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Abstract. Fractional differential equations and fractional integral equations have gained considerable 

importance and attention due to their applications in many engineering and scientific disciplines. 

Gronwall-Bellman inequalities are important tools in the study of existence, uniqueness, boundedness, 

stability and other qualitative properties of solutions of Fractional differential equations and fractional 

integral equations. In this paper, we discuss a class of integral inequalities with pth power, which 

includes a nonconstant term outside the integrals. Using the definitions and properties of modified 

Riemann-Liouville fractional derivative and Riemann-Liouville fractional integral, the upper bounds 

of the unknown function is estimated explicitly. The derived result can be applied in the study of 

qualitative properties of solutions of fractional integral equations. 

Introduction 

Fractional differential equations and fractional integral equations have gained considerable 

importance and attention due to their applications in many engineering and scientific disciplines. 

Gronwall-Bellman inequalities [1, 2] are important tools in the study of existence, uniqueness, 

boundedness, stability, invariant manifolds and other qualitative properties of solutions of fractional 

differential equations and fractional integral equations. In 2011, Abdeldaim et al. [3] studied a new 

iterated integral inequality with pth power 
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In 2014, El-Owaidy, Abdeldaim, and El-Deeb [4] discussed a new nonlinear integral inequality with a 

nonconstant term outside the integrals 
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In 2014, Zheng [5] investigated the inequality with fractional integral 
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In order to achieve various goals, some investigators have established a lot of useful and interesting 

integral inequalities (see [6-10] and the references cited therein). 

In this paper, on the basis of [3, 4, 5], we discuss a class of integral inequality with pth power 
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Result 

Throughout this paper, let  0, .R     

Jumarie [7, 8] given the following definitions for the modified Riemann-Liouville fractional 

derivative and fractional integral.  
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Definition 1. The modified Riemann-Liouville derivative of order α is defined by the following 

expression: 
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Definition 2.The Riemann-Liouville fractional integral of order α on the interval is defined by 
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In 2014, Zheng [5] proved the following property for the modified Riemann-Liouville derivative and 

fractional integral. 

Suppose that 10  , f  is a continuous function, then 
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Some important properties for the modified Riemann-Liouville derivative and fractional integral are 

listed as follows (see [9, 10] ): 
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   where C is a constant.                                                                                              (12) 

Theorem 1. Suppose that  tg ,    , ,h t C R R     RRf ,  is a nondecreasing function with f 

(t) > 0 for t > 0, and 
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If u(t) satisfies the inequality (4), then 
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Proof. Since f(t) is a positive and nondecreasing function. The inequality (4) can be rewritten to 
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Let z1(t) = u(t)/f (t). From(16)  we get that 
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Define a function z2(t) by the right hand side of the above inequality. Then z2(t) is a positive and 

nondecreasing function on R  . Obviously, we have 
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On other hand, by the properties (8), (9), (10), we have 
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Substituting t with   in (22), making a fractional integral of order    for (22) with respect to  from 

0 to t and using the properties (7), we get that 
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From the relations          ./ twtztvtftu    We get the required estimation (14). The 

proof is complete.  

Summary 

In this paper, we discuss a class of integral inequalities with pth power 
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we obtain the upper bounds of the embedded unknown function u(t) 
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by adopting inequality techniques. The derived result can be applied in the study of qualitative 

properties of solutions of fractional integral equations.  
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