-means. There are a total of 65 objects as shown
in Fig. 5. It is obvious that there are three distinct
clusters. However, five objects do not belong to any
particular cluster.

Since there are three distinct clusters in the data
set, the number of clusters for all the algorithms was
set to three. The GAs used the crossover probabil-
ity of 70% and mutation probability of 10%. For
each algorithm, best and average Fitness for five
trials are presented. We carried experiments with
different population sizes and generations. Table 1
shows the results obtained using K-means and rough
K-means algorithms. We can see that clusters gener-
ated by rough K-means have less intra-cluster varia-
tion. That means for the synthetic data set, the rough
K-means provides better cluster quality as compared
to the crisp K-means algorithm.

Table 1 also shows the number of generations
and population sizes required to approach or exceed
the cluster quality obtained from the iterative algo-
rithms. The table compares K-means against GA
K-means and rough K-means against GA rough K-
means.

The average K-means results are improved by

GA K-means. The best result obtained using K-
means (47.0268) is not reached by GA K-means
even for 500 population size and 500 generations
(47.0269). But due to the problem of local optima,
K-means could not generate good results consis-
tently. Whereas the GAs results with adequate num-
bers of populations and generations (in this case 100
each) are consistent, which leads to improved per-
formance. For lesser number of objects (65) the time
required for the GAs is not significant, but for more
number of objects it would be interesting to see the
execution times for GAs.

We can see that the rough K-means result is also
improved using GA rough K-means. Big varia-
tions between the best and average Fitness values for
rough K-means and GA rough K-means indicate that
sometimes both algorithms are stuck in local optima.
Appropriate increase in population size and genera-
tions solves this problem for GA (in this case 100
each).

Table 2 shows comparison of evolutionary rough
clustering algorithms against the basic K-means al-
gorithm. Due to the use of medoid (one of the ob-
jects) rather than centroid (any point in space) lo-
cal optima does not pose a major problem. Hence,
GA rough K-medoid results are more consistent than
GA K-means and GA rough K-means algorithms.
GA rough K-means requires population size of 100

Published by Atlantis Press
 Copyright: the authors
 20

Lingras, Joshi

Table 1: Comparison of crisp, rough and evolutionary algorithms for Synthetic data.
GA K-means GA Rough K-means

K-means Population Fitness Average Rough Fitness Average
Fitness size (Best/Avg) Time K-means (Best/Avg) Time

Generations (Sec) Fitness (Sec)

47.03 / 63.34

10,20 132.17 / 163.79 < 1

45.19 / 53.84

97.02 / 124.56 < 1
20,20 110.81 / 123.29 < 1 94.36 / 107.36 < 1
20,30 68.56 / 90.43 < 1 70.03 / 104.33 < 1
30,50 63.10 / 92.90 < 1 89.43 / 90.57 < 1
50,50 54.48 / 73.24 < 1 41.36 / 78.45 < 1
100,100 47.06 / 47.19 1 35.04 / 35.29 1

Table 2: Comparison of K-means, GA rough K-means and GA Rough K-medoid algorithms.
GA Rough K-means GA Rough K-medoid

K-means Population Average Average Average Average
Fitness size Fitness Time Fitness Time

Generations (Sec) (Sec)

47.03 / 63.34

10,20 97.02 / 124.56 < 1 36.83 / 55.32 < 1
20,20 94.36 / 107.36 < 1 36.40 / 37.33 < 1
20,30 70.03 / 104.33 < 1 35.70 / 36.32 < 1
30,50 89.43 / 90.57 < 1 36.24 / 36.33 < 1
50,50 41.36 / 78.45 < 1 36.24 / 36.28 < 1
100,100 35.04 / 35.29 / 1 1 35.70 / 36.03 1

Published by Atlantis Press
 Copyright: the authors
 21

Evolutionary Rough Clustering

and 100 generations to match K-means, whereas GA
rough K-medoid needs the population size of 10 and
20 generations. Faster convergence for GA rough K-
medoid implies lesser time requirements. This time
difference will be more significant for a larger data
set.

After experimenting with the small data set we
carried out experiments on a real world data and a
standard data set. The details of the data sets and
results are discussed in the next sections.

6. Comparative Results - Library Data set

We used the data obtained from a public library to
compare the results of various algorithms. The data
consist of books borrowed by members. The objec-
tive is to group members with similar reading habits.
Information about how many times a member bor-
rows books of a particular category is collected. The
data is normalized in the range of 0 to 1 to reduce
the effect of outliers. In order to visualize the data
set, it is restricted to two dimensions. Data of 1895
members is presented as a scatter graph in Fig. 6. It
shows propensity of a member to borrow a book of
a certain category. There are no obvious clusters in
the figure. It will be interesting to see how all the
algorithms carve out reasonable clusters from such
a scattered data.

The parameters of the crisp, rough and evolution-
ary algorithms are not changed. Table 3 shows the
results obtained using K-means and rough K-means
algorithms. Clusters generated by rough K-means
have less intra-cluster variation than for the clus-
ters generated by K-means algorithm. Hence we
can conclude that the rough K-means results in bet-
ter cluster quality than the crisp K-means algorithm.
We have seen similar observations for the synthetic
data set in the earlier section.

Table 3 also shows the comparison of K-means
against GA K-means and rough K-means against
GA rough K-means algorithms. The results include
average Fitness from five trials. For a normal range
of population size and generations the GA K-means
does not outperform the K-means. But for popu-
lation size of 500 and 500 generations the average
Fitness of GA K-means for 3 clusters is less than K-

means. This performance improvement requires 90
seconds of computation. For five clusters the GA K-
means (population size of 500 and 500 generations)
could outperform K-means at the cost of 111.2 sec-
onds of processing time.

As the data set size increases the population size
and generations of GA should be increased to obtain
improved Fitness. In some cases, the higher compu-
tational cost of GA K-means may not be justified by
slight increase in accuracy.

Table 3 shows that GA rough K-means improves
the results of rough K-means. Moreover, GA rough
K-means does this with far less population size and
generations than GA K-means.

Likewise the synthetic data set, both GA rough
K-medoid and GA rough K-means results are better
than the K-means results. The GA rough K-medoid
algorithm is faster than the GA rough K-means in
surpassing the K-means results (see Table 4). GA
rough K-means requires 4.6 seconds with 30 popu-
lation size and 50 generations to get better solution
than K-means. Whereas GA rough K-medoid with
20 population size and 20 generations surpasses the
K-means results in 3 seconds.

Fig. 7 shows the performance of GAs for dif-
ferent configurations. GA K-means performs bet-
ter than K-means for large number of population
size and generations. GA rough K-medoid algo-
rithm promptly outdoes the K-means results, but for
higher population size and generations GA rough K-
means generates optimal results.

7. Comparative Results - Standard Data set

We used Letter Recognition 31 data from the Uni-
versity of California Irvine machine learning repos-
itory. The data set contains 20,000 events repre-
senting character images of 26 capital letters in the
English alphabet based on 20 different fonts. Each
event is represented using 16 primitive numerical at-
tributes (statistical moments and edge counts) that
are scaled to fit into a range of integer values from 0
through 15.

In order to crosscheck the results and compare
the cluster quality we decided to consider limited
number of characters. We prepared two data sets. In

Published by Atlantis Press
 Copyright: the authors
 22

Lingras, Joshi

Figure 6: Library data

Table 3: Comparison between crisp and evolutionary algorithms for Library data.
GA K-means GA Rough K-means

Average Population Average Average Average Average Average
K-means size fitness Time Rough fitness Time
Fitness Generations (Sec) K-means (Sec)

Fitness
3 Clusters

7.9764

10,20 9.1223 1

6.9517

8.094 1.2
20,20 8.6642 1 7.82 2.4
20,30 8.3182 1.4 7.12 2.4
30,50 8.0323 1.6 6.91 4.4
50,50 8.0261 2.8 6.9001 6
100,100 7.9780 6.8 6.9006 19
500,500 7.9761 90 - -

5 Clusters

5.9020

10,20 8.9841 1

5.2061

7.1033 1.4
20,20 6.7930 1.8 6.7505 2.8
20,30 7.4541 1.8 6.2648 3
30,50 6.3575 2.8 5.8794 4.6
50,50 6.4889 3.2 5.2801 8
100,100 5.9527 16.4 5.0730 25.8
500,500 5.9002 111.2 - -

Published by Atlantis Press
 Copyright: the authors
 23

Evolutionary Rough Clustering

Table 4: Comparison of K-means, GA rough K-means and GA Rough K-medoid for Library Data set.
GA Rough K-means GA Rough K-medoid

K-means Population Average Average Average Average
Fitness size Fitness Time Fitness Time

Generations (Sec) (Sec)
3 Clusters

7.9764

10,20 8.094 1.2 7.7042 1.2
20,20 7.82 2.4 7.1390 2.2
20,30 7.12 2.4 7.2670 2.8
30,50 6.91 4.4 7.0719 4
50,50 6.9001 6 7.0154 6.4
100,100 6.9006 19 7.0465 19

5 Clusters

5.9020

10,20 7.1033 1.4 6.0141 2
20,20 6.7505 2.8 5.3114 3
20,30 6.2648 3 5.3502 3.2
30,50 5.8794 4.6 5.1660 5
50,50 5.2801 8 5.1770 8.6
100,100 5.0730 25.8 5.1034 21.4

Figure 7: Comparison chart of different algorithms.

Published by Atlantis Press
 Copyright: the authors
 24

Lingras, Joshi

Table 5: K-means algorithm clustering for characters from A to G.
Cluster Cluster Label Frequency Precision Average Fitness
No. Character Precision
0 F 552/557 0.99

0.54 325.56

1 D 362/1159 0.31
2 D 309/829 0.37
3 C 275/681 0.40
4 C 309/558 0.55
5 A 688/704 0.98
6 B 182/924 0.20

Table 6: Rough K-means algorithm clustering for characters from A to G.
Cluster Cluster Label Frequency Precision Average Fitness
No. Character Precision
0 C 392/645 0.61

0.65 296.57

1 A 198/208 0.95
2 D 121/546 0.39
3 F 494/515 0.96
4 B 262/727 0.36
5 A 365/365 1.0
6 G 120/479 0.25

Table 7: K-means algorithm clustering for selected set of characters.
Cluster Cluster Label Frequency Precision Average Fitness
No. Character Precision
0 M 412/1119 0.37

0.60 406.23

1 Z 276/880 0.31
2 Z 378/734 0.51
3 P 607/639 0.95
4 A 387/660 0.59
5 A 311/514 0.61
6 L 328/328 1.0
7 O 600/1240 0.48

Published by Atlantis Press
 Copyright: the authors
 25

Evolutionary Rough Clustering

Table 8: Rough K-means algorithm clustering for selected set of characters.
Cluster Cluster Label Frequency Precision Average Fitness
No. Character Precision
0 L 335/335 1.0

0.82 372.23

1 A 553/684 0.81
2 Z 536/705 0.76
3 A 183/255 0.72
4 A 358/362 0.99
5 S 96/294 0.33
6 M 292/306 0.95
7 P 553/555 1.0

the first set, we kept 5412 events representing letter
A to G. The second data set consists of 8 distinctly
different characters A, H, L, M, O, P, S, and Z. This
data set consists of 6114 events.

Besides using the Fitness measure for compar-
ison we calculated the average precision for each
cluster. Each cluster is labeled using the character
that appears most frequently in the cluster. Preci-
sion of the cluster is defined as the number of events
that match the cluster label divided by the total num-
ber of events in the cluster. Average precision is the
average of all cluster precisions. Table 5 and Table 6
show the results obtained using K-means and rough
K-means algorithm for the set 1.

The rough K-means algorithm not only outper-
forms the K-means algorithm in Fitness and in av-
erage precision, but also identify more letters cor-
rectly than K-means algorithm. Letter E is not
prominently identified in any cluster generated by
rough K-means whereas two letters E and G are not
prominently identified by any cluster generated by
K-means algorithm.

Table 7 and Table 8 show the comparison of re-
sults obtained using K-means and rough K-means
algorithms for a set of selected characters. Since the
selected characters are distinctly different, cluster-
ing quality ought to improve as compared to the first
set of characters.

We can see that the average precision is im-
proved for the set of selected characters. Rough
K-means clustering generates better quality clusters
than the crisp K-means algorithm. This conclusion
is supported by reduced Fitness and increase in av-

erage precision. Moreover, only one letter ’H’ is not
prominently identified by rough K-means whereas
two letters ’H’ and ’S’ are not prominently identified
by any clusters generated using K-means algorithm.

GA based algorithms however generate poor re-
sults for this standard data set. For crisp as well as
for rough clustering, most of the objects are grouped
into few clusters. The remaining clusters are left
empty. Further investigations are necessary to deter-
mine the reasons for failure of GAs for the character
data set.

8. Conclusions

Iterative clustering algorithms tend to be efficient,
but do not necessarily provide the optimal cluster-
ing. Moreover, it is not possible to specify a particu-
lar cluster validity measure as an optimization crite-
rion in such algorithms. Genetic Algorithms, while
computationally expensive, can be very effective in
optimizing any given cluster validity measure.

The focus of this paper is to study the effec-
tiveness of evolutionary rough clustering techniques.
Rough clustering is more flexible than the conven-
tional crisp clustering as it allows for an object to
belong to more than one cluster with the help of
boundary regions. One of the first approaches to
rough clustering was based on genetic algorithms19.
The size of rough set genome used in this original
approach was directly proportional to the number of
objects, n. As a result, the algorithm can only be
applied to small datasets. Combining GAs with the
object assignment used by a popular iterative algo-

Published by Atlantis Press
 Copyright: the authors
 26

Lingras, Joshi

rithm called rough K-means, significantly reduces
the size of the genome. The genome used in the evo-
lutionary rough K-means algorithm only has k×m
genes, where k is the number of clusters and m is
the number of dimensions used to represent an ob-
ject. Since k� n, for a reasonable value of m, the
smaller genome reduces the memory requirement
and increases the chances of evolving to a near opti-
mal solution based on a specified criterion.

Use of medoids - most centrally located objects
- to represent a cluster instead of centroid, would
mean that we only need to keep track of k objects
in a genome. As a result, evolutionary rough K-
medoids can further reduce the size of the genome
to just k. The gene values for rough K-medoids are
discrete values corresponding to object IDs as op-
posed to continuous real variables used for centroids
in the rough K-means evolution. This results in a
restricted search space for the proposed rough K-
medoids leading to further increase in the chances
of convergence.

This paper further provided experimental com-
parison of results obtained by K-means, GA K-
means, rough K-means, GA rough K-means and GA
rough K-medoid algorithms. We applied all algo-
rithms to a synthetic data set, a real world data set,
and a standard data set. A simple and intuitive mea-
sure of total within cluster variation (Fitness) is used
for the evaluation.

The rough K-means algorithm seems to provide
better cluster quality in terms of the Fitness and av-
erage precision than the crisp K-means algorithm.

For sufficiently high population size and gener-
ations, GA K-means can improve average perfor-
mance of K-means. As the size of data set in-
creases, higher population size and generations are
required in GA K-means algorithms to outperform
the K-means results. Execution time increases when
GAs with higher population size and generations are
used. There is a trade off between execution time
and better cluster quality when the GA K-means al-
gorithm is used.

GA rough K-medoid converges faster and sur-
passes the K-means results with smaller populations
and fewer generations than GA rough K-means. But
for larger population and more generations the GA

rough K-means results are superior to all other algo-
rithms.

GA effect on rough clustering is more promis-
ing than that on crisp clustering. For both small as
well as large data sets, the GA rough K-means and
the GA rough K-medoid generate better clustering
in reasonable amount of execution time.

References

1. B. P. Buckles and F. E. Petry, “Genetic Algorithms,”
IEEE Computer Press(1994).

2. S. Cheng, Y. Chao, H. Wang et al., “A Prototypes-
Embedded Genetic K-Means Algorithm,” ICPR ’06:
Proc. IEEE Intl. Conf. on Pattern Recognition , 2,
724–727 (2006).

3. K. Krishna and M. Narasimha Murty, “Genetic K-
Means Algorithm,” Systems, Man, and Cybernetics,
29, (1999).

4. Y. Lu, S. Lu, F. Fotouhi et al., “FGKA: A Fast Genetic
K-Means Clustering Algorithm,” Proc. ACM Sympo-
sium on Applied Computing, (2004).

5. U. Maulik and S. Bandyopadhyay, “Genetic
Algorithm-Based Clustering Technique,” Pattern
Recognition, 33, 1455–1465 (2000).

6. J. C. Bezdek and R. J. Hathaway, “Optimization of
Fuzzy Clustering Criteria using Genetic Algorithms,”
(1994).

7. W. Pedrycz and J. Waletzky, “Fuzzy Clustering with
Partial Supervision,” IEEE Trans. on Systems, Man
and Cybernetics, 27(5), 787–795 (1997).

8. S. Ilhan, N. Duru, E. Adali, “Improved Fuzzy Art
Method for Initializing K-means,” International Jour-
nal of Computational Intelligence Systems, 3(3), 274–
279 (2010).

9. T. B. Ho and N. B. Nguyen, “Nonhierarchical Doc-
ument Clustering by a Tolerance Rough Set Model,”
International Journal of Intelligent Systems, 17, 199–
212 (2002).

10. P. Lingras and C. West, “Interval Set Clustering of
Web Users with Rough K-Means,” Journal of Intel-
ligent Information Systems, 23, 5–16 (2004).

11. H. Bustince, “Interval-valued Fuzzy Sets in Soft Com-
puting,” International Journal of Computational Intel-
ligence Systems, 3(2), 215–222 (2010).

12. S. Mitra, “An Evolutionary Rough Partitive Cluster-
ing,” Pattern Recognition Letters, 25(12), 1439–1449
(2004)

13. G. Peters, “Some Refinements of Rough k-Means,”
Pattern Recognition, 39, 1481–1491 (2006).

14. J. F. Peters, A. Skowron, Z. Suraj et al., “Clustering:
A Rough Set Approach to Constructing Information
Granules,” Soft Computing and Distributed Process-

Published by Atlantis Press
 Copyright: the authors
 27

Evolutionary Rough Clustering

ing, 57–61 (2002).
15. S. Hirano and S. Tsumoto, “Rough Clustering and its

Application to Medicine,” Journal of Information Sci-
ence, 124, 125–137 (2000).

16. S. Mitra, H. Bank, and W. Pedrycz, “Rough-Fuzzy
Collaborative Clustering,” IEEE Trans. on Systems,
Man and Cybernetics, 36(4), 795–805 (2006).

17. H. S. Nguyen, “Rough Document Clustering and the
Internet,” Handbook on Granular Computing, (2007).

18. K. E. Voges, N. K. Ll. Pope and M.R. Brown, “Clus-
ter Analysis of Marketing Data: A Comparison of K-
Means, Rough Set, and Rough Genetic Approaches,”
Heuristics and Optimization for Knowledge Discov-
ery, Idea Group Publishing, 208–216 (2002).

19. P. Lingras, “Unsupervised Rough Set Classification
using GAs,” Journal Of Intelligent Information Sys-
tems, 16(3), 215–228, (2001).

20. P. Lingras, M. Hogo, M. Snorek, “Interval Set Clus-
tering of Web Users using Modified Kohonen Self-
Organizing Maps based on the Properties of Rough
Sets,” Web Intelligence and Agent Systems: An Inter-
national Journal, 2(3), 217–230 (2004).

21. G. Peters, M. Lampart and R. Weber, “Evolutionary
Rough k-Medoid Clustering,” Transactions on Rough
Sets, VIII, 289–306 (2008).

22. S. Paterlini and T. Krink, “High Performance Cluster-
ing with Differential Evolution,” Congress on Evolu-
tionary Computations, 2, 2004–2011 (2004).

23. J. A. Hartigan and M.A. Wong, “Algorithm AS136:

A K-Means Clustering Algorithm,” Applied Statistics,
28, 100–108 (1979).

24. J. MacQueen, “Some Methods for Classification and
Analysis of Multivariate Observations,” Proceedings
of Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, 1, 281–297 (1967).

25. A. Joshi and R. Krishnapuram, “Robust Fuzzy Clus-
tering Methods to Support Web Mining,” Proc. ACM
SIGMOD Workshop Data Mining and Knowledge
Discovery, 1–8, (1998).

26. P. Lingras, “Evolutionary rough K-means Algorithm,”
Proc. The Fourth International conference on Rough
Set and Knowledge Technology (RSKT2009) (2009).

27. P. Lingras, “Precision of rough set clustering,” LNCS:
Rough Sets and Current Trends in Computing,
5306/2008, 369–378 (2008).

28. M. Wall and A. Galib, “C++ Library of Genetic Com-
ponents,” http://lancet.mit.edu/ga/, (1993).

29. P. Lingras, “Rough K-medoid Clustering using GAs,”
Proc. of ICCI 2009, (2009).

30. P. Lingras, M. Chen and D. Miao, “Rough Multi-
category Decision Theoretic Framework,” Proc. of 3rd
Intl. Conf. on Rough Sets and Knowledge Technol-
ogy, 676–683 (2008).

31. A. Asuncion and D. J. Newman,
“UCI Machine Learning Repository
Irvine, CA,” University of California,
http://www.ics.uci.edu/ mlearn/MLRepository.html,
(2007).

Published by Atlantis Press
 Copyright: the authors
 28

