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Abstract 

A type of Takagi-Sugeno (T-S) Proportional-Integral (PI) fuzzy controllers is studied. The T-S PI fuzzy controller 
is formed by a T-S Proportional-Derivative (PD) fuzzy controller connected with an integrator. In this particular 
structure, the T-S PD fuzzy controller is a weighted sum of some linear PD sub-controllers. The mathematical 
properties of our T-S PI fuzzy controller are also investigated. Based on these properties, the global asymptotic sta-
bility of the fuzzy control systems, in which the T-S PI fuzzy controllers are employed, are analyzed by using the 
well-known circle criterion. A sufficient condition with an elegant graphical interpretation in the frequency domain 
is further derived to guarantee the global asymptotic stability of the above fuzzy control systems. Finally, two nu-
merical examples are provided to demonstrate how to deploy this method in analyzing the T-S PI fuzzy control sys-
tems in the frequency domain with the aid of some simple graphs. 

Keywords: fuzzy control systems, Takagi-Sugeno (T-S) PI fuzzy controllers, stability analysis, circle criterion, fre-
quency response methods. 
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1. Introduction 

Despite that numerous sophisticated control theories and 
techniques have been developed in the last decades, the 
Proportional-Integral-Derivative (PID) controllers are 
still being applied in more than 90% of the industrial con-

trol loops, because they can offer satisfactory control 
performances at the acceptable costs 1, 2. The most fa-
mous technique for tuning the parameters of the PID con-
trollers is the Eiegler-Nichols method 3, which is typi-
cally used as a comparison reference for new tuning 
schemes. Panagopoulos et al. 4 explore the relationship 
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between the PID design and ∞H  loop shaping. The 

specifications in terms of the maximum sensitivity and 
maximum complementary sensitivity are related to the 
weighted ∞H  norm. The Bode’s integral is also applied 

to adjust the PID parameters 5. Based on numerical opti-
mization, a kind of simple but robust PI and PID control-
lers design approach is presented 6, where the effective-
ness of this method is demonstrated by simulations. For 
more PID tuning strategies, refer to Refs. 1, 2, 7, 8, and 
references therein. 
Fuzzy sets and systems were introduced by Zadeh more 
than four decades ago. Since then, they have been de-
ployed in a large variety of applications, such as control 
engineering 9, decision making 10, 11, pattern recognition 
12, clustering 13, etc. As a matter of fact, Fuzzy Logic 
Control (FLC) is one of the most important applications 
in control theory. As Åström 2 points out that fuzzy con-
trol is a necessary alternative for the conventional PID 
controllers, because the parameterization based on rules 
and fuzzy membership functions makes it easy to add the 
knowledge of experts into the control laws. Sugeno 14 
classifies the current fuzzy control systems into three 
major types, i.e., Type I, Type II, and Type III. The Type 
I, proposed by Mamdani 15, is characterized by a set of 
fuzzy rules, which are constructed by linguistic terms in 
both the antecedent and consequent parts of fuzzy rules. 
The Type II fuzzy systems are derived by using single-
tons, which are a special class of fuzzy sets, instead of the 
fuzzy variables in the consequent part of fuzzy rules. 
Therefore, the Type II is considered to belong to the Type 
I. If the consequent part of fuzzy rules becomes an ana-
lytical function that is generally linear or affine, the Type 
III fuzzy model can be constructed. The Type III fuzzy 
model, namely T-S fuzzy model, was proposed by Takagi 
and Sugeno 16 in 1985. The fuzzy controllers used in in-
dustrial applications are usually in the form of fuzzy PD, 
PI, and PID. However, unlike the conventional PID con-
trol systems, the stability analysis of the fuzzy control 
systems is still an open issue. In Refs. 17-19, the Popov 
criterion, circle criterion, and describing function method 
have been respectively utilized to analyze the stability of 
the Mamdani PI and PD fuzzy controllers with linear 

plants. For the stability analysis of the Mamdani fuzzy 
controllers with nonlinear plants, the small gain theorem 
and Lyapunov stability theorem are considered 20-22. 
As for the T-S fuzzy systems, the stability analysis re-
lated topics have been investigated 9, 23, 24. Unfortunately, 
there are yet not enough research results for the T-S PID 
control systems. Two sufficient stability conditions with 
insightful graphic interpretations are derived to guarantee 
the global stability of the T-S proportional fuzzy control 
systems by using the circle criterion and Popov criterion, 
respectively 25, 26. With the aid of the small gain theorem, 
Ding et al. analyze the stability of the T-S PI and PD 
fuzzy controllers with nonlinear plants 27. The T-S PI 
fuzzy controller is applied to control the integral plants 
with parameter uncertainty 28 on the basis of a polynomial 
theorem, which is proposed and studied by Kharitonov 29. 
In this paper, we present a sufficient stability condition 
for a type of the T-S PI fuzzy control systems with a con-
cise graphical interpretation by using the circle criterion. 
Nevertheless, the condition is derived under some as-
sumptions on the parameters of the consequent parts of 
the fuzzy logic rules. The rest of our paper is organized as 
follows. In Section 2, the configuration of the T-S PI 
fuzzy control systems under investigation is first defined, 
and the properties of these controllers are next investi-
gated. Based on the circle criterion, the global asymptotic 
stability condition with an insightful graphical interpreta-
tion for the T-S PI fuzzy control systems is derived in 
Section 3. Two numerical simulation examples are fur-
ther given to verify the effectiveness of the proposed fre-
quency domain-based analysis method in Section 4. Fi-
nally, a few conclusions and remarks are drawn in Sec-
tion 5. 

2. The T-S PI Fuzzy Control System 

In this section, the structure of the T-S PI fuzzy control 
system studied in this paper is formally defined. Some 
restrictions concerning the consequent parts of the fuzzy 
logic rules are also given for the derivation of our stabil-
ity theorems. 
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2.1. Structure of the T-S PI fuzzy control system 

The structure of the T-S PI fuzzy control system is shown 
in Fig. 1, where r  is the reference input, 1τ , 2τ , and 3τ  

are denoted as the constant scaling factors given by ex-
perienced operators, the PDFLC is a T-S PD fuzzy con-
troller, e  and e&  represent the control error and derivative 
of the control error, respectively, u  is the output of the 
T-S PI Fuzzy Logic Controller (PIFLC), and )(sG  de-

notes the transfer function of the linear plant.  

Obviously, the PIFLC is a PD fuzzy controller in con-
junction with an integrator. Each input universe is parti-
tioned into seven fuzzy sets, which are characterized by 
the commonly used triangle membership functions. The 
fuzzy sets of e  and e&  are denoted as iE  and jDE , 

whose corresponding membership functions are respec-
tively represented by )(eiμ  and )(ej &μ  (see Fig. 2), 

where 3,,2,3, L−−=ji .  

Since there are seven fuzzy sets for each input variable, 
we need a total of 4977 =×  fuzzy logic rules in order to 
cover all the combinations of these fuzzy sets. The fol-
lowing T-S fuzzy logic rules are employed in our PDFLC: 

Rule jiR , : If )(te  is iE  and )(te&  is jDE , then          

 )()( ,,, tebteav jijiji &+= , 3,,3, L−=ji .         (1) 

The common product operator is used in this paper. Thus, 
the output of the PDFLC is given as follows: 
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and the output of the PIFLC is the integral of )(tv , i.e., 

∫=
t

dssvtu
0

3 )()( τ .                           (3)  

2.2. Properties of the control surface of the PDFLC 

In this subsection, some properties of the aforementioned 
T-S PI fuzzy controller are investigated. We first demon-
strate that the binary function achieved by the PDFLC in 
Fig. 1 is continuous. 
Definition 1 30: A binary function ),( yxf  is said to be 
continuous at the point ),( 00 yx , if for any 0>ε , there 
exists 0, 21 >δδ , such that 

ε<− ),(),( 00 yxfyxf ,                    (4) 

provided that 10 δ<− xx  and 20 δ<− yy . ),( yxf  is 
continuous, if it is continuous at every point in its domain. 
Theorem 1: The control surface of the PDFLC in Fig. 1 
is continuous.  
Proof. Let ),( eev &  denote the binary function achieved by 
the PDFLC in Fig. 1. We can prove that ),( eev &  is con-
tinuous. For any point ),( ee &  and its perturbation 

),( eeee && Δ+Δ+ , we have 
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From Fig. 2, it can be observed that each membership 
function )(eiμ  (or )(ei &μ ), 3,,3 L−=i , is continuous. 
Thus, )()( ee ji &μμ , 3,,3, L−=ji , are continuous, due to 

the fact that the multiplication of two continuous func-
tions is also continuous. Let 

},,,,,max{ 3333 bbaaA LL −−= ,            (7) 

we have 

−

r yu
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Fig. 1. The T-S PI fuzzy control system. 
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Since )()( ee ji &μμ  is continuous, for 0
)(98
>

+ eeA &

ε , 

there exists 0, ,2,1 >ijij δδ , such that 

,
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when ije ,1δ<Δ  and ije ,2δ<Δ & , where 3,,3, L−=ji . 

Let 
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The above analysis proves that for arbitrary point ),( ee &  
and 0>ε , there exists 0, 21 >δδ , such that 

ε<−Δ+Δ+ ),(),( eeveeeev &&& , when 1δ<Δe  and 

2δ<Δe& . Therefore, according to Definition 1, the con-

trol surface of the PDFLC is continuous. ■ 
Remark 1. As we know that the parameters of the conse-
quent parts of the fuzzy rules significantly affect the 
overall performance of the PI fuzzy controller, and their 
values should be empirically chosen for different plants. 
Theorem 2: If the parameters of the consequent parts of 
the fuzzy logic rules satisfy the following equalities: 

       ,,, ijji ba −−=  ,1,3,,3, ≤+−= jiji L           (13) 

the output of the PDFLC is zero, when the sum of the 
inputs e  and e&  is zero. In other words, 0=v , when 

0=+ ee & . 
Proof. When 11 <<− e , four fuzzy logic rules are fired 
for the combination of e  and e& . Since 0=+ ee & , we as-
sume that these four rules are )1(, +− mmR , mmR −, , 

)1(,1 +−+ mmR , and mmR −+ ,1 , where 2,,3 L−=m . The out-

put of this PDFLC is 
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When ee &−= , we have 
)()( ee mm &−= μμ ,                           (15) 

)()( )1(1 ee mm &+−+ = μμ .                      (16) 

Substituting (13), (15), and (16) into (14), we get 
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When 1−≤e  or 1≥e , there is only one rule fired for the 
combination of e  and e& , which is 3,3−R  or 3,3 −R . Thus, 

the output of the PDFLC is 
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Obviously, 0=v , because 0=+ ee & . ■ 
Remark 2. We must emphasize that the above assump-
tion (13) is not a stringent requirement but a good choice 
for guaranteeing satisfactory system performances. For 
example, when e  is negative big but e&  is positive big 
means that e  approaches zero rapidly, although e  is far 
away from zero. This trend is desirable, and 0=v  is ap-
propriate for the control actions. When e  is positive 
small and e&  is negative small implies that e  approaches 
zero slowly. When e  is small and 0=v  is still suitable 
means that the control actions of the PIFLC are main-
tained and large overshoots and undershoots can be effec-
tively avoided. The same analysis also applies to the 
other cases, when 0=+ ee & . 
Theorem 3: If the conditions of Theorem 2 are satisfied, 
and ),( eev &  is denoted as the nonlinear function achieved 
by the PDFLC, there exist two real numbers 1k  and 2k  

satisfying the following inequality: 
.)())(,()( 2

2
2

1 eekeeeeveek &&&& +≤+≤+           (20) 

Proof. In region A  (as shown in Fig. 3), where 1−≤e  
and 1≥e& , the output of our PDFLC is 

).(),( 3,33,33,3 eeaebeaeev &&& +=+= −−−             (21) 
There is 

.),( 3,3 eeaeev && += −                         (22) 

Similarly, we have eeaeev && += −3,3),(  in region A′ , 

where 1≥e  and 1−≤e& . 
In region B , where 1≥e  and 1≥e& , the output of the 
PDFLC is ebeaeev && 3,33,3),( += . Therefore, there is 

.},max{),( 3,33,3 eebaeev && +≤                 (23) 

Similarly, we have eebaeev && +≤ −−−− },max{),( 3,33,3  in 

region B′ , where 1−≤e  and 1−≤e& . 
In region D , where 1<e&  and 3>e , there is 
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Hence, we have 
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In region D′ , where 1<e&  and 3−<e , we get 
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We also have 
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Fig. 3. Partition of input space. 
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in region C  and 
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in region C′ . 
Actually, the analysis of region E , where 

])1,1[]3,3([])3,3[]1,1([ −×−−×−= UE , is more compli-

cated than the other cases. Line segment ab  is the inter-
section of 0=+ ee &  and E  (see Fig. 3). Our goal here is 
to prove that )/(),( eeeev && +  is bounded in E , when 

0≠+ ee & . We first divide region E  into 60 small regions, 
such as 1E′ , 1E ′′ , and 1E , as shown in Fig. 4, and use the 

yx −  coordinate to replace ee &−  coordinate. 

Thus, we obtain 
),(2 eex &+=                              (29) 

).(2 eey −= &                              (30) 
It is straightforward to observe that ),( eev &  is analytical in 

each small region in Fig. 4.  
For example, the mathematical expression of ),( eev &  in 

1E′  is as follows: 

.)23()23(
)(3)(3

))((),(

3,32,33,32,3

2,33,3
2

2,33,3

3

2
,3,3

ebbeaa
eeaaebb

ebeaeeev
i

iii

&

&&

&&&

−+−

+−+−=

+=

−−−

−−−−

=
−−∑μ

     (31) 

Therefore, in the yx − coordinate, each point on the line 

segment ab  is analytical except for 
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24,22,0|),{( L−−== yxyx . This means 
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where, 22≤y , and 22,,
3

24,22 L−−≠y . Yet 

point ),( yx , where 0=x  and 22,,
3

24,22 L−−=y , 

is not analytical, because it is on the edge of four differ-
ent small regions. However, 
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indeed exist, due to the fact that ),0( y+  and ),0( y−  are 
analytical in different regions. There also exists 01 >′′M , 

such that 
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where 22,,
3
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With (32) and (35), we obtain 
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Obviously, there is 0>δ , such that 
,},max{),( 11 eeMMeev && +′′′≤  .δ<+ ee &          (37) 
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Fig. 4. Partition of region E . 
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For the point belonging to δ<+ eeE &\ , ),( eev &  is finite, 

because ),( eev &  is continuous on 2R  (see Theorem 1). 
Thus, )/(),( eeeev && +  is bounded. Assume that 01 >′′′M  is 

the boundary. In region E , we have 
,),( 1 eeMeev && +≤  }.,,max{ 1111 MMMM ′′′′′′=      (38) 

From the above different cases, we can find an 0>M , 
such that 

.),( eeMeev && +≤                           (39) 

Therefore, (20) follows from (39). ■ 
Remark 3. We would like to point out the following two 
interesting issues. Firstly, this theorem shows the control 
surface of our PDFLC can be caught by two planes with 
finite slopes. Secondly, these slopes are determined by 
the parameters of the consequent parts of the fuzzy logic 
rules. Actually, the minimum value of 2k  and maximum 
value of 1k  satisfying (20) can be theoretically derived. 

To summarize, we investigate some crucial properties of 
a type of fuzzy controllers in this section. For more prop-
erties of the general T-S fuzzy controllers, refer to Refs. 9 
and 31. The circle criterion will be employed to analyze 
the stability of the closed-loop fuzzy control systems in 
the next section. 

3. Stability Analysis 

The stability analysis of control systems is indeed impor-
tant. Unlike the other conventional methods for controller 
design, e.g., sliding model control and adaptive control, 
in which the stability of the closed-loop systems is taken 
into consideration in the design process, the design of the 
fuzzy logic controllers heavily depends on the experi-
enced experts. The advantage is that the operators’ do-
main knowledge can be embedded into the controllers. 
Unfortunately, this intuitive approach increases the diffi-
culties of stability analysis of the fuzzy control systems. 
A novel circle criterion-based method is proposed to 
guarantee the local asymptotic stability of a specific type 
of the Mamdani PI fuzzy controllers with linear plants 18. 
However, it cannot be generalized to a circle criterion-
based condition for the global asymptotic stability, due to 
the saturation of the Mamdani FLCs. 

It is well known that many nonlinear systems can be rep-
resented as a feedback connection (i.e., Lur’e form) of a 
linear dynamical system and a nonlinear element. There-
fore, the frequency domain-based methods can be em-
ployed to analyze the stability of this class of nonlinear 
systems, such as the circle criterion (refer to Appendix A 
for a brief introduction) and Popov criterion. In the pre-
sent paper, we only focus on transforming the T-S PI 
fuzzy control systems into the standard Lur’e form. Since 
the Lyapunov stability of the closed-loop systems is stud-
ied here, the external input r  is assumed to be zero. Ob-
serve that line 0=+ ee &  is on the control surface of the 
PDFLC by Theorem 3, which implies that the control 
surface is between two planes crossing the line 0=+ ee & . 
If ),( eef &  is denoted as a nonlinear coefficient, on the 

basis of Theorem 3, the output of the PDFLC can be 
characterized by 

),)(,(),( eeeefeev &&& +=  0≠+ ee & .           (40) 
Thus, ),( eef &  belongs to sector ],[ 21 kk , and the system 

in Fig. 1 is recast into its version in Fig. 5. Furthermore, 
the one in Fig. 5 is transformed into the standard Lur’e 
form, as illustrated in Fig. 6. 

To conclude, the circle criterion can be used to analyze 
the stability of the above T-S PI fuzzy control systems, 
and we can further obtain the following Theorem 4. 
Theorem 4: The T-S PI fuzzy control system in Fig. 1 is 
globally asymptotically stable, if the control surface of 
the PDFLC is caught by two planes )(1 eekv &+=  and 

)(2 eekv &+= , where 210 kk << , and the Nyquist plot of 

)()( 32
21 ωττ
ω
ττ jG
j

+  does not enter disk ),( 21 kkD  but 

encircles it p  times in the counterclockwise direction. p  

( )G s
−

1 2sτ τ+ ( , )f ⋅ ⋅
0r = y

3 / sτ
e e+ &

Fig. 5. Equivalent structure of the system in Fig. 1. 

1 3 2 3( / ) ( )s G sτ τ τ τ+

−
( , )f ⋅ ⋅

 
Fig. 6. Standard Lur’e form of the system in Fig. 1. 
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denotes the number of the poles of )()( 32
21 ωττ
ω
ττ jG
j

+  

with positive real parts, )(sG  is the transfer function of 
the linear plant, and ),( 21 kkD  is defined to be the closed 

disk in the complex plane, whose diameter is the line 
segment connecting points )0,/1( 1k−  and )0,/1( 2k− . 

Proof. By transforming the system in Fig. 1 into the stan-
dard Lur’e form as well as using the circle criterion, we 
can prove this theorem in a straightforward way. ■ 
It should be mentioned that the maximum value of 1k  
and minimum value of 2k  satisfying (20) can be theoreti-

cally obtained by analyzing each small region in Fig. 3. 
Nevertheless, if it is difficult to find the boundaries of 

ee
eev
&

&

+
),( , we can determine 1k  and 2k  from the lateral 

view of the control surface of the PDFLC. For example, 
Figure 7 illustrates the control surface of a given PDFLC. 
A rotated version of Fig. 7 is shown in Fig. 8, from which 
it can be observed that 01 =k  and 62 =k  are indeed the 

boundaries of the control surface of this PDFLC. 
Comparing the control surface of the T-S fuzzy controller 
in Fig. 8 with that of the Mamdani fuzzy controller in Fig. 
9 of Ref. 18, we can discover the saturation phenomenon 
of the Mamdani fuzzy controller. In Ref. 18, the control 
surface of the Mamdani PD fuzzy controller is locally 
caught by two planes )(1 eekv &+=  and )(2 eekv &+= , 
where 210 kk << . By using the first condition of the cir-

cle criterion, a sufficient condition is derived for the local 
asymptotic stability. Actually, the control surface is be-
tween two planes, whose slopes are 0  and 2k , due to the 

saturation. Unfortunately, the second condition of the 
circle criterion cannot be employed to derive a global 
asymptotic stability condition, because the linear part of 
the standard Lur’e form of the closed-loop fuzzy control 
system is not Hurwitz. However, since the T-S PD fuzzy 
controller is free from the saturation problem, the circle 
criterion can be directly utilized in this case.  

4. Simulations 

In this section, the proposed analysis method is examined 
to analyze the stability of the T-S PI fuzzy control sys-
tems. The T-S PI fuzzy controllers are used to control the 

marginally stable and unstable plants in the following two 
examples, respectively. It should be noted that only the 
stability analysis is investigated in the present paper, and 
tuning the controller parameters to achieve perfect per-
formances is not the main goal. Therefore, the T-S fuzzy 
controller design procedure as well as a detailed perform-
ance comparison between the PI fuzzy controller and 
traditional PID controller is omitted here. As a matter of 
fact, the controllers in the two examples below are heuris-
tically designed based on the conventional PID tuning 
methods. 
Example 1 32: In this example, a marginally stable plant 

)(sG  is described by 

)1(
1)(
+

=
ss

sG ,                          (41) 

for which even the Eiegler-Nichols-tuned PID controllers 
fail to yield an acceptable control performance. Therefore, 
a PIFLC is constructed for )(sG , as shown in Fig. 1, 
where 11 =τ , 42 =τ , and 13 =τ . The control surface of 

the PDFLC in Fig. 9 is designed to satisfy (20), where 
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Fig. 7. Control surface of a PDFLC. 
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Fig. 8. Control surface of the PDFLC in Fig. 7 
observed from azimuth o45  and elevation o0 .
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5.01 =k  and 4.22 =k . The two corresponding planes are 
)(5.0 eev &+=  and )(4.2 eev &+= . Both the Nyquist plot 

of (41) and disk )4.2,5.0(D  are given in Fig. 10. It fol-

lows from Theorem 4 that our fuzzy control system is 
globally asymptotically stable, whose step response is 
illustrated in Fig. 11. Obviously, the T-S PI fuzzy con-
troller performs significantly better than the traditional PI 
controller 
Example 2 19: In this example, the transfer function of an 
unstable plant is described by 

1
11.0)( 2 +−

+
=

ss
ssG ,                           (42) 

which has two poles with positive real parts. A T-S PI 
fuzzy controller is constructed for the unstable plant, 
where 1τ , 2τ , and 3τ  are chosen to be 11 =τ , 27.02 =τ , 
and 3523 =τ . The parameters of the consequent parts of 

the fuzzy logic rules are fine-tuned so that the control 
surface of our PDFLC is between planes )(7.0 eev &+=  
and )(5 eev &+= , as illustrated in Fig. 12. The Nyquist 
plot of (42) does not enter disk )5,7.0(D , and it encircles 
the disk )5,7.0(D  twice in the counterclockwise direction. 

Thus, based on Theorem 4, we can find out that this 
fuzzy control system is globally asymptotically stable. 
The Nyquist plot of (42) and disk )5,7.0(D  are shown in 

Fig. 13. Figure 14 further demonstrates the small region 
around disk )5,7.0(D  in more details. From Figs. 13 and 

14, it is clearly visible that the Nyquist plot indeed encir-
cles the disk )5,7.0(D  twice in the counterclockwise di-

rection, and the global asymptotic stability can be en-
sured. The step response of the above fuzzy control sys-
tem is illustrated in Fig. 15, which depicts that the T-S PI 
fuzzy controller outperforms the regular PI controller.  
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Fig. 9. Control surface of the PDFLC in Example 1. 
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Fig. 11. Step responses of a marginally stable plant with the T-S PI fuzzy controller (solid line)  

and traditional PI controller (dash line). 
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Fig. 10. Nyquist plot of 

)1(
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5. Conclusions 

In this paper, the circle criterion is employed to graphi-
cally analyze the global asymptotic stability of the T-S PI 
fuzzy control systems in the frequency domain. Two 
typical numerical examples are provided to demonstrate 
the efficiency of the proposed approach, which imposes 
some restrictions on the fuzzy controllers so as to guaran-
tee the global asymptotic stability. However, we only 
focus on the linear plants here. For the nonlinear plants, 
the local stability of the closed-loop systems can be also 
analyzed after linearization. Since a T-S fuzzy model is 
usually constructed by a family of local linear models, it 
is indeed interesting and important to analyze the T-S 
fuzzy models with the T-S fuzzy controllers in the fre-

quency domain. Therefore, in our future work, we are 
going to further investigate the frequency domain-based 
stability conditions for the general T-S fuzzy control sys-
tems. 
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Fig. 12. Control surface of the PDFLC in Example 2. 
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Fig. 14. Disk )5,7.0(D  in details. 
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Fig. 15. Step responses of an unstable plant with the  

T-S PI fuzzy controller (solid line) and  

traditional PI controller (dash line). 
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Appendix A.  

Let us consider a general nonlinear system given in Fig. 
16, which can be described by the following state equa-
tions: 

)),(,()(
),()()(
),()()(

ttt
tdtt
ttt

σφξ
ξσ
ξ

−=
+=
+=

cx
bAxx&

                       (43) 

where nnR ×∈A , nT R∈xcb ,, , and σξ ,,d  are all sca-
lars. We assume that ),( bA  pair is controllable, ),( Ac  
pair is observable, and ),( ⋅⋅φ  is a memoryless nonlinear 

function, which is continuous with respect to its two pa-
rameters. We conclude ),( ⋅⋅φ  belongs to sector ],[ βα , if 

the following inequality is satisfied: 
)())(,()()( 22 ttttt βσσφσασ ≤≤ .              (44) 

The circle criterion 33: The system (43) is globally as-
ymptotically stable, if one of the following conditions is 
satisfied: 
1) If βα <<0 , the Nyquist plot of )( ωjG  does not en-
ter the disk ),( βαD  but encircles it m  times in the coun-

terclockwise direction, where m  is the number of the 
poles of )(sG  with positive real parts. ),( βαD  is de-

fined to be a closed disk in the complex plane, whose 
diameter is the line segment connecting points 

0/1 j+− α  and 0/1 j+− β , as shown in Fig. 17, where 
βα <<0 . 

2) If βα <=0 , )(sG  is Hurwitz, and the Nyquist plot 
of )( ωjG  lies to the right of the vertical line defined by 

β/1]Re[ −=s . 
3) If βα << 0 , )(sG  is Hurwitz, and the Nyquist plot of 

)( ωjG  lies in the interior of disk ),( βαD . 

Proof. Refer to Ref. 29 for a detailed proof. ■ 
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