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Abstract 

Less Flexibility First(LFF) principle is inspired and 
developed by enhancing some rule-of-thumb 
guidelines resulting from the generation-long work 
experience of human professionals in ancient days.  In 
this paper, we generalize this principle to the classical 
Traveling Salesman Problem and propose a tour 
construction heuristic.  Our new heuristic is closely 
related to Cheapest Insertion, a well-known heuristic 
for TSP.  Then we prove that our algorithm can be 
implemented to run in O(n4) time, achieving a tour no 
worse than Convex Hull, Cheapest Insertion (CHCI).    
Experimental results are comparable to simple local 
search heuristics such as 3-opt and baseline simulated 
annealing and better than any conventional tour 
construction heuristic at the expense of increased 
running time. 
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1. Introduction 
The Traveling Salesman Problem (TSP) is known to 
be NP-hard [1].  Assuming the widely believed 
conjecture P≠NP, NP-hard problems cannot be solved 
to optimality within polynomially bounded 
computational time. Therefore, there is much interest 
in approximation algorithms that can only find near-
optimal tours but do so quickly.  Two broad classes of 
the approximation algorithm are constructive and local 
search methods.  For the latter kind, 2-opt[2] and 3-
opt[3] are the most simple yet quite efficient. 
Tour construction heuristics are also known as 
successive augmentation heuristics.  Typical examples 
are Nearest Neighbor, Greedy, Clarke-Wright Saving 
Heuristic [2] and Christofides [1].  Such heuristics 
build a tour from scratch by a growth process (usually 
a greedy one) until a feasible tour is constructed, while 
local search approaches start from a legal tour and try 
to improve its quality through neighborhood search.  
Tour construction heuristics not only serve as plausible 
mechanisms for generating initial tours needed by 
local search algorithms, they also provide a unique 

perspective from a theoretical point of view [1][4][5] 
and good results in practice. Whereas the constructive 
approach performs poorly on many combinatorial 
optimization problems, in the case of TSP, there are 
many algorithms that get within 15% of optimal and 
pay a relatively little price in running time[6].  
In this paper, we adopt and generalize Less Flexibility 
First (LFF) principle first introduced in solving the 
block placement and rectangle packing problems in 
automated VLSI design [7].  We develop the concept 
of flexibility in the context of TSP.  We will see how 
well this heuristic can currently provide by numerical 
experiment, in which we propose an efficient 
implementation as a worthwhile compromise between 
tour quality and running time cost.   
The remainder of the paper is organized as follows. In 
Section 2, LFF algorithm on TSP is given.  Section 3 
demonstrates the time complexity and tour quality of 
our heuristic. Implementation issues and Experimental 
results are given in Section 4.  Section 5 is conclusion.  

2. LFF Algorithm 

2.1 Flexibility in TSP 
Similar to the procedure of packing objects in a work 
space[7], our heuristic for solving TSP belongs to the 
category of successive augmentation, known as tour 
construction heuristic for TSP.  Also, we have to 
decide which city to insert and where (between which 
two adjacent cities in the partial tour) it should be 
inserted.   The second question of finding an optimal 
inserting position is relatively easy: the inserting 
position is chosen to minimize the increase of tour 
length after the insertion of a city. So we have the 
following definition: 
Definition 1 (Optimal inserting position) 
Suppose a city cj is to be inserted to the current partial 
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City ik+1 denotes city i1 in the above definition. 
Unlike the rectangle packing problem, a city in TSP 
does not have a corresponding size or shape.  And for 
a Euclidean TSP instance, the only property of a city is 
its position (two coordinates) in the plane, and this 
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property should be used to derive the concept of 
flexibility of a city.  Since the optimal inserting 
position is already given, we look into the relative 
position of a candidate city and the two adjacent cities 
at its potential inserting position.  An extreme case is 
that the candidate city is exactly on the line between 
the other two cities.  Then the city is “bounded” by the 
other two and has no flexibility at all.  If the city is 
quite close to the line, it has little flexibility because 
the insertion is almost necessary to achieve an optimal 
tour.  On the other hand, if the city is farther, it has 
more freedom and a late insertion may be a better idea, 
accordingly the city gains more flexibility.  (See Fig. 
2).   

 
Figure 2. Cities with different flexibility 

Definition 2 (Flexibility of a city) 
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City ik+1 denotes city i1 in the above definition.  Note 
that since the triangular inequality holds for Euclidean 
TSP, the flexibility value is non-negative, and a 
smaller value shows that the candidate city is closer to 
the line between the other two.  Although we derive 
this definition for Euclidean TSP, it can be applied to 
general TSP since only distance matrix is sufficient to 
make up the definition. 

2.2 LFF in TSP 
Here we define a city inserting move (CIM) as an 
augmentation step of the current partial tour such that 
the candidate city must be inserted at the optimal 
inserting position.  An LFF city inserting move (LFFM) 
is a particular kind of CIM defined below: 
Definition 3(CIM and LFFM in TSP) 
Suppose current partial tour is 
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LFFM in Traveling Salesman Problem is a pair    <cj, 
p> , where ( )

j j k
c c T∉  is the candidate city to be inserted 

and (1 )p p k≤ ≤  is the inserting position.  The pair 
satisfies the following conditions: 
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City ik+1 denotes city i1 in the above equations. 
Equation (1) ensures that p is the optimal inserting 
position for cj and Tk.  Equation (2) guarantees that 
city cj has less flexibility than any other candidate 
cities. If only Equation (1) is satisfied, the pair is a 
CIM. 
The heuristic in TSP based on LFF principle is similar 
to that in rectangle packing.  It is implemented by the 
next two algorithms.  The CIM performed in algorithm 
FFV below is tentative so that we can recover the tour 
after each evaluation. 
Algorithm FFV:  Fitness cost Function Value 
Input: a city cj, a partial tour T 
Output: fitness value of cj 
Begin 

1. Perform a CIM inserting cj to T; 
2. Perform an LFFM inserting a city not included 

in the current partial tour; 
3. Goto step 2 until no cities left; 
4. Return the fitness cost function value. 

End 
Algorithm LFF: LFF construction heuristic 
Input: a TSP instance 
Output: a legal tour T 
Begin 

1. Generate a partial tour Tl, set current partial tour 
T=Tl ; 

2. For each city
j

c T∉ , calculate FFV(cj, T); 
3. Insert the city with least FFV and update the 

current partial tour T; 
4. Goto step 2 until no cities left; 
5. Output T. 

End 

3. Analysis of LFF Heuristic 

3.1 Tour quality 
We have shown that the proposed LFF heuristic is 
closely related to Convex Hull, Cheapest Insertion 
(CHCI) heuristic.  Here we demonstrate formally that 
LFF always achieves better or equal final tour quality.  
So we have an upper-bound both in practice and in 
worst-case. 
Denote the partial tour that we get after inserting a city 
in Algorithm LFF by Tk, while the subscript k equals 
the number of cities in the partial tour.  After a city ck+1 
is inserted, Tk becomes Tk+1, then we have 
Theorem 1:  FFV(ck+1,Tk) ≤ FFV(ck,Tk-1).        (3) 

FFV(ck,Tk-1) predicts the tour length we can obtain 
using Cheapest Insertion on Tk.  Theorem 1 
demonstrates that it is a non-increasing sequence as the 
parameter k increases. We can use Theorem 1 to 



derive two significant results on the tour quality of 
LFF tour construction heuristic. 
Corollary 1 Starting with the same partial tour, LFF 
heuristic always reaches a tour no worse than Cheapest 
Insertion. 
Corollary 2 Starting with the tour created from the 
convex hull, given a Euclidean TSP instance I, 
Algorithm LFF guarantees that LFF(I)/OPT(I) ≤ 3-2/N. 
N is the number of cities in I. 

3.2 Complexity of computational time 
Lemma 1 The Cheapest Insertion heuristic can be 
implemented in O(n2) time. 
Corollary 3 The computational complexity of 
Algorithm FFV is O(n2). 
Theorem 2  The computational complexity of LFF 
construction heuristic is O(n4). 

4. Implementation and   Experiment 

4.1 Implementation of LFF heuristic 
LFF algorithm in Section 2.3 always evaluates the 
fitness cost function value(FFV) of every non-tour city.  
This is not efficient because only the city with least 
FFV need to be identified.  Alternatively, we can 
evaluate the FFV of a small part of non-tour cities 
which are “most competitive candidates” to find the 
one with least FFV (or at least a good approximation). 
A simple idea of which non-tour cities should be 
evaluated is to find the convex hull of non-tour cities.  
However, the loss of tour quality in this single convex 
hull approach is significant in practice and Theorem 1 
in Section 3.1 no long holds for this case.  It will hold 
if the city u in Section 3.1, and we call it here 
“Reference City”, is included. (<u,p> is the first LFFM 
when the FFV of “Last City” is calculated in the 
previous iteration of LFF algorithm). So a better idea 
is to continuously perform the convex hull operation 
until “Reference City” is included.  In Figure 5, only 
one operation is enough to reach the reference city; for 
a much larger problem size, multiple operations are 
needed. 

 
Figure 5.  Convex Hull of Non-tour Cities and Reference 

City 
Therefore, the previous time-saving technique can be 
applied when there are a large number of non-tour 
cities left rather than the whole procedure.  It leads to a 

better tour at the expense of a slight increase in 
computational time.  We set the threshold for the 
number of non-tour city to be max(C, αN).  C and α 
are constants and N is the problem size.  Our 
implementation choose C=100 and α=0.4. 

4.2 Tour length and running time for LFF 
In the experiment, we demonstrate performances of 
both the original LFF algorithm(LFF) and the variant 
proposed in Section 4.1(LFFR) for random Euclidean 
TSP instances and those from TSPLIB95[9].  Two 
conventional tour construction heuristic: Nearest 
Neighbor(NN) and Convex Hull Cheapest 
Insertion(CHCI) are also tested so that closeness to 
optimality and the computational time can be 
compared.  The results are listed in Table 1.   

Table 1. Tour quality for tour construction heuristics 
Average Percent Excess over optimality 

Random Euclidean Instances 
N  = 100 200 300 400 500 
NN 23.8 23.5 22.0 24.6 24.0 

CHCI 8.01 11.3 13.1 14.1 14.7 
LFF 1.74 1.98 2.38 - - 

LFFR 1.74 2.62 3.55 3.96 4.26 
TSPLIB95 Euclidean Instances 

N  = 
100

-
200

200-
300 

300-
400 

400-
500 500-1k

NN 21.1 21 28.0 22.5 28.8 
CHCI 6.47 11 11.6 10.8 13.2 
LFF 1.24 2.33 2.2 - - 

LFFR 1.23 2.79 2.25 2.44 3.1 
 
All computations of the algorithm written in C++ are 
performed on an IBM PC(Pentium III 1.13GHz, 
384MB main memory).  Random instances are 
generated using the “portgen” utility downloadable 
from SGI challenge page[3].   
Our LFF heuristic obtains much better solutions than 
conventional tour construction heuristics.  For TSPLIB 
instances, LFFR is approximately 9 times closer to 
optimality than NN, and 4 times than CHCI.  The max 
excess of LFFR is 4.75% and the average is 2.00%.  
For NN and CHCI, the min excesses are 5.41% and 
1.95% each.  LFF obtains slightly better tours than 
LFFR, but the running times are 1 to 4 times longer.  
For the two well-known TSPLIB instances pcb442 and 
att532, LFFR obtains 52242(2.88%) and 28369(2.47%) 
tour length. 
For random generated instances, the final tour quality 
degrades more for LFFR than LFF when the problem 
size N increases; yet LFFR runs much faster.  The 



comparison of tour quality between LFF heuristic and 
NN or CHCI is similar to TSPLIB instances.  The 
computational time for both LFF and LFFR grows at 
the rate of N4. Table 2 and Table 3 summarize the tour 
length and running time 
Table 2. Tour quality and Running Times for  heuristics 

Random Euclidean Instances 

  Average Percent 
Excess 

Running Time 
in Seconds 

Algorithms 102.0  102.5  102.0  102.5  
LFF 1.74 2.3 2.16 239 

LFFR 1.74 3.46 2.16 64.7 
CHR 9.5 9.9 0.01 0.04 
2-Opt 4.5 4.8 0.01 0.03 
3-Opt 2.5 2.5 0.01 0.04 

 
Table 3. Tour quality and Running Times for heuristics  

Random Euclidean Instances 

  Average 
Percent Excess 

Running Time in 
Seconds 

Algorithms 102.0  102.5 102.0  102.5 
LFF 1.74 2.3 2.16 239 

LFFR 1.74 3.46 2.16 64.7
SA1     α=1 3.4 3.7 3.88 58.8

SA1P  α=10 1.7 1.9 10.0  48.4
SA2   α=100 1.1 1.3 44.1 205 

 
obtained by different algorithms.  The average percent 
excess is measured over Held-Karp lower bound.  
Running Time in Seconds is normalized to be the 
predicted user seconds on Compaq ES40 6/500 alpha 
machine, 500 Mhz Processor, 2Gb of RAM.  In table 3, 
CHR is short for Christofides, which provides a better 
worst-case guarantee than any other tour construction 
heuristic and find better tours in practice.  In table 4, 
SA1 is short for baseline simulated annealing, SA1P is 
SA1 with neighborhood pruning.  SA2 is SA1 with 
neighborhood pruning and low temperature start.  α is 
the coefficient of temperature length.  Results of 
algorithms other than LFF or LFFR are from [6].  The 
normalization method for running times can be found 
in 8th DIMACS Implementation Challenge Page. [3] 
From Table 3, we observe that LFF and LFFR can 
obtain better tours than Christofides and 2-Opt.  The 
tour qualify of LFFR is comparable to 3-Opt.  The 
running times for LFF heuristics is still thousands of 
times longer than other heuristics.  
We can see in Table 4 that LFF and LFFR performs 
better than SA1 with α=1 and SA1P with α=10 on 

instances of size 102.  The performance of LFFR is 
comparable to SA1 with α=1 on instances of size 102.5, 
but is worse than SA1P with α=10. 

5. Conclusion 
We have generalized the less flexibility first principle 
to traveling salesman problem and propose a 
deterministic heuristic that can find a better tour than 
any conventional tour construction heuristic at the 
expense of relatively high running time.  The 
procedure of our heuristic has an iterative 
improvement property which is similar to local search 
heuristics, and the tour quality obtained is also 
comparable to 3-Opt.  The performance is better than 
baseline SA and dominated by SA2 with some speed-
up techniques.  Using k-d tree rather than the link 
structure in our implementation of LFF heuristic is 
expected to reduce the running time significantly.  
Also, the final tours are typically not 2-optimal, so 
adding a post-processing 2-Opt phase will lead to a 
better tour quality with an insignificant increase in 
total running time. 
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