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Abstract

In this paper, a deterministic global optimization algorithm is proposed for solving min-max and max-min linear 
fractional programming problem (P) which have broad applications in engineering, management science, nonlinear 
system, economics and so on. By utilizing equivalent problem (Q) of the (P) and two-phase linear relaxation 
technique, the relaxation linear programming (RLP) about the (P) is established. The proposed algorithm is 
convergent to the global minimum of (P) through the successive refinement of the feasible region and solutions of a 
series of RLP. And finally the numerical examples are given to illustrate the feasibility of the presented algorithm.
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1. Introduction

Fractional programming is one of the most successful 
fields in nonlinear optimization. The optimization of 
min-max and max-min several linear fractional 
functions is a special class of optimization between 
fractional programming. It has attracted the interest of 
practitioners and researchers for at least 30 years (Refs. 

1-8). During the past 10 years, interest in these 
problems has been especially intense. In part, this is 
because since its initial development it has spawn a 
wide variety of application, specially multi-stage 
stochastic shipping, cluster analysis and multi-objective 
bond portfolio and so on. Another reason for the strong 
interest in minmax linear fractional programming 
problem is that from a research point of view these 
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problems pose significant theoretical and computational 
challenges. This is mainly because these problems are 
global optimization problem, i.e. they are known to 
generally possess multiple local optima that are not 
globally optima. Purpose of this paper is to develop an 
efficient and reliable algorithm for min-max and max-
min several linear fractional functions over a polytope:

1 2

1 2
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where , , ( )m n m
jA R b R f x×∈ ∈  and ( ), 1, , ,jg x j p= …

are all linear affine functions. Since problem (P1) can be 
transformed into equivalent problem (P), therefore, in 
the following we will only consider solving problem (P).

The above min-max and max-min linear fractional 
programming problem usually arise in engineering, 
management science, nonlinear system, economics and 
applied mathematics which have been reviewed in Refs. 
1 and 9. For examples, in engineering and economics it 
is usually used to minimize a ratio of functions between 
a given period of time and a utilized resource in order to
measure the efficiency or productivity of a system, in 
these types of problems the objective function is usually 
given as a min-max or max-min linear fractional 
functions (see Stancu-Minasian Ref. 10).

Min-max linear fractional programming problems 
arise in the design of electronic circuits, and also appear 
in the formulation of discrete and continuous rational 
approximation problems with respect to the Chebyshev 
norm 11 , in continuous rational games 12 , in
multiobjective programming 13 , in engineering design as 
well as in some portfolio selection problems discussed 
by Bajona-xandri and Martinezlegaz 14 . A multi-facility 
location-queueing problem giving rise to problem (P) is 
introduced in Ref.15. Financial planning with multiple 
fractional goals is discussed in Ref.16. An application in 
computational geometry leading to a problem (P) can be 
found in Ref.17. In case of infinitely rather than finitely 
many fractional problem (P) is related to fractional 
semi-infinite programming 18 . Many applications in 
engineering give rise to such a problem (P) when a 
lower bound for the smallest eigenvalue of an elliptic 
differential operator is to be determined 19.

To our knowledge, many algorithms is proposed by 
utilizing duality theory for obtaining local optimum of 
problem (P). A rich dual theory in case of min-max 
several linear fractional functions exists and is reviewed 
in Ref. 9. Many approaches essentially lead to the same 
dual

( ) ( )min{sup : 0, 0, 0}
( )

T T

T
x C

v F x u H x u v v
v G x∈

−
≥ ≥ ≠

where 1 1{ , , ), ( , , ).p pF f f G g g= =… … A rather direct
approach to such a dual theory for problem (P) is given 
in Ref. 20. In Ref. 21, the authors modified the duality 
concepts proposed in Ref. 22. In Ref. 23, the authors use 
Clarke's generalized gradient 24  to introduce three types 
of dual programs and derive corresponding duality 
relations. An extensively recent treatment of duality for 
(P) is given in Ref. 25. 

Except for dual methods, large number of 
algorithms proposed by finding an optimal solution of 
the parametric program

1
( ) max(min[ ( ) ( )]),i ii px S
q f x qg xπ

≤ ≤∈
= −

which is the unique root q  of ( ) 0,qπ = are the most
popular algorithms for solving problem (P). In Ref. 26, 
various modifications of the original algorithm have 
been proposed and tested. In Ref. 27, Gugat presented a 
version which is always super-linearly convergent. In 
Ref. 28, the authors extended the interior-point 
algorithm to solve the max-min linear fractional
programming problems. Meanwhile several interior-
point algorithms have been proposed for the (P), which 
is convergent in polynomial time. In Ref. 29, an unified 
algorithm based on monotonic optimization theory 30  is 
proposed for generalized linear fractional programming 
problem (P), which combines cutting plane and branch-
and-bound techniques.

Recently, in Ref. 31, the authors show that a 
minimax fractional programming problem is equivalent 
to a minimax nonfractional parametric problem for a 
given parameter in complex space, and the necessary 
and sufficient optimality conditions of nondifferentiable 
minimax fractional programming problem with complex 
variables under generalized convexities is established. 
In Ref. 32, an improved SQP method is proposed for 
solving minimax problems, and a new method with 
small computational cost is proposed to avoid the 
Maratos effect. In addition, its global and superlinear 
convergence are obtained under some suitable 
conditions. In Ref.33,  Dinkelbach’s global optimization 
approach for finding the global maximum of the 
fractional programming problem is discussed. Using the 
lagrangian function definition for this type of problem, 
the Kuhn–Tucker saddle point and stationary-point 
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problems are established. In addition, via the concepts 
of Mond–Weir type duality and Schaible type duality, a 
general dual problem is formulated and some weak, 
strong and converse duality theorems are proven. In Ref. 
34, optimality conditions are proved for a class of 
generalized fractional minimax programming problems 
involving ( , )B rρ -invexity functions. Subsequently, 
these optimality conditions are utilized as a basis for 
constructing various duality models for this type of
fractional programming problems and proving 
appropriate duality theorems.

In this paper, we will present a deterministic 
algorithm using branch and bound technique for 
globally solving problem (P). By utilizing equivalent 
problem and two-phase linear relaxation technique, the 
proposed algorithm is convergent to the global
minimum of the (P) through the successive refinement 
of the linear relaxation of feasible region of the 
objective function and solutions of a series of (RLP). 
And finally numerical examples show the feasibility of 
the proposed algorithm.

2. Equivalent Problem and Linearization 
Technique

For solving problem (P), we first solve the following 
2n  linear programming problems:

min
. . ,

i
i

x
x

s t Ax b


= 
≤

and 
max
. . ,

i
i

x
x

s t Ax b


= 
≤

where 1,2, , .i n= …  We can easily obtain the initial 
lower bound and upper bound of each variable. Then we 
derive an initial rectangle 0X denoted by: 

0 { , 1,2, , }.i i iX x x x x i n= ≤ ≤ = …
Let

( )
( ) , 1, 2, , ,

( )
j

j
j

f x
h x j p

g x
= = …

we introduce the equivalent problem (Q) of the (P) as 
follows.

0

min
. . ( ) 0, 1, 2, , ,

(Q) :
,
.

j

t
s t h x t j p

Ax b
x X


 − ≤ =


≤
 ∈

…

Theorem 1. Problem (P)  and (Q) have the same global 
optimal solutions and optimal value.

In the following, we only consider solving problem (Q), 
in this paper principal construction in the development 
of a solution procedure for solving problem (Q) is 
construction of a linear relaxation programming for 
obtaining the lower bounds of the optimal value for this 
problem. The concept of linear bounding functions is
introduced. For this considered problem (Q), we only 
need to construct linear lower bounding function of 

( )jh x  in each constraint function. In this section the 
developed method uses a convenient linearization 
technique to derive the linear lower bounding function 
of every ( ), 1, 2, , .jh x j p= …
Assumption 1. ( ) 0jf x > and ( ) 0,jg x > for each 

1,2, , .j p= …
Certainly, if the following situation ( ) 0jf x <  and 

( ) 0,jg x > or ( ) 0jf x >  and ( ) 0,jg x <  hold, then the 

( )jh x can be expressed as 
( )

( )
j

j

f x
g x
−

−  or
( )
( )

j

j

f x
g x

−
−

 which 

can be solved by the similar method proposed in this 
paper.

In the following, for each ( )jh x  in constraint 
function, we need to construct a linear lower bounding 
function. By assumption 1, we can let ln( ( ))j jf xη =

and ln( ( ))j jg xξ = , where 1,2, ,j p= … ,  then we have 
( ) exp( ).j j jh x η ξ= −  Here we adopt two-phase linear 

relaxation method (Ref. 5). In the first-phase a linear 
lower bounding function about the variables jη  and jξ
is derived. Then in the second-phase the linear lower 
bounding function about the primal variable x  is 
constructed ultimately.

2.1. First-phase relaxation

By the convexity of the exp( )Z , we can give a linear 
lower bound function of the exp( )Z  over the interval 
[ , ]l uZ Z as follows:

(exp( )) (1 ln ),L Z B Z B= + −
where

exp( ) exp( ) ,
u l

u l

Z ZB
Z Z

−
=

−
which is called tangential approximation at the point 

ln .Z B=
Additionally we can give a linear upper bound 

function of exp( )Z over the interval [ , ]l uZ Z  as 
follows:

(exp( )) ( ) exp( ).l lU Z B Z Z Z= − +
Based on the above discussion, for each function 

( )jh x  in constraints, we can construct the 
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corresponding first-phase lower bound function. 
According to the considered rectangle about the primal 
variable x  the bound about jη  and jξ  can also be

obtained. Denote by u
jη , l

jη  the upper bound and

lower bound of jη , and by u
jξ , l

jξ  the upper bound 

and lower bound of jξ  on the considered rectangle in 

the algorithm. Denote by ,l u
j jT T  the lower bound and 

the upper bound of j jη ξ−  which can be derived 
easily.

Then we have
(1 ln ) exp( )

( ) exp( ),
j j j j j j

l l
j j j j j

B B

B T T

η ξ η ξ

η ξ

+ − − ≤ −

≤ − − +

where
exp( ) exp( )

,
u l
j j

j u l
j j

T T
B

T T
−

=
−

Let
( ) (1 ln ),j j j j j j jLh B Bη ξ η ξ− = + − −

then the first-phase lower bound function of ( )jh x
about variable x , for some , 1, , ,j j p= …  is given as 
follow:

( ) ( )

(1 ln( ( )) ln( ( )) ln ). (1)
j j j j

j j j j

Lh Lh x
B f x g x B

η ξ− =

= + − −

2.2. Second-phase relaxation

Since the ln( )Z  is a concave function, in the similar
method as the first-phase relaxation we can obtain a 
linear lower bound function of the ln( )Z  over the 
interval [ , ]l uZ Z as follows:

(ln( )) ( ) lnl lL Z C Z Z Z= − +

where 
ln ln ,

u l

u l

Z ZC
Z Z

−
=

−
which is called tangential approximation at the point

.
ln ln

u l

u l

Z ZZ
Z Z

−
=

−
Additionally we can give a linear upper bound 

function of ln( )Z over the interval [ , ]l uZ Z  as follows:
(ln( )) 1 ln .U Z CZ C= − −

And (ln( )),L Z (ln( ))U Z  and ln( )Z  satisfies the 
following inequality: 

( ) ln ln( ) 1 ln .l lC Z Z Z Z CZ C− + ≤ ≤ − −

Therefore, by the above discussion we can obtain the 
following inequality:

( ( ) exp( )) ln( ( ))

( ) 1 ln ,

l l
j j j j j

j j j

C f x f x
C f x C

η η− + ≤

≤ − −
          (2)

( ( ) exp( )) ln( ( ))

( ) 1 ln ,

l l
j j j j j

j j j

D g x g x
D g x D

ξ ξ− + ≤

≤ − −
          (3)

where

,
exp( ) exp( )

.
exp( ) exp( )

u l
j j

j u l
j j

u l
j j

j u l
j j

C

D

η η
η η

ξ ξ
ξ ξ

−
=

−

−
=

−

by the above inequality (1) (2) and (3), then finally we 
derive the linear lower bounding function ( )jL x  of 

( )jh x  for some 1,2, , ,j p= …  which underestimates 
the value of the considered function ( )jh x  as follows:

( ) {2 [ ( ) exp( )]

( ( )) ln ln }.

l l
j j j j j j

j j j j

L x B C f x
D g x D B

η η= + − +

− + −

Obviously, ( ) ( ),j jL x h x≤ for 0 .kx X X∀ ∈ ⊆

2.3. Relaxation linear programming

Therefore, for 0 ,kX X∀ ⊆  we can construct the
relaxation linear programming (RLP) of the (Q) in kX
as follows:

min
(RLP) : . . ( ) 0, 1,2, , ,

, .
j

k

t
s t L x t j p

Ax b x X




− ≤ =


≤ ∈

…

Theorem 2. Let , , ,
u u
j ju l

j j j j jl l
j j

T T v u
η ξ

ω
η ξ

= − = = then 

the error ( ) ( ) 0j j jh x L xΘ = − →  as 0,jω →

1,2, ,j p= … .

Proof. Similarly as the proof of Lemma 1 in Ref. 5, let
1 2[ ( ) ( )] [ ( ) ( )] ,j j j j j j jh x Lh x Lh x L xΘ = − + − = Θ +Θ

then, first, we consider the difference 1jΘ . It follows

1 ( ) ( )

exp( ) (1 ln ).
j j j

j j j j j j

h x Lh x
B Bη ξ η ξ

Θ = −

= − − + − −

Since 1jΘ   is a convex function about ( )j jη ξ− , for any

( ) [ , ]l u
j j j jT Tη ξ− ∈  defined in former. Then it follows 

that 1jΘ   can obtain the maximum max
1jΘ  at the points 

l
jT  or u

jT . Let
exp( ) 1

,j
j

j

z
ω
ω

−
=
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then through computing we can derive the following 
form:

max
1 1 1( ) ( ) exp( )(1 ln ).l u l
j j j j j j j j jT T T z z zΘ = Θ = Θ = − +

Since 1,jz →  as 0.jω →  So it is obvious that 
max
1 0jΘ →   as 0.jω →

Secondly, similarly we consider the difference 2jΘ ,  
it follows that

2 ( ) ( )

{ln( ( )) [ ( ) exp( )] }

{ ( ) 1 ln ln( ( ))}.

j j j

l l
j j j j j j

j j j j j

Lh x L x

B f x C f x
B D g x D g x

η η

Θ = −

= − − −

+ − − −

Let 
2.1 ln( ( )) ( ( ) exp( )) ,l l
j j j j j jf x C f x η ηΘ = − − −

2.2 ( ) 1 ln( ) ln( ( )),j j j j jD g x D g xΘ = − − −
Then

2 2.1 2.2j j j j jB BΘ = Θ + Θ .                            (4)
Since 2.1jΘ  is a concave function about ( )jf x , we can 

know 2.1jΘ  can attain the maximum max
2.1jΘ  at the point 

( ) ln(1/ )j jf x C= . Then through computing we derive:

max
2.1

ln ln
1 ln .

1 1
j j

j
j j

v v
v v

Θ = − −
− −

Also, since 2.2jΘ  is a convex function, it follows that it 

can attain the maximum max
2.2jΘ  at the point u

jξ  or l
jξ . 

Then through computing we derive
max

2.2

ln ln
1 ln .

1 1
j j

j
j j

u u
u u

Θ = − −
− −

Since 1jv →  and 1ju → as 0jω → , then we have
max

2.1 0jΘ →  and max
2.2 0jΘ →  as 0jω → . Therefore from 

(4) we can follow that max
2 0jΘ →  as 0.jω → By the 

above discussion it is obvious that the conclusion is 
followed.

The above theorem ensures each ( )jL x will 
approximate the corresponding function ( )jh x  as 

0, 1, , .j j pω → = …  Obviously, we have the optimal 
value of the RLP and (Q) satisfy (RLP) (Q),v v≤  i.e. 
the RLP provides the lower bound for the optimal value 
of the equivalent problem (Q). Based on the above 
construction method of the linear relaxation, for 

0kX X∀ ⊆ , problem RLP( )kX  provides a valid lower 
bound for the optimal value of problem Q( )kX .

3. Algorithm and Its convergence

In this section, a deterministic global optimization
algorithm is developed to solve the (Q) based on the 
former linear relaxation technique. This algorithm needs 
to solve a sequence of relaxation linear programming 
over partitioned subsets of 0X  in order to find a global 
optimum solution. Furthermore, in order to ensure
convergence to a global optimum, some bound 
tightening strategies can be applied to enhance the 
solution procedure.

The branch and bound approach is based on 
partitioning the set 0X  into sub-hyper-rectangles, each 
concerned with a node of the branch and bound tree, 
and each node is associated with a relaxation linear sub-
problem in each sub-hyper-rectangle. Hence, at any 
stage k  of the algorithm, suppose that we have a 
collection of active nodes denoted by kΩ , say, each 
associated with a hyper-rectangle 0X X⊆ , kX ∈Ω . 
For each such node X , we will have computed a lower 
bound of the optimal value of the (Q) via the solution 

( )LB X  of the RLP, so that the lower bound of optimal 
value of the (Q) on the whole initial box region 0X  at 
stage k  is given by min{ ( ), }k kLB LB X X= ∀ ∈Ω .
Whenever the lower bounding solution for any node
sub-problem, i.e., the solution of the relaxation linear
programming RLP turns out to be feasible to the (Q), 
we update the upper bound of incumbent solution UB  if
necessary. Then, the active nodes collection kΩ  will 
satisfy ( ) , ,kLB X UB X< ∀ ∈Ω for each stage k . We
now select an active node to partition its associated
hyper-rectangle into two sub-hyper-rectangles as 
described below, computing the lower bounds for each 
new node as before. Upon fathoming any non-
improving nodes, we obtain a collection of active nodes 
for the next stage, and this process is repeated until
convergence is obtained.

Branching rule:
The critical element in guaranteeing convergence to 

a global minimum is the choice of a suitable partitioning 
strategy. In our paper we choose a simple and standard 
bisection rule. This method is sufficient to ensure 
convergence since it drives all the intervals to zero for 
the variables that are associated with the term that yields 
the greatest discrepancy in the employed approximation 
along any infinite branch of the branch and bound tree. 
This branching rule is as follows.

Consider any node sub-problem identified by the 
hyper-rectangle ' 0[ , ]X x x X= ⊆ , and the selection of 
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the branching variable qx  and the partitioning of 'X  is 
then done using the following rule.

let 
arg max{ : 1, , }i iq x x i n= − = …  ,

and partition 'X  by bisection the interval [ , ]q qx x into 
the subintervals [ , ( ) / 2]q q qx x x+  and [( ) / 2, ]q q qx x x+ .

The basic steps of the proposed global optimization 
algorithm are summarized as follows. Let ( )kLB X  refer 
to the optimal objective function value of (RLP) on the 
sub-hyper-rectangles kX  and ( )k kx x X=  refer to an 
element of corresponding argmin.

Step 1: (Initialization)
Initialize the convergence tolerance ε ; the iteration 

counter  : 0k = ; the set of active node 0
0 XΩ = ; the 

upper bound UB = ∞ ; the set of feasible points :F = ∅ .
Solve the RLP( )X for 0X X= , obtaining

0
0 : ( )LB LB X=  and 0 0( )x x X= . If 0x  is feasible to the 

(P), update F  and UB , if necessary. If 0UB LB ε− ≤ , 
then stop with 0x  as the prescribed solution to problem 
(P). Otherwise, proceed to step 2.

Step 2: (Updating upper bound)
Let  

1

1

( )( )
min max , , ,

( ) ( )
p

x F
p

f xf xUB
g x g x∈

  =  
  

…

If : ,F = ∅  then the known best feasible solution is

1

1

( )( )
arg min max , , .

( ) ( )
p

x F
p

f xf xx
g x g x∈

  =  
  

� …

Step 3: (Partition)
Partition kX  to get two new sub-hyper-rectangles 

according to the above branching rule. Call the set of 
new partition rectangles as  kX . For each kX X∈ , 
calculate the lower bound  ( )LB X  and ( )x X  by 
solving RLP( )X .

If ( ) ,LB X UB>  then let : \k kX X X= .
Step 4: (Updating lower bound)
If  ( )x X  satisfy ( )LB X UB≤  and ( )x X  is feasible 

to problem (P), then update ,UB F  and  x� , if necessary, 
and let

( \ ) ,kk k X XΩ = Ω ∪
update lower bound 

inf ( ).
k

k X
LB LB X

∈Ω
=

Step 5: (Fathoming)
Let 

1 \{ : ( ) , }.k k kX UB LB X Xε+Ω = Ω − ≤ ∈Ω

If 1 ,k+Ω = ∅  then algorithm stop, UB  is the global 
optimal value for the (P), x�  is a global optimization 
solution of problem (P);

Otherwise, let : 1k k= + , select kX  such that 
arg min ( )

k

k
XX LB X∈Ω= , : ( )k kx x X= , return to step 2.

Theorem 3.  The above algorithm either terminates 
finitely with the solution being optimal to the (P), or 
generates an infinite sequence of iteration such that 
along any infinite branch of the branch-and-bound tree, 
and accumulation point of the sequence { }kLB  will be 
the global minimum of the  (P).

Proof. In Ref. 35, Horst and Tuy point out that a 
sufficient condition for  convergence of the algorithm is 
that the bounding operation must be consistent and the 
selection operation bound improving.

Let kLB  is a computed lower bound in stage k  and 
UB  is the best upper bound at iteration k  not 
necessarily occurring inside the same sub-rectangle with 

kLB . Since the employed subdivision process is the 
bisection, the process is exhaustive. Consequently, from 
Theorem 2 the following formulation holds:

lim( ) 0kk
UB LB

→∞
− = ,

and then it means that the employed bounding operation 
is consistent.

Obviously, since the partition element where the 
actual lower bound is attained is selected for further 
partition in the immediately following iteration, the 
employed selection operation is called for bound 
improving.

In summary, the proposed algorithm are satisfied 
with that the bounding operation is consistent and that 
the selection operation is bound improving, therefore 
according to Theorem IV.3. in Horst and Tuy 35  the 
employed algorithm is convergent to the global
minimum of problem (P).

4. Numerical examples

To verify the feasibility of the proposed algorithm, 
compute the following several numerical examples 
using C++ code in Pentium IV.

Example 1 29
�
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1 2 1 2

1 2 1 2

1 2

1

2

37 73 13 63 18 39
max min ,

13 13 13 13 26 13
. . 5 3 3,

1.5 3,
1.5 4.

x x x x
x x x x

s t x x
x
x

  + + − +
  

+ + + + 
− =

 ≤ ≤
 ≤ ≤
Set  85 10ε −= × , numerical results is given as 

follows: number of iteration 6s = , the maximal number 
of active nodes necessary 7n = , execution time in 
seconds  0t s= , obtain the optimal value 

1.49072061V ∗ = , the optimal solution 1 1.5,x∗ =

2 1.5.x∗ =
Example 2 29

�

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1

2

3

3 2 0.8 4 2
min max ,

2 7 3
. . 1,

1,
12 5 12 34.8,
12 12 7 29.1,

6 4.1,
1.0 1.1,
0.55 0.65,
1.35 1.45.

x x x x x x
x x x x x x

s t x x x
x x x
x x x
x x x
x x x
x
x
x

  + − + − +
  

− + + − 
 + − ≤


− + − ≤ −
 + + ≤ + + ≤
 − + + ≤ −
 ≤ ≤


≤ ≤
 ≤ ≤



Set 85 10ε −= × , numerical results is given as follows:
number of iteration 6s = , the maximal number of 
active nodes necessary 5n = , execution time in seconds  

0t s= , obtain the optimal value 0.572810738V ∗ = , the 
optimal solution 1 1.015678086,x∗ = 2 =0.590676676,x∗

3 1.403391837x∗ = .
Example 3�

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1

2

3

2 2 0.9 3
min max ,

8 4
. . 1,

1,
12 5 12 34.8,
12 12 7 29.1,

6 4.1.
1.0 1.2,
0.55 0.65,
1.35 1.45,

x x x x x x
x x x x x x

s t x x x
x x x
x x x
x x x
x x x
x
x
x

  + − + − +
  

− + + − 
 + − ≤


− + − ≤ −
 + + ≤ + + ≤
 − + + ≤ −
 ≤ ≤


≤ ≤
 ≤ ≤



Set  85 10ε −= × , numerical results is given as follows:
number of iteration 8s = , the maximal number of 
active nodes necessary 8n = , execution time in seconds  

0t s= , obtain the optimal value 1.346854863V ∗ = , the 
optimal solution is 1 1.016666667,x∗ = 2 0.55,x∗ =

3 1.45x∗ = .
Example 4�

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1

3 2 0.8 4 2
, ,

2 7 3
min max

3 2 1.9 4
,
8 4

. . 1,
1,

12 5 12 34.8,
12 12 7 29.1,

6 4.1,
1.0 1.2,

x x x x x x
x x x x x x

x x x x x x
x x x x x x

s t x x x
x x x
x x x
x x x
x x x
x

+ − + − + 
 − + + − 
 + − + − + 
 − + + − 
+ − ≤

− + − ≤ −

+ + ≤
+ + ≤

− + + ≤ −
≤ ≤

2 30.50 0.65, 1.35 1.45.x x


















≤ ≤ ≤ ≤
Set  85 10ε −= × , the results is given as follows: number 
of iteration 7s = , the maximal number of active nodes
necessary 8n = , execution time in seconds  0t s= , 
obtain the optimal value 2.284427051V ∗ = , the optimal 
solution is 1 1.008333333,x∗ = 2 0.5,x∗ = 3 1.45x∗ = .

Numerical result show that our algorithm can 
globally solve min-max and max-min linear fractional 
programming problem (P) and (P1) on a microcomputer.

5. Conclusion

In this paper, by utilizing equivalent transformation, 
two-phase linear relaxation method and branch-and-
bound technique, we present a deterministic algorithm 
for solving min-max and max-min linear fractional 
programming problem (P) and (P1) which have broad 
applications in engineering, management science, 
nonlinear system, economics and so on. The proposed 
algorithm is convergent to the global minimum of (P) 
through the successive refinement of the feasible region 
and solutions of a series of RLP. And finally several
numerical examples are given to illustrate the feasibility 
and efficiency of the presented algorithm.
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