
A Novel Tour Construction Heuristic for Traveling
Salesman Problem Using LFF Principle*

Sheqin Dong Fan Guo Jun Yuan Rensheng Wang Xianlong Hong
Department of Computer Science & Technology, Tsinghua University, Beijing, 100084

Abstract

Less Flexibility First(LFF) principle is inspired and
developed by enhancing some rule-of-thumb
guidelines resulting from the generation-long work
experience of human professionals in ancient days. In
this paper, we generalize this principle to the classical
Traveling Salesman Problem and propose a tour
construction heuristic. Our new heuristic is closely
related to Cheapest Insertion, a well-known heuristic
for TSP. Then we prove that our algorithm can be
implemented to run in O(n4) time, achieving a tour no
worse than Convex Hull, Cheapest Insertion (CHCI).
Experimental results are comparable to simple local
search heuristics such as 3-opt and baseline simulated
annealing and better than any conventional tour
construction heuristic at the expense of increased
running time.

Keywords

Less Flexibility First, Traveling Salesman Problem,
Tour Construction Heuristic

1. Introduction
The Traveling Salesman Problem (TSP) is known to
be NP-hard [1]. Assuming the widely believed
conjecture P≠NP, NP-hard problems cannot be solved
to optimality within polynomially bounded
computational time. Therefore, there is much interest
in approximation algorithms that can only find near-
optimal tours but do so quickly. Two broad classes of
the approximation algorithm are constructive and local
search methods. For the latter kind, 2-opt[2] and 3-
opt[3] are the most simple yet quite efficient.
Tour construction heuristics are also known as
successive augmentation heuristics. Typical examples
are Nearest Neighbor, Greedy, Clarke-Wright Saving
Heuristic [2] and Christofides [1]. Such heuristics
build a tour from scratch by a growth process (usually
a greedy one) until a feasible tour is constructed, while
local search approaches start from a legal tour and try
to improve its quality through neighborhood search.
Tour construction heuristics not only serve as plausible
mechanisms for generating initial tours needed by
local search algorithms, they also provide a unique

perspective from a theoretical point of view [1][4][5]
and good results in practice. Whereas the constructive
approach performs poorly on many combinatorial
optimization problems, in the case of TSP, there are
many algorithms that get within 15% of optimal and
pay a relatively little price in running time[6].
In this paper, we adopt and generalize Less Flexibility
First (LFF) principle first introduced in solving the
block placement and rectangle packing problems in
automated VLSI design [7]. We develop the concept
of flexibility in the context of TSP. We will see how
well this heuristic can currently provide by numerical
experiment, in which we propose an efficient
implementation as a worthwhile compromise between
tour quality and running time cost.
The remainder of the paper is organized as follows. In
Section 2, LFF algorithm on TSP is given. Section 3
demonstrates the time complexity and tour quality of
our heuristic. Implementation issues and Experimental
results are given in Section 4. Section 5 is conclusion.

2. LFF Algorithm

2.1 Flexibility in TSP
Similar to the procedure of packing objects in a work
space[7], our heuristic for solving TSP belongs to the
category of successive augmentation, known as tour
construction heuristic for TSP. Also, we have to
decide which city to insert and where (between which
two adjacent cities in the partial tour) it should be
inserted. The second question of finding an optimal
inserting position is relatively easy: the inserting
position is chosen to minimize the increase of tour
length after the insertion of a city. So we have the
following definition:
Definition 1 (Optimal inserting position)
Suppose a city cj is to be inserted to the current partial

tour 1 2 1
:{ , ,..., , }

kk i i i iT c c c c
, and the distance matrix

is dij(n*n), while dij is the distance from city ci to city
cj. The optimal inserting position p is

1 1

{1,..., }

arg min{ }
p p p p

i j ji i i
p k

d d d
+ +

∈

+ −

City ik+1 denotes city i1 in the above definition.
Unlike the rectangle packing problem, a city in TSP
does not have a corresponding size or shape. And for
a Euclidean TSP instance, the only property of a city is
its position (two coordinates) in the plane, and this

*This work is supported by NSFC 60473126

property should be used to derive the concept of
flexibility of a city. Since the optimal inserting
position is already given, we look into the relative
position of a candidate city and the two adjacent cities
at its potential inserting position. An extreme case is
that the candidate city is exactly on the line between
the other two cities. Then the city is “bounded” by the
other two and has no flexibility at all. If the city is
quite close to the line, it has little flexibility because
the insertion is almost necessary to achieve an optimal
tour. On the other hand, if the city is farther, it has
more freedom and a late insertion may be a better idea,
accordingly the city gains more flexibility. (See Fig.
2).

Figure 2. Cities with different flexibility

Definition 2 (Flexibility of a city)

 Suppose current partial tour is
1 2 1

: { , , ..., , }
k

k i i i i
T c c c c , the

optimal inserting position for a candidate city a city cj
()

j k
c T∉ is p (1 p k≤ ≤), then the flexibility of city cj

with respect to Tk is

{ }
1 1

1 1

{1,..., }

(,) min
q q q q

p p p p

j k i j ji i i
q k

i j ji i i

flex c T d d d

d d d

+ +

+ +

∈

= + −

= + −

City ik+1 denotes city i1 in the above definition. Note
that since the triangular inequality holds for Euclidean
TSP, the flexibility value is non-negative, and a
smaller value shows that the candidate city is closer to
the line between the other two. Although we derive
this definition for Euclidean TSP, it can be applied to
general TSP since only distance matrix is sufficient to
make up the definition.

2.2 LFF in TSP
Here we define a city inserting move (CIM) as an
augmentation step of the current partial tour such that
the candidate city must be inserted at the optimal
inserting position. An LFF city inserting move (LFFM)
is a particular kind of CIM defined below:
Definition 3(CIM and LFFM in TSP)
Suppose current partial tour is

1 2 1

: { , , ..., , }
k

k i i i i
T c c c c , an

LFFM in Traveling Salesman Problem is a pair <cj,
p> , where ()

j j k
c c T∉ is the candidate city to be inserted

and (1)p p k≤ ≤ is the inserting position. The pair
satisfies the following conditions:

1 1

(,) { } (1)
min{ (,)} (,) (2)

p p p p

l k

j k i j ji i i

l k j k
c T

flex c T d d d
flex c T flex c T

+ +

∉

= + −

=

City ik+1 denotes city i1 in the above equations.
Equation (1) ensures that p is the optimal inserting
position for cj and Tk. Equation (2) guarantees that
city cj has less flexibility than any other candidate
cities. If only Equation (1) is satisfied, the pair is a
CIM.
The heuristic in TSP based on LFF principle is similar
to that in rectangle packing. It is implemented by the
next two algorithms. The CIM performed in algorithm
FFV below is tentative so that we can recover the tour
after each evaluation.
Algorithm FFV: Fitness cost Function Value
Input: a city cj, a partial tour T
Output: fitness value of cj
Begin

1. Perform a CIM inserting cj to T;
2. Perform an LFFM inserting a city not included

in the current partial tour;
3. Goto step 2 until no cities left;
4. Return the fitness cost function value.

End
Algorithm LFF: LFF construction heuristic
Input: a TSP instance
Output: a legal tour T
Begin

1. Generate a partial tour Tl, set current partial tour
T=Tl ;

2. For each city
j

c T∉ , calculate FFV(cj, T);
3. Insert the city with least FFV and update the

current partial tour T;
4. Goto step 2 until no cities left;
5. Output T.

End

3. Analysis of LFF Heuristic

3.1 Tour quality
We have shown that the proposed LFF heuristic is
closely related to Convex Hull, Cheapest Insertion
(CHCI) heuristic. Here we demonstrate formally that
LFF always achieves better or equal final tour quality.
So we have an upper-bound both in practice and in
worst-case.
Denote the partial tour that we get after inserting a city
in Algorithm LFF by Tk, while the subscript k equals
the number of cities in the partial tour. After a city ck+1
is inserted, Tk becomes Tk+1, then we have
Theorem 1: FFV(ck+1,Tk) ≤ FFV(ck,Tk-1). (3)

FFV(ck,Tk-1) predicts the tour length we can obtain
using Cheapest Insertion on Tk. Theorem 1
demonstrates that it is a non-increasing sequence as the
parameter k increases. We can use Theorem 1 to

derive two significant results on the tour quality of
LFF tour construction heuristic.
Corollary 1 Starting with the same partial tour, LFF
heuristic always reaches a tour no worse than Cheapest
Insertion.
Corollary 2 Starting with the tour created from the
convex hull, given a Euclidean TSP instance I,
Algorithm LFF guarantees that LFF(I)/OPT(I) ≤ 3-2/N.
N is the number of cities in I.

3.2 Complexity of computational time
Lemma 1 The Cheapest Insertion heuristic can be
implemented in O(n2) time.
Corollary 3 The computational complexity of
Algorithm FFV is O(n2).
Theorem 2 The computational complexity of LFF
construction heuristic is O(n4).

4. Implementation and Experiment

4.1 Implementation of LFF heuristic
LFF algorithm in Section 2.3 always evaluates the
fitness cost function value(FFV) of every non-tour city.
This is not efficient because only the city with least
FFV need to be identified. Alternatively, we can
evaluate the FFV of a small part of non-tour cities
which are “most competitive candidates” to find the
one with least FFV (or at least a good approximation).
A simple idea of which non-tour cities should be
evaluated is to find the convex hull of non-tour cities.
However, the loss of tour quality in this single convex
hull approach is significant in practice and Theorem 1
in Section 3.1 no long holds for this case. It will hold
if the city u in Section 3.1, and we call it here
“Reference City”, is included. (<u,p> is the first LFFM
when the FFV of “Last City” is calculated in the
previous iteration of LFF algorithm). So a better idea
is to continuously perform the convex hull operation
until “Reference City” is included. In Figure 5, only
one operation is enough to reach the reference city; for
a much larger problem size, multiple operations are
needed.

Figure 5. Convex Hull of Non-tour Cities and Reference

City
Therefore, the previous time-saving technique can be
applied when there are a large number of non-tour
cities left rather than the whole procedure. It leads to a

better tour at the expense of a slight increase in
computational time. We set the threshold for the
number of non-tour city to be max(C, αN). C and α
are constants and N is the problem size. Our
implementation choose C=100 and α=0.4.

4.2 Tour length and running time for LFF
In the experiment, we demonstrate performances of
both the original LFF algorithm(LFF) and the variant
proposed in Section 4.1(LFFR) for random Euclidean
TSP instances and those from TSPLIB95[9]. Two
conventional tour construction heuristic: Nearest
Neighbor(NN) and Convex Hull Cheapest
Insertion(CHCI) are also tested so that closeness to
optimality and the computational time can be
compared. The results are listed in Table 1.

Table 1. Tour quality for tour construction heuristics
Average Percent Excess over optimality

Random Euclidean Instances
N = 100 200 300 400 500
NN 23.8 23.5 22.0 24.6 24.0

CHCI 8.01 11.3 13.1 14.1 14.7
LFF 1.74 1.98 2.38 - -

LFFR 1.74 2.62 3.55 3.96 4.26
TSPLIB95 Euclidean Instances

N =
100

-
200

200-
300

300-
400

400-
500 500-1k

NN 21.1 21 28.0 22.5 28.8
CHCI 6.47 11 11.6 10.8 13.2
LFF 1.24 2.33 2.2 - -

LFFR 1.23 2.79 2.25 2.44 3.1

All computations of the algorithm written in C++ are
performed on an IBM PC(Pentium III 1.13GHz,
384MB main memory). Random instances are
generated using the “portgen” utility downloadable
from SGI challenge page[3].
Our LFF heuristic obtains much better solutions than
conventional tour construction heuristics. For TSPLIB
instances, LFFR is approximately 9 times closer to
optimality than NN, and 4 times than CHCI. The max
excess of LFFR is 4.75% and the average is 2.00%.
For NN and CHCI, the min excesses are 5.41% and
1.95% each. LFF obtains slightly better tours than
LFFR, but the running times are 1 to 4 times longer.
For the two well-known TSPLIB instances pcb442 and
att532, LFFR obtains 52242(2.88%) and 28369(2.47%)
tour length.
For random generated instances, the final tour quality
degrades more for LFFR than LFF when the problem
size N increases; yet LFFR runs much faster. The

comparison of tour quality between LFF heuristic and
NN or CHCI is similar to TSPLIB instances. The
computational time for both LFF and LFFR grows at
the rate of N4. Table 2 and Table 3 summarize the tour
length and running time
Table 2. Tour quality and Running Times for heuristics

Random Euclidean Instances

 Average Percent
Excess

Running Time
in Seconds

Algorithms 102.0 102.5 102.0 102.5
LFF 1.74 2.3 2.16 239

LFFR 1.74 3.46 2.16 64.7
CHR 9.5 9.9 0.01 0.04
2-Opt 4.5 4.8 0.01 0.03
3-Opt 2.5 2.5 0.01 0.04

Table 3. Tour quality and Running Times for heuristics

Random Euclidean Instances

 Average
Percent Excess

Running Time in
Seconds

Algorithms 102.0 102.5 102.0 102.5
LFF 1.74 2.3 2.16 239

LFFR 1.74 3.46 2.16 64.7
SA1 α=1 3.4 3.7 3.88 58.8

SA1P α=10 1.7 1.9 10.0 48.4
SA2 α=100 1.1 1.3 44.1 205

obtained by different algorithms. The average percent
excess is measured over Held-Karp lower bound.
Running Time in Seconds is normalized to be the
predicted user seconds on Compaq ES40 6/500 alpha
machine, 500 Mhz Processor, 2Gb of RAM. In table 3,
CHR is short for Christofides, which provides a better
worst-case guarantee than any other tour construction
heuristic and find better tours in practice. In table 4,
SA1 is short for baseline simulated annealing, SA1P is
SA1 with neighborhood pruning. SA2 is SA1 with
neighborhood pruning and low temperature start. α is
the coefficient of temperature length. Results of
algorithms other than LFF or LFFR are from [6]. The
normalization method for running times can be found
in 8th DIMACS Implementation Challenge Page. [3]
From Table 3, we observe that LFF and LFFR can
obtain better tours than Christofides and 2-Opt. The
tour qualify of LFFR is comparable to 3-Opt. The
running times for LFF heuristics is still thousands of
times longer than other heuristics.
We can see in Table 4 that LFF and LFFR performs
better than SA1 with α=1 and SA1P with α=10 on

instances of size 102. The performance of LFFR is
comparable to SA1 with α=1 on instances of size 102.5,
but is worse than SA1P with α=10.

5. Conclusion
We have generalized the less flexibility first principle
to traveling salesman problem and propose a
deterministic heuristic that can find a better tour than
any conventional tour construction heuristic at the
expense of relatively high running time. The
procedure of our heuristic has an iterative
improvement property which is similar to local search
heuristics, and the tour quality obtained is also
comparable to 3-Opt. The performance is better than
baseline SA and dominated by SA2 with some speed-
up techniques. Using k-d tree rather than the link
structure in our implementation of LFF heuristic is
expected to reduce the running time significantly.
Also, the final tours are typically not 2-optimal, so
adding a post-processing 2-Opt phase will lead to a
better tour quality with an insignificant increase in
total running time.

6. References
[1] N. Christofides, Worst-case analysis of a new heuristic

for the travelling salesman problem. Technical Report
388, GSIA, Carnegie-Mellon University, 1976.

[2] G. Clarke and J. W. Wright. Scheduling of vehicles from
a central depot to a number of delivery points.
Operations Research, 12:568-581, 1964.

[3] D. S. Johnson. 8th DIMACS Implementation Challenge:
The Traveling Salesman Problem.
http://www.research.att.com/~dsj/chtsp/index.html.
Latest Update: 16 November 2004.

[4] S. Lin. Computer solutions of the traveling salesman
problem. Bell System Technical Journal, 44:2245-2269,
1965.

[5] G. Reinelt. The Traveling Salesman Problem:
Computational Solutions for TSP Applications, Lecture
Notes in Computer Science 840, Springer-Verlag, 1994.

[6] D. S. Johnson and L. A. McGeoch. The traveling
salesman problem: A case study in local optimization.
In E. H. L. Aarts and J. K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 215-310,
John Wiley & Sons, New York, 1997.

[7] S. Dong, Y. Lin, X. Hong, Y. L. Wu, and J. Gu. VLSI
block placement using Less Flexibility First principles.
In Proc. ASPDAC’01, pages 601-604, Japan, 2001.

[8] R. L. Graham, An efficient algorithm for determining
the convex hull of a finite planar set. Information
Processing Letters, 1:132-133, 1972.

[9] H. L. Ong and J. B. Moore, Worst-case analysis of two
travelling salesman heuristics. Operations Research
Letters, 2:273-277, 1984.

